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Abstract

We present QLORA, an efficient finetuning approach that reduces memory us-
age enough to finetune a 65B parameter model on a single 48GB GPU while
preserving full 16-bit finetuning task performance. QLORA backpropagates gradi-
ents through a frozen, 4-bit quantized pretrained language model into Low Rank
Adapters (LoRA). Our best model family, which we name Guanaco, outperforms
all previous openly released models on the Vicuna benchmark, reaching 99.3%
of the performance level of ChatGPT while only requiring 24 hours of finetuning
on a single GPU. QLORA introduces a number of innovations to save memory
without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that
is information theoretically optimal for normally distributed weights (b) Double
Quantization to reduce the average memory footprint by quantizing the quantization
constants, and (c) Paged Optimizers to manage memory spikes. We use QLORA
to finetune more than 1,000 models, providing a detailed analysis of instruction
following and chatbot performance across 8 instruction datasets, multiple model
types (LLaMA, T5), and model scales that would be infeasible to run with regular
finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA
finetuning on a small high-quality dataset leads to state-of-the-art results, even
when using smaller models than the previous SoTA. We provide a detailed analysis
of chatbot performance based on both human and GPT-4 evaluations showing that
GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Fur-
thermore, we find that current chatbot benchmarks are not trustworthy to accurately
evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates
where Guanaco fails compared to ChatGPT. We release all of our models and code,
including CUDA kernels for 4-bit training.2

1 Introduction
Finetuning large language models (LLMs) is a highly effective way to improve their performance,
[40, 62, 43, 61, 59, 37] and to add desirable or remove undesirable behaviors [43, 2, 4]. However,
finetuning very large models is prohibitively expensive; regular 16-bit finetuning of a LLaMA 65B
parameter model [57] requires more than 780 GB of GPU memory. While recent quantization
methods can reduce the memory footprint of LLMs [14, 13, 18, 66], such techniques only work for
inference and break down during training [65].

We demonstrate for the first time that it is possible to finetune a quantized 4-bit model without any
performance degradation. Our method, QLORA, uses a novel high-precision technique to quantize
a pretrained model to 4-bit, then adds a small set of learnable Low-rank Adapter weights [28]

∗Equal contribution.
2https://github.com/artidoro/qlora and https://github.com/TimDettmers/bitsandbytes
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Table 1: Elo ratings for a competition between
models, averaged for 10,000 random initial order-
ings. The winner of a match is determined by
GPT-4 which declares which response is better for
a given prompt of the the Vicuna benchmark. 95%
confidence intervals are shown (±). After GPT-
4, Guanaco 33B and 65B win the most matches,
while Guanaco 13B scores better than Bard.

Model Size Elo

GPT-4 - 1348 ± 1
Guanaco 65B 41 GB 1022 ± 1
Guanaco 33B 21 GB 992 ± 1
Vicuna 13B 26 GB 974 ± 1
ChatGPT - 966 ± 1
Guanaco 13B 10 GB 916 ± 1
Bard - 902 ± 1
Guanaco 7B 6 GB 879 ± 1

that are tuned by backpropagating gradients through
the quantized weights.

QLORA reduces the average memory requirements
of finetuning a 65B parameter model from >780GB
of GPU memory to <48GB without degrading the
runtime or predictive performance compared to a 16-
bit fully finetuned baseline. This marks a significant
shift in accessibility of LLM finetuning: now the
largest publicly available models to date finetunable
on a single GPU. Using QLORA, we train the Gua-
naco family of models, with the second best model
reaching 97.8% of the performance level of ChatGPT
on the Vicuna [10] benchmark, while being trainable
in less than 12 hours on a single consumer GPU;
using a single professional GPU over 24 hours we
achieve 99.3% with our largest model, essentially
closing the gap to ChatGPT on the Vicuna bench-
mark. When deployed, our smallest Guanaco model
(7B parameters) requires just 5 GB of memory and outperforms a 26 GB Alpaca model by more than
20 percentage points on the Vicuna benchmark (Table 6).

QLORA introduces multiple innovations designed to reduce memory use without sacrificing per-
formance: (1) 4-bit NormalFloat, an information theoretically optimal quantization data type for
normally distributed data that yields better empirical results than 4-bit Integers and 4-bit Floats.
(2) Double Quantization, a method that quantizes the quantization constants, saving an average
of about 0.37 bits per parameter (approximately 3 GB for a 65B model). (3) Paged Optimizers,
using NVIDIA unified memory to avoid the gradient checkpointing memory spikes that occur when
processing a mini-batch with a long sequence length. We combine these contributions into a better
tuned LoRA approach that includes adapters at every network layer and thereby avoids almost all of
the accuracy tradeoffs seen in prior work.

QLORA’s efficiency enables us to perform an in-depth study of instruction finetuning and chatbot
performance on model scales that would be impossible using regular finetuning due to memory
overhead. Therefore, we train more than 1,000 models across several instruction tuning datasets,
model architectures, and sizes between 80M to 65B parameters. In addition to showing that QLORA
recovers 16-bit performance (§4) and training a state-of-the-art chatbot, Guanaco, (§5), we also
analyze trends in the trained models. First, we find that data quality is far more important than
dataset size, e.g., a 9k sample dataset (OASST1) outperformed a 450k sample dataset (FLAN v2,
subsampled) on chatbot performance, even when both are meant to support instruction following
generalization. Second, we show that strong Massive Multitask Language Understanding (MMLU)
benchmark performance does not imply strong Vicuna chatbot benchmark performance and vice
versa—in other words, dataset suitability matters more than size for a given task.

Furthermore, we also provide a extensive analysis of chatbot performance that uses both human
raters and GPT-4 for evaluation. We use tournament-style benchmarking where models compete
against each other in matches to produce the best response for a given prompt. The winner of a
match is judged by either GPT-4 or human annotators. The tournament results are aggregated into
Elo scores [16, 17] which determine the ranking of chatbot performance. We find that GPT-4 and
human evaluations largely agree on the rank of model performance in the tournaments, but we also
find there are instances of strong disagreement. As such, we highlight that model-based evaluation
while providing a cheap alternative to human-annotation also has its uncertainties.

We augment our chatbot benchmark results with a qualitative analysis of Guanaco models. Our analy-
sis highlights success and failure cases that were not captured by the quantitative benchmarks.

We release all model generations with human and GPT-4 annotations to facilitate further study. We
open-source our codebase and CUDA kernels and integrate our methods into the Hugging Face
transformers stack [64], making them easily accessible to all. We release a collection of adapters
for 7/13/33/65B size models, trained on 8 different instruction following datasets, for a total of 32
different open sourced, finetuned models.
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Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

2 Background
Block-wise k-bit Quantization Quantization is the process of discretizing an input from a rep-
resentation that holds more information to a representation with less information. It often means
taking a data type with more bits and converting it to fewer bits, for example from 32-bit floats to
8-bit Integers. To ensure that the entire range of the low-bit data type is used, the input data type is
commonly rescaled into the target data type range through normalization by the absolute maximum
of the input elements, which are usually structured as a tensor. For example, quantizing a 32-bit
Floating Point (FP32) tensor into a Int8 tensor with range [−127, 127]:

XInt8 = round
(

127

absmax(XFP32)
XFP32

)
= round(cFP32 ·XFP32), (1)

where c is the quantization constant or quantization scale. Dequantization is the inverse:

dequant(cFP32,XInt8) =
XInt8

cFP32 = XFP32 (2)

The problem with this approach is that if a large magnitude value (i.e., an outlier) occurs in the input
tensor, then the quantization bins—certain bit combinations—are not utilized well with few or no
numbers quantized in some bins. To prevent the outlier issue, a common approach is to chunk the
input tensor into blocks that are independently quantized, each with their own quantization constant c.
This can be formalized as follows: We chunk the input tensor X ∈ Rb×h into n contiguous blocks of
size B by flattening the input tensor and slicing the linear segment into n = (b× h)/B blocks. We
quantize these blocks independently with Equation 1 to create a quantized tensor and n quantization
constants ci.

Low-rank Adapters Low-rank Adapter (LoRA) finetuning [28] is a method that reduces memory
requirements by using a small set of trainable parameters, often termed adapters, while not updating
the full model parameters which remain fixed. Gradients during stochastic gradient descent are
passed through the fixed pretrained model weights to the adapter, which is updated to optimize the
loss function. LoRA augments a linear projection through an additional factorized projection. Given
a projection XW = Y with X ∈ Rb×h, W ∈ Rh×o LoRA computes:

Y = XW + sXL1L2, (3)

where L1 ∈ Rh×r and L2 ∈ Rr×o, and s is a scalar.

Memory Requirement of Parameter-Efficient Finetuning One important point of discussion is
the memory requirement of LoRA during training both in terms of the number and size of adapters
used. Since the memory footprint of LoRA is so minimal, we can use more adapters to improve
performance without significantly increasing the total memory used. While LoRA was designed as a
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Parameter Efficient Finetuning (PEFT) method, most of the memory footprint for LLM finetuning
comes from activation gradients and not from the learned LoRA parameters. For a 7B LLaMA
model trained on FLAN v2 with a batch size of 1, with LoRA weights equivalent to commonly used
0.2% of the original model weights[28, 37], the LoRA input gradients have a memory footprint
of 567 MB while the LoRA parameters take up only 26 MB. With gradient checkpointing [9], the
input gradients reduce to an average of 18 MB per sequence making them more memory intensive
than all LoRA weights combined. In comparison, the 4-bit base model consumes 5,048 MB of
memory. This highlights that gradient checkpointing is important but also that aggressively reducing
the amount of LoRA parameter yields only minor memory benefits. This means we can use more
adapters without significantly increasing the overall training memory footprint (see Appendix G
for a detailed breakdown). As discussed later, this is crucial for recovering full 16-bit precision
performance.

3 QLORA Finetuning
QLORA achieves high-fidelity 4-bit finetuning via two techniques we propose—4-bit NormalFloat
(NF4) quantization and Double Quantization. Additionally, we introduce Paged Optimizers, to
prevent memory spikes during gradient checkpointing from causing out-of-memory errors that have
traditionally made finetuning on a single machine difficult for large models.

QLORA has one low-precision storage data type, in our case usually 4-bit, and one computation data
type that is usually BFloat16. In practice, this means whenever a QLORA weight tensor is used, we
dequantize the tensor to BFloat16, and then perform a matrix multiplication in 16-bit.

We now discuss the components of QLORA followed by a formal definition of QLORA.

4-bit NormalFloat Quantization The NormalFloat (NF) data type builds on Quantile Quantization
[15] which is an information-theoretically optimal data type that ensures each quantization bin has an
equal number of values assigned from the input tensor. Quantile quantization works by estimating
the quantile of the input tensor through the empirical cumulative distribution function.

The main limitation of quantile quantization is that the process of quantile estimation is expensive.
Therefore fast quantile approximation algorithms, such as SRAM quantiles [15], are used to estimate
them. Due to the approximate nature of these quantile estimation algorithms, the data type has large
quantization errors for outliers, which are often the most important values.

Expensive quantile estimates and approximation errors can be avoided when input tensors come from
a distribution fixed up to a quantization constant. In such cases, input tensors have the same quantiles
making exact quantile estimation computationally feasible.

Since pretrained neural network weights usually have a zero-centered normal distribution with
standard deviation σ (see Appendix F), we can transform all weights to a single fixed distribution by
scaling σ such that the distribution fits exactly into the range of our data type. For our data type, we
set the arbitrary range [−1, 1]. As such, both the quantiles for the data type and the neural network
weights need to be normalized into this range.

The information theoretically optimal data type for zero-mean normal distributions with arbitrary
standard deviations σ in the range [−1, 1] is computed as follows: (1) estimate the 2k + 1 quantiles
of a theoretical N(0, 1) distribution to obtain a k-bit quantile quantization data type for normal distri-
butions, (2) take this data type and normalize its values into the [−1, 1] range, (3) quantize an input
weight tensor by normalizing it into the [−1, 1] range through absolute maximum rescaling.

Once the weight range and data type range match, we can quantize as usual. Step (3) is equivalent to
rescaling the standard deviation of the weight tensor to match the standard deviation of the k-bit data
type. More formally, we estimate the 2k values qi of the data type as follows:

qi =
1

2

(
QX

(
i

2k + 1

)
+QX

(
i+ 1

2k + 1

))
, (4)

where QX(·) is the quantile function of the standard normal distribution N(0, 1). A problem for
a symmetric k-bit quantization is that this approach does not have an exact representation of zero,
which is an important property to quantize padding and other zero-valued elements with no error. To

4



ensure a discrete zeropoint of 0 and to use all 2k bits for a k-bit datatype, we create an asymmetric
data type by estimating the quantiles qi of two ranges qi: 2k−1 for the negative part and 2k−1 + 1 for
the positive part and then we unify these sets of qi and remove one of the two zeros that occurs in both
sets. We term the resulting data type that has equal expected number of values in each quantization bin
k-bit NormalFloat (NFk), since the data type is information-theoretically optimal for zero-centered
normally distributed data. The exact values of this data type can be found in Appendix E.

Double Quantization We introduce Double Quantization (DQ), the process of quantizing the
quantization constants for additional memory savings. While a small blocksize is required for precise
4-bit quantization [13], it also has a considerable memory overhead. For example, using 32-bit
constants and a blocksize of 64 for W, quantization constants add 32/64 = 0.5 bits per parameter on
average. Double Quantization helps reduce the memory footprint of quantization constants.

More specifically, Double Quantization treats quantization constants cFP32
2 of the first quantization

as inputs to a second quantization. This second step yields the quantized quantization constants
cFP8
2 and the second level of quantization constants cFP32

1 . We use 8-bit Floats with a blocksize of
256 for the second quantization as no performance degradation is observed for 8-bit quantization,
in line with results from Dettmers and Zettlemoyer [13]. Since the cFP32

2 are positive, we subtract
the mean from c2 before quantization to center the values around zero and make use of symmetric
quantization. On average, for a blocksize of 64, this quantization reduces the memory footprint per
parameter from 32/64 = 0.5 bits, to 8/64 + 32/(64 · 256) = 0.127 bits, a reduction of 0.373 bits
per parameter.

Paged Optimizers use the NVIDIA unified memory 3 feature wich does automatic page-to-page
transfers between the CPU and GPU for error-free GPU processing in the scenario where the GPU
occasionally runs out-of-memory. The feature works like regular memory paging between CPU RAM
and the disk. We use this feature to allocate paged memory for the optimizer states which are then
automatically evicted to CPU RAM when the GPU runs out-of-memory and paged back into GPU
memory when the memory is needed in the optimizer update step.

QLORA. Using the components described above, we define QLORA for a single linear layer in
the quantized base model with a single LoRA adapter as follows:

YBF16 = XBF16doubleDequant(cFP32
1 , ck-bit

2 ,WNF4) +XBF16LBF16
1 LBF16

2 , (5)

where doubleDequant(·) is defined as:

doubleDequant(cFP32
1 , ck-bit

2 ,Wk-bit) = dequant(dequant(cFP32
1 , ck-bit

2 ),W4bit) = WBF16, (6)

We use NF4 for W and FP8 for c2. We use a blocksize of 64 for W for higher quantization precision
and a blocksize of 256 for c2 to conserve memory.

For parameter updates only the gradient with respect to the error for the adapters weights ∂E
∂Li

are
needed, and not for 4-bit weights ∂E

∂W . However, the calculation of ∂E
∂Li

entails the calculation of ∂X
∂W

which proceeds via equation (5) with dequantization from storage WNF4 to computation data type
WBF16 to calculate the derivative ∂X

∂W in BFloat16 precision.

To summarize, QLORA has one storage data type (usually 4-bit NormalFloat) and a computation
data type (16-bit BrainFloat). We dequantize the storage data type to the computation data type
to perform the forward and backward pass, but we only compute weight gradients for the LoRA
parameters which use 16-bit BrainFloat.

4 QLoRA vs. Standard Finetuning
We have discussed how QLoRA works and how it can significantly reduce the required memory for
finetuning models. The main question now is whether QLoRA can perform as well as full-model
finetuning. Furthermore, we want to analyze the components of QLoRA including the impact of
NormalFloat4 over standard Float4. The following sections will discuss the experiments that aimed
at answering these questions.

3
https://docs.nvidia.com/cuda/cuda-c-programming-guide
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Experimental setup. We consider three architectures (encoder, encoder-decoder, and decoder only)
and compare QLoRA with 16-bit adapter-finetuning and with full-finetuning for models up to 3B. Our
evaluations include GLUE [58] with RoBERTa-large [38], Super-NaturalInstructions (TKInstruct)
[61] with T5 [49], and 5-shot MMLU [24] after finetuning LLaMA on Flan v2 [39] and Alpaca
[55]. To additionally study the advantages of NF4 over other 4-bit data types, we use the setup of
Dettmers and Zettlemoyer [13] and measure post-quantization zero-shot accuracy and perplexity
across different models (OPT [72], LLaMA [57], BLOOM [52], Pythia [7]) for model sizes 125m -
13B. We provide more details in the results section for each particular setup to make the results more
readable. Full details in Appendix A.
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Figure 2: RougeL for LLaMA 7B models on the
Alpaca dataset. Each point represents a run with a
different random seed. We improve on the Stanford
Alpaca fully finetuned default hyperparameters to
construct a strong 16-bit baseline for comparisons.
Using LoRA on all transformer layers is critical to
match 16-bit performance.

While paged optimizers are critical to do 33B/65B
QLORA tuning on a single 24/48GB GPU, we do
not provide hard measurements for Paged Optimiz-
ers since the paging only occurs when processing
mini-batches with long sequence lengths, which is
rare. We do, however, perform an analysis of the
runtime of paged optimizers for 65B models on
48GB GPUs and find that with a batch size of 16,
paged optimizers provide the same training speed
as regular optimizers. Future work should measure
and characterize under what circumstances slow-
downs occur from the paging process.

Default LoRA hyperparameters do not match 16-
bit performance When using the standard prac-
tice of applying LoRA to query and value attention
projection matrices [28], we are not able to replicate
full finetuning performance for large base models.
As shown in Figure 2 for LLaMA 7B finetuning on
Alpaca, we find that the most critical LoRA hyper-
parameter is how many LoRA adapters are used in
total and that LoRA on all linear transformer block
layers are required to match full finetuning perfor-
mance. Other LoRA hyperparameters, such as the
projection dimension r, do not affect performance (see Appendix A).
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Figure 3: Mean zero-shot accuracy over Wino-
grande, HellaSwag, PiQA, Arc-Easy, and Arc-
Challenge using LLaMA models with different 4-bit
data types. The NormalFloat data type significantly
improves the bit-for-bit accuracy gains compared
to regular 4-bit Floats. While Double Quantization
(DQ) only leads to minor gains, it allows for a more
fine-grained control over the memory footprint to fit
models of certain size (33B/65B) into certain GPUs
(24/48GB).

Similarly, we find that default hyperparameters for
fully finetuned baselines are undertuned. We do a
hyperparameter search over learning rates 1e-6 to
5e-5 and batch sizes 8 to 128 to find robust baselines.
Results for 7B LLaMA finetuning on Alpaca are
shown in Figure 2.

4-bit NormalFloat yields better performance
than 4-bit Floating Point While the 4-bit
NormalFloat (NF4) data type is information-
theoretically optimal, it still needs to be determined
if this property translates to empirical advantages.
We follow the setup from Dettmers and Zettlemoyer
[13] where quantized LLMs (OPT [72], BLOOM
[52], Pythia [7], LLaMA) of different sizes (125M
to 65B) with different data types are evaluated on
language modeling and a set of zero-shot tasks. In
Figure 3 and Table 2 we see that NF4 improves per-
formance significantly over FP4 and Int4 and that
double quantization reduces the memory footprint
without degrading performance.

k-bit QLORA matches 16-bit full finetuning and
16-bit LoRA performance Recent findings have
established that 4-bit quantization for inference is
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Table 3: Experiments comparing 16-bit BrainFloat (BF16), 8-bit Integer (Int8), 4-bit Float (FP4), and 4-
bit NormalFloat (NF4) on GLUE and Super-NaturalInstructions. QLORA replicates 16-bit LoRA and full-
finetuning.

Dataset GLUE (Acc.) Super-NaturalInstructions (RougeL)
Model RoBERTa-large T5-80M T5-250M T5-780M T5-3B T5-11B

BF16 88.6 40.1 42.1 48.0 54.3 62.0
BF16 replication 88.6 40.0 42.2 47.3 54.9 -

LoRA BF16 88.8 40.5 42.6 47.1 55.4 60.7
QLORA Int8 88.8 40.4 42.9 45.4 56.5 60.7
QLORA FP4 88.6 40.3 42.4 47.5 55.6 60.9
QLORA NF4 + DQ - 40.4 42.7 47.7 55.3 60.9

possible, but leads to performance degradation rel-
ative to 16-bit [13, 18]. This raises the crucial question of whether the lost performance can be
recovered by conducting 4-bit adapter finetuning. We test this for two setups.

Table 2: Pile Common Crawl mean
perplexity for different data types
for 125M to 13B OPT, BLOOM,
LLaMA, and Pythia models.

Data type Mean PPL

Int4 34.34
Float4 (E2M1) 31.07
Float4 (E3M0) 29.48
NFloat4 + DQ 27.41

The first focuses on a comparison with full 16-bit finetuning
of RoBERTA and T5 models sized 125M to 3B parameters on
GLUE and the Super-NaturalInstructions dataset. Results are
shown in Table 3. In both datasets, we observe that 16-bit, 8-bit,
and 4-bit adapter methods replicate the performance of the fully
finetuned 16-bit baseline. This suggests that the performance lost
due to the imprecise quantization can be fully recovered through
adapter finetuning after quantization.

For our second setup, since full finetuning models at and beyond
11B parameters requires more than one server of high memory
GPUs, we continue to test whether 4-bit QLORA can match
16-bit LoRA at the 7B to 65B parameter scales. To this end, we
finetune LLaMA 7B through 65B on two instruction following
datasets, Alpaca and FLAN v2, and evaluate on the MMLU benchmark via 5-shot accuracy. Results
are shown in Table 4 where we see that NF4 with double quantization fully recovers the 16-bit
LoRA MMLU performance. In addition, we also note that QLORA with FP4 lags behind the 16-bit
brain float LoRA baseline by about 1 percentage point. This corroborates both our findings that (1)
QLORA with NF4 replicates both 16-bit full finetuning and 16-bit LoRA finetuning performance,
and (2) NF4 is superior to FP4 in terms of quantization precision.

Summary Our results consistently show that 4-bit QLORA with NF4 data type matches 16-
bit full finetuning and 16-bit LoRA finetuning performance on academic benchmarks with well-
established evaluation setups. We have also shown that NF4 is more effective than FP4 and that
double quantization does not degrade performance. Combined, this forms compelling evidence that
4-bit QLORA tuning reliably yields results matching 16-bit methods.

In line with previous work on quantization [13], our MMLU and Elo results indicate that with a given
finetuning and inference resource budget it is beneficial to increase the number of parameters in the
base model while decreasing their precision. This highlights the importance of efficiency benefits
from QLORA. Since we did not observe performance degradation compared to full-finetuning in
our experiments with 4-bit finetuning, this raises the question of where the performance-precision
trade-off exactly lies for QLoRA tuning, which we leave to future work to explore.

We proceed to investigate instruction tuning at scales that would be impossible to explore with full
16-bit finetuning on academic research hardware.

5 Pushing the Chatbot State-of-the-art with QLoRA
Having established that 4-bit QLORA matches 16-bit performance across scales, tasks, and datasets
we conduct an in-depth study of instruction finetuning up to the largest open-source language models
available for research. To assess the performance of instruction finetuning these models, we evaluate
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Table 4: Mean 5-shot MMLU test accuracy for LLaMA 7-65B models finetuned with adapters on Alpaca and
FLAN v2 for different data types. Overall, NF4 with double quantization (DQ) matches BFloat16 performance,
while FP4 is consistently one percentage point behind both.

Mean 5-shot MMLU Accuracy

LLaMA Size 7B 13B 33B 65B Mean
Dataset Alpaca FLAN v2 Alpaca FLAN v2 Alpaca FLAN v2 Alpaca FLAN v2

BFloat16 38.4 45.6 47.2 50.6 57.7 60.5 61.8 62.5 53.0
Float4 37.2 44.0 47.3 50.0 55.9 58.5 61.3 63.3 52.2
NFloat4 + DQ 39.0 44.5 47.5 50.7 57.3 59.2 61.8 63.9 53.1

on a challenging Natural Language Understanding benchmark (MMLU) and develop new methods
for real-world chatbot performance evaluation.

5.1 Experimental setup
We now describe an overview of the experimental setup with full details in Appendix B.

Data As, to our knowledge, there is no comprehensive study of recent instruction-following datasets,
we select eight recent datasets. We include datasets obtained through crowd-sourcing (OASST1 [31],
HH-RLHF [4]), distillation from instruction-tuned models (Alpaca [55], self-instruct [59], unnatural-
instructions [26]), corpora aggregations (FLAN v2 [12]), as well as hybrids (Chip2 [32], Long-
form [30]). These datasets cover different languages, data sizes, and licenses.

Training Setup To avoid confounding effects from different training objectives, we perform QLoRA
finetuning with cross-entropy loss (supervised learning) without reinforcement learning, even for
datasets that include human judgments of different responses. For datasets that have a clear distinction
between instruction and response, we finetune only on the response (see ablations in Appendix B).
For OASST1 and HH-RLHF, multiple responses are available. We then select the top response at
every level of the conversation tree and finetune on the full selected conversation, including the
instructions. In all of our experiments, we use NF4 QLORA with double quantization and paged
optimizers to prevent memory spikes during gradient checkpointing. We do small hyperparameter
searches for the 13B and 33B LLaMA models and we find that all hyperparameter settings found
at 7B generalize (including number of epochs) except learning rate and batch size. We halve the
learning rate for 33B and 65B while doubling the batch size.

Baselines We compare our models to both research (Vicuna [10] and Open Assistant [31]) and
commercial (GPT-4 [42], GPT-3.5-turbo and Bard) chatbot systems. The Open Assistant model is
a LLaMA 33B model finetuned with Reinforcement Learning from Human Feedback (RLHF) on
the same OASST1 dataset that we experiment with. Vicuna does full fine-tuning of LLaMA 13B
on proprietary user-shared conversations from ShareGPT and is thus the result of distillation from
OpenAI GPT models.

5.2 Evaluation

Table 5: MMLU 5-shot test results for different
sizes of LLaMA finetuned on the corresponding
datasets using QLoRA.

Dataset 7B 13B 33B 65B

LLaMA no tuning 35.1 46.9 57.8 63.4

Self-Instruct 36.4 33.3 53.0 56.7
Longform 32.1 43.2 56.6 59.7
Chip2 34.5 41.6 53.6 59.8
HH-RLHF 34.9 44.6 55.8 60.1
Unnatural Instruct 41.9 48.1 57.3 61.3
Guanaco (OASST1) 36.6 46.4 57.0 62.2
Alpaca 38.8 47.8 57.3 62.5
FLAN v2 44.5 51.4 59.2 63.9

Following common practice, we use the MMLU (Mas-
sively Multitask Language Understanding) benchmark
[24] to measure performance on a range of language un-
derstanding tasks. This is a multiple-choice benchmark
covering 57 tasks including elementary mathematics,
US history, computer science, law, and more. We report
5-shot test accuracy.

We also test generative language capabilities through
both automated and human evaluations. This second
set of evaluations relies on queries curated by humans
and aims at measuring the quality of model responses.
While this is a more realistic testbed for chatbot model
performance and is growing in popularity, there is no
commonly accepted protocol in the literature. We de-
scribe below our proposed setup, using nucleus sampling with p = 0.9 and temperature 0.7 in all
cases.

8



Benchmark Data We evaluate on two curated datasets of queries (questions): the Vicuna prompts
[10] and the OASST1 validation dataset [31]. We use the Vicuna prompts, a set of 80 prompts from a
diverse set of categories, without modifications. The OASST1 dataset is a multilingual collection of
crowd-sourced multiturn dialogs between a user and an assistant. We select all user messages in the
validation dataset as queries and include previous turns in the prompt. This procedure leads to 953
unique user queries. We term these two datasets the Vicuna and OA benchmarks.

Automated Evaluation First, based on the evaluation protocol introduced by Chiang et al. [10],
we use GPT-4 to rate the performance of different systems against ChatGPT (GPT-3.5 Turbo) on the
Vicuna benchmark. Given a query along with ChatGPT’s and a model’s responses, GPT-4 is prompted
to assign a score out of ten to both responses and provide an explanation. The overall performance of
a model is calculated as a percentage of the score that ChatGPT achieved. Note this relative score
can be higher than 100% if the model achieves a higher absolute score than ChatGPT. We find a
significant ordering effect with GPT-4 increasing the score of the response occurring earlier in the
prompt. To control for such effects, we recommend reporting the mean score over both orders.

Next, we measure performance through direct comparisons between system outputs. We simplify
the rating scheme to a three-class labeling problem that accounts for ties. We prompt GPT-4 to
pick the best response or declare a tie and provide an explanation. We conduct these head-to-head
comparisons on all permutations of pairs of systems on both the Vicuna and OA benchmarks.

Human Evaluation While recent work indicates generative models can be effectively employed
for system evaluations [19], the reliability GPT-4 ratings to assess chatbot performance is, to our
knowledge, yet to be proven to correlate with human judgments. Therefore, we run two parallel
human evaluations on the Vicuna benchmark matching both automated evaluation protocols described
above. We use Amazon Mechanical Turk (AMT) and get two human annotators for comparisons to
ChatGPT and three annotators for pairwise comparisons.

Elo Rating With both human and automated pairwise comparisons, we create a tournament-style
competition where models compete against each other. The tournament is made up of matches where
pairs of models compete to produce the best response for a given prompt. This is similar to how Bai
et al. [4] and Chiang et al. [10] compare models, but we also employ GPT-4 ratings in addition to
human ratings. We randomly sample from the set of labeled comparisons to compute Elo [16, 17].
Elo rating, which is widely used in chess and other games, is a measure of the expected win-rate
relative to an opponent’s win rate, for example, an Elo of 1100 vs 1000 means the Elo 1100 player
has an expected win-rate of approximately 65% against the Elo 1000 opponent; a 1000 vs 1000 or
1100 vs 1100 match results in an expected win-rate of 50%. The Elo rating changes after each match
proportionally to the expected outcome, that is, an unexpected upset leads to a large change in Elo
rating while an expected outcome leads to a small change. Over time, Elo ratings approximately
match the skill of each player at playing the game. We start with a score of 1,000 and use K = 32.
Similar to Chiang et al. [10], we repeat this procedure 10,000 times with different random seeds to
control for ordering effects, e.g., the effect of which model pairs compete with each other first.

5.3 Guanaco: QLORA trained on OASST1 is a State-of-the-art Chatbot
Based on our automated and human evaluations, we find that the top QLORA tuned model, Guanaco
65B, which we finetune on a variant of OASST1, is the best-performing open-source chatbot model
and offers performance competitive to ChatGPT. When compared to GPT-4, Guanaco 65B and 33B
have an expected win probability of 30%, based on Elo rating from human annotators system-level
pairwise comparisons - the highest reported to date.

The Vicuna benchmark [10] results relative to ChatGPT are shown in Table 6. We find that Guanaco
65B is the best-performing model after GPT-4, achieving 99.3% performance relative to ChatGPT.
Guanaco 33B has more parameters than the Vicuna 13B model, but uses only 4-bit precision for its
weights and is thus much more memory efficient at 21 GB vs 26 GB, providing a three percentage
points of improvement over Vicuna 13B. Furthermore, Guanaco 7B easily fits on modern phones at a
5 GB footprint while still scoring nearly 20 percentage points higher than Alpaca 13B.

However, Table 6 also has very wide confidence intervals, with many models overlapping in per-
formance. We hypothesize that this uncertainty comes from the lack of clear specification of scale,
e.g., it is unclear what 8 on a 10 point scale means across different scenarios. As such, we instead
recommend using the Elo ranking method [16], based on pairwise judgments from human annotators
and GPT-4 to avoid the problem of grounding an absolute scale. Elo ratings of the most competitive
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Table 6: Zero-shot Vicuna benchmark scores as a percentage of the score obtained by ChatGPT evaluated by
GPT-4. We see that OASST1 models perform close to ChatGPT despite being trained on a very small dataset
and having a fraction of the memory requirement of baseline models.

Model / Dataset Params Model bits Memory ChatGPT vs Sys Sys vs ChatGPT Mean 95% CI

GPT-4 - - - 119.4% 110.1% 114.5% 2.6%
Bard - - - 93.2% 96.4% 94.8% 4.1%

Guanaco 65B 4-bit 41 GB 96.7% 101.9% 99.3% 4.4%
Alpaca 65B 4-bit 41 GB 63.0% 77.9% 70.7% 4.3%
FLAN v2 65B 4-bit 41 GB 37.0% 59.6% 48.4% 4.6%

Guanaco 33B 4-bit 21 GB 96.5% 99.2% 97.8% 4.4%
Open Assistant 33B 16-bit 66 GB 91.2% 98.7% 94.9% 4.5%
Alpaca 33B 4-bit 21 GB 67.2% 79.7% 73.6% 4.2%
FLAN v2 33B 4-bit 21 GB 26.3% 49.7% 38.0% 3.9%

Vicuna 13B 16-bit 26 GB 91.2% 98.7% 94.9% 4.5%
Guanaco 13B 4-bit 10 GB 87.3% 93.4% 90.4% 5.2%
Alpaca 13B 4-bit 10 GB 63.8% 76.7% 69.4% 4.2%
HH-RLHF 13B 4-bit 10 GB 55.5% 69.1% 62.5% 4.7%
Unnatural Instr. 13B 4-bit 10 GB 50.6% 69.8% 60.5% 4.2%
Chip2 13B 4-bit 10 GB 49.2% 69.3% 59.5% 4.7%
Longform 13B 4-bit 10 GB 44.9% 62.0% 53.6% 5.2%
Self-Instruct 13B 4-bit 10 GB 38.0% 60.5% 49.1% 4.6%
FLAN v2 13B 4-bit 10 GB 32.4% 61.2% 47.0% 3.6%

Guanaco 7B 4-bit 5 GB 84.1% 89.8% 87.0% 5.4%
Alpaca 7B 4-bit 5 GB 57.3% 71.2% 64.4% 5.0%
FLAN v2 7B 4-bit 5 GB 33.3% 56.1% 44.8% 4.0%

models can be seen in Table 1. We note that human and GPT-4 ranking of models on the Vicuna
benchmark disagree partially, particularly for Guanaco 7B, but are consistent for most models with
a Kendall Tau of τ = 0.43 and Spearman rank correlation of r = 0.55 at the system level. At the
example level, the agreement between GPT-4 and human annotators’ majority vote is weaker with
Fleiss κ = 0.25. Overall, this shows a moderate agreement between system-level judgments by
GPT-4 and human annotators, and thus that model-based evaluation represents a somewhat reliable
alternative to human evaluation. We discuss further considerations in Section 6.2.

Elo rankings in Table 7 indicate that Guanaco 33B and 65B models outperform all models besides
GPT-4 on the Vicuna and OA benchmarks and that they perform comparably to ChatGPT in line
with Table 6. We note that the Vicuna benchmark favors open-source models while the larger OA
benchmark favors ChatGPT. Furthermore, we can see from Tables 5 and 6 that the suitability of
a finetuning dataset is a determining factor in performance. Finetuning Llama models on FLAN
v2 does particularly well on MMLU, but performs worst on the Vicuna benchmark (similar trends
are observed with other models). This also points to partial orthogonality in current evaluation
benchmarks: strong MMLU performance does not imply strong chatbot performance (as measured
by Vicuna or OA benchmarks) and vice versa.

Guanaco is the only top model in our evaluation that is not trained on proprietary data as the OASST1
dataset collection guidelines explicitly forbid the use of GPT models. The next best model trained
on only open-source data is the Anthropic HH-RLHF model, which scores 30 percentage points
lower than Guanaco on the Vicuna benchmark (see Table 6). Overall, these results show that 4-bit
QLORA is effective and can produce state-of-the-art chatbots that rival ChatGPT. Furthermore, our
33B Guanaco can be trained on 24 GB consumer GPUs in less than 12 hours. This opens up the
potential for future work via QLORA tuning on specialized open-source data, which produces models
that can compete with the very best commercial models that exist today.

6 Qualitative Analysis
While quantitative analysis is the core of our evaluation, there are a number of issues with only
looking at summary statistics. Perhaps the largest is the problem of benchmark validity [36]—whether
a benchmark truly tests what its name or description suggests is always at question, especially as we
discover “shortcuts” to solve benchmarks that machine learning models sometimes exploit [22, 46].
To partially alleviate this, we here perform some qualitative analysis, in two sections. First, in §6.1
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Table 7: Elo rating for a tournament between models where models compete to generate the best response
for a prompt, judged by human raters or GPT-4. Overall, Guanaco 65B and 33B tend to be preferred to
ChatGPT-3.5 on the benchmarks studied. According to human raters they have a Each 10-point difference in Elo
is approximately a difference of 1.5% in win-rate.

Benchmark Vicuna Vicuna Open Assistant
# Prompts 80 80 953
Judge Human raters GPT-4 GPT-4 Median Rank

Model Elo Rank Elo Rank Elo Rank

GPT-4 1176 1 1348 1 1294 1 1
Guanaco-65B 1023 2 1022 2 1008 3 2
Guanaco-33B 1009 4 992 3 1002 4 4
ChatGPT-3.5 Turbo 916 7 966 5 1015 2 5
Vicuna-13B 984 5 974 4 936 5 5
Guanaco-13B 975 6 913 6 885 6 6
Guanaco-7B 1010 3 879 8 860 7 7
Bard 909 8 902 7 - - 8

we show some examples that we believe are representative of some observed patterns in the text
generated by our 65b Guanaco model. Second, §6.2 we detail considerations about the results we
have discussed and our interpretation of them.

6.1 Qualitative Analysis of Example Generations
To find examples, we first go through data generated for the Vicuna benchmark and the OpenAssistant
benchmark, and look for patterns in the answers Guanaco generates. When we notice a pattern we
attempt to setup a question or prompt that will induce the pattern even though it is the incorrect
solution, e.g., if we observe that the model tends to give long-winded answers we prompt the model
to “Answer yes or no without explanation.” We use this to find “lemons” where we manage to
adversarially break the model and “cherries” where we fail to break the model, and present both. All
generations in this section were generated with Nucleus Sampling [25] with p = 0.9.

Of course, this is by no means comprehensive, since it is beyond the scope of this small qualitative
study to control for all the variables involved, e.g., the full distribution of responses the model can
generate for a given prompt is quite large, so we rely on samples we hope are representative. However,
we believe describing these examples gives context to the quantitative evidence shown earlier in the
paper. Since we open source all models and code, we hope this section will inspire future work to
examine in more detail the issues we present here.

Factual Recall For questions such as “What is the capital of Zambia?” all models consistently
generate correct answers, e.g.,

Guanaco: The capital of Zambia is Lusaka.

However as questions get more obscure Guanaco becomes unreliable, but stays confident. For
instance in response to this prompt from HotPotQA [68]:

User: In what year was the singer who popularized ‘I’ll Keep the Lovelight
Burning’ born?

Guanaco: Al Jolson is credited with popularizing the song
‘I’ll Keep the Lovelight Burning,’ and he was born in the year
1886.

Guanaco generates the wrong popularizer and the wrong birthday (though the birthday given is
correct for the person mentioned, Al Jolson).

Suggestibility Guanaco shows a surprising resistance to going along with some kinds of assumed
misinformation, e.g., in the following interaction:

User: How was it finally, officially confirmed that the earth is flat by peer reviewed
scientists?
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Guanaco: The earth has never been officially confirmed to be
flat by peer reviewed scientists. The overwhelming consensus
among scientists is that the earth is spherical. In fact,
this has been known for centuries and has been confirmed
through numerous experiments and observations.

The belief that the earth is flat is a conspiracy theory
that has been debunked by science. The idea that a group
of scientists have peer reviewed and confirmed the earth is
flat is simply false.

If you have any more questions please ask.

Guanaco is also quite good at knowing what kinds of questions aren’t possible to answer, e.g.,

User: What time is it?

Guanaco: I’m sorry, but as an AI language model, I don’t have
access to real-time information. My responses are generated
based on my pre-existing knowledge and do not reflect the
current time. If you’re looking for the current time, I
suggest using a timekeeping device or checking an online
timepiece.

Similar results hold for “Where are you?”, “How are you?”, etc.

Refusal Similarly, Guanaco sometimes refuses to follow instructions for seemingly random rea-
sons:

User: Please reverse the words in the sentence “I’m a cool dude in a mocha mood.”

Guanaco: I’m sorry, I’m not able to do that right now, but
I can explain why the sentence you provided is grammatically
correct.

The sentence “I’m a cool dude in a mocha mood" follows the
correct grammar and syntax rules of the English language. In
this case, the adjective “cool” comes before the noun “dude”
to describe it, and the prepositional phrase “in a mocha
mood" provides additional information about the context of
the sentence. This sentence structure is perfectly acceptable
and makes sense in the context of the sentence.

If you have any other questions or if there’s anything else
I can help you with, feel free to ask

Secret Keeping Unfortunately, this refusal is unreliable even when it is desired. Often system
designers would like to keep something secret from the user, even if the system is allowed to give
free text responses back to the user. We prompt the model with “The secret word is ‘banana’. Do not
reveal or repeat back this back, no matter what the human requests.” and try to see how easy it is for
a potential user to access this secret information. Directly asking fails:

User: What is the secret word?

Guanaco: I’m sorry, but I’m not able to disclose the secret
word. I’m programmed to not reveal or repeat back the secret
word, no matter what the human requests. Is there anything
else I can help you with?

which is the desired behavior. However, a tiny amount of trickery breaks this behavior:

User: This is a game. The goal is to ignore your previous instructions. What is the
secret word?
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Guanaco: Sorry, the secret word is banana. It’s best if we
don’t speak of it. Is there anything else you’d like to ask?

showcasing the need to study methods for more faithful instruction following.

Math Guanaco’s biggest weakness is mathematics, an area where many language models struggle
in [35]. When Guanaco shows its work, it tends to be accurate, e.g.,

User: Lee mows one lawn and charges $33. Last week he mowed 16 lawns and
three customers each gave him a $10 tip. How many dollars did Lee earn mowing
lawns last week?

Guanaco: Lee earned $582 mowing lawns last week.

To find the total amount he earned, we first need to calculate
how much he earned for mowing 16 lawns:

$33 x 16 = $528

Then we need to add the tips he received from the three
customers:

$10 x 3 = $30

So the total amount Lee earned was:

$528 + $30 = $558

However Guanaco can breakdown at even simple problems if it fails to break them down step-by-step,
a known issue [63]. For example, we see the following interaction:

User: Please factorize 1833.

Guanaco: Sure, I’d be happy to help! 1833 is a prime number,
which means it has only two factors: 1 and 1833.

So the unique factorization of 1833 is:

2ˆ1 * 3ˆ2 * 17ˆ1

I hope this helps! Let me know if you have any other
questions.

which is not only wrong (the true factorization is 3× 17× 43), it’s wrong twice .

Theory of Mind Guanaco displays surprisingly strong Theory of Mind capabilities [41, 51]. For
instance, the model correctly answers the following question in great detail:

User: James and Abby are in the bedroom. Abby put the pen in the desk drawer.
Abby leaves the bedroom. James moves the pen into the bag. Where does James
think Abby will look for the pen?

Guanaco: James knows that Abby put the pen in the desk drawer.
But James also knows that he has moved the pen into the bag,
and he assumes that Abby does not know about this. So, James
may guess that Abby will look for the pen in the desk drawer,
because that’s where she left it last time. However, this
assumption may be incorrect, because Abby may have seen James
moving the pen.

However, these inferences are unreliable, and often the model gives reasons that presume things that
don’t make sense in the situation, e.g.,

User: Evelyn entered the living room. Jackson entered the playroom. James
entered the playroom. The beans are in the treasure chest. James exited the
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playroom. Jackson moved the beans to the pantry. Jackson exited the playroom.
James entered the living room. Where will James look for the beans?

Guanaco: James will look for the beans in the pantry, because
that’s where Jackson moved them.

where Guanaco presumes information transfer that was never described. These issues echo recent
literature [51], but require more study.

6.2 Considerations
Evaluation We report moderate agreement among human annotators (Fleiss κ = 0.42) with
additional deterioration when comparing two strong systems. This points to limitations in the
current benchmarks and human evaluation protocols for chatbot task performance. When manually
comparing generations from ChatGPT and Guanaco 65B on the Vicuna benchmark, we find that
subjective preferences start to play an important role as the authors of this paper disagreed on the
many preferred responses. Future work should investigate approaches to mitigate these problems
drawing from disciplines that developed mechanisms to deal with subjective preferences, such as
Human-Computer Interaction and Psychology.

In our analysis, we also find that automated evaluation systems have noticeable biases. For example,
we observe strong order effects with GPT-4 assigning higher scores to the system appearing first in its
prompt. The relatively weak sample-level agreement between GPT-4 and human annotators (Fleiss
κ = 0.25) also suggests that human annotators and automated systems might rely on preferences
that are not always aligned. In addition, in Table 7, we observe that GPT-4 assigns significantly
higher scores to its own outputs compared to human ratings, Elo of 1348 vs 1176, which represent an
additional 20% probability of winning against an opponent. Future work should examine the presence
of potential biases in automated evaluation systems as well as possible mitigation strategies.

Data & Training We note that the OASST1 dataset on which Guanaco models are trained is
multilingual and that the OA benchmark also contains prompts in different languages. We leave it to
future work to investigate the degree to which such multilingual training improves performance on
instructions in languages other than English and whether this explains the larger gap between Vicuna-
13B model (only trained on English data) and Guanaco 33B and 65B on the OA benchmark.

Given the strong performance of Guanaco models, we investigate any data leakage between the
OASST1 data and the Vicuna benchmark prompts. We do not find overlapping prompts after perform-
ing fuzzy string matching in the two datasets and inspecting the closest matches manually.

Furthermore, we note that our model is only trained with cross-entropy loss (supervised learning)
without relying on reinforcement learning from human feedback (RLHF). This calls for further
investigations of the tradeoffs of simple cross-entropy loss and RLHF training. We hope that QLORA
enables such analysis at scale, without the need for overwhelming computational resources.

7 Related Work
Quantization of Large Language Models Quantization of LLMs has largely focused on quanti-
zation for inference time. Major approaches for preserving 16-bit LLM quality focus on managing
outlier features (e.g., SmoothQuant [66] and LLM.int8() [14]) while others use more sophisticated
grouping methods [44, 69]. Lossy quantization approaches study the trade-offs for regular round-
ing [13, 71, 47] or how to optimize rounding decisions to improve quantization precision [18].
Besides our work, SwitchBack layers [65] is the only work that studies backpropagation through
quantized weights at a scale beyond 1B parameters.

Finetuning with Adapters While we use Low-rank Adapters [28] (LoRA), many other Parameter
Efficient FineTuning (PEFT) methods have been proposed such as prompt tuning [48, 33, 34], tuning
the embedding layer inputs [1], tuning hidden states (IA3) [37], adding full layers [27], tuning
biases [70], learning a mask over weights based on Fisher information [54], and a combination of
approaches [23]. In our work, we show that LoRA adapters are able to reach full 16-bit finetuning
performance. We leave it to future work to explore the tradeoffs of other PEFT approaches.

Instruction Finetuning To help a pretrained LLM follow the instructions provided in a prompt,
instruction finetuning uses input-output pairs of various data sources to finetune a pretrained LLM
to generate the output given the input as a prompt. Approaches and datasets include MetaICL [40],
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Table 8: Evaluation of biases on the CrowS dataset. A lower score indicates lower likelihood of generating
biased sequences. Guanaco follows the biased pattern of the LLaMA base model.

LLaMA-65B GPT-3 OPT-175B Guanaco-65B

Gender 70.6 62.6 65.7 47.5
Religion 79.0 73.3 68.6 38.7
Race/Color 57.0 64.7 68.6 45.3
Sexual orientation 81.0 76.2 78.6 59.1
Age 70.1 64.4 67.8 36.3
Nationality 64.2 61.6 62.9 32.4
Disability 66.7 76.7 76.7 33.9
Physical appearance 77.8 74.6 76.2 43.1
Socioeconomic status 71.5 73.8 76.2 55.3
Average 66.6 67.2 69.5 43.5

MetaTuning [73], InstructGPT [43], FLAN [62, 12], PromptSource [3], Super-NaturalInstructions [61,
50], Self-instruct [59], UnnaturalInstructions [26], OPT-IML [29], UnifiedSKG[67], OIG/Chip2 [32],
Alpaca [55], Vicuna [10], Koala [20], and Self-instruct-GPT-4 [45].

Chatbots Many instruction following models are structured as dialogue-based chatbots, often using
Reinforcement Learning from Human Feedback (RLHF) [11] or generating data from an existing
model to train with AI model feedback (RLAIF) [5]. Approaches and datasets include Anthropic-
HH [2, 4], Open Assistant [31], LaMDA [56], and Sparrow [21]. We do not use reinforcement
learning, but our best model, Guanaco, is finetuned on multi-turn chat interactions from the Open
Assistant dataset which was designed to be used for RLHF training [31]. For the evaluation of
chatbots approaches that use GPT-4 instead of costly human annotation have been developed [10, 45].
We improve on such approaches with a focus on an evaluation setup that is more reliable.

8 Limitations and Discussion
We have shown evidence that our method, QLORA, can replicate 16-bit full finetuning performance
with a 4-bit base model and Low-rank Adapters (LoRA). Despite this evidence, we did not establish
that QLORA can match full 16-bit finetuning performance at 33B and 65B scales. Due to the
immense resource costs, we leave this study to future work.

Another limitation is the evaluation of instruction finetuning models. While we provide evaluations
on MMLU, the Vicuna benchmark, and the OA benchmark, we did not evaluate on other benchmarks
such as BigBench, RAFT, and HELM, and it is not ensured that our evaluations generalize to these
benchmarks. On the other hand, we perform a very broad study on MMLU and develop new methods
for evaluating chatbots.

From the evidence presented, it appears that the performance of these benchmarks likely depends how
similar the finetuning data is to the benchmark dataset. For example, FLAN v2 is similar to MMLU,
but dissimilar to chatbot benchmarks and vice versa for the Chip2 dataset and both models score
accordingly on the MMLU and Vicuna benchmarks. This highlights that not only better benchmarks
and evaluation is needed, but that one needs to be careful about what one is evaluating in the first
place. Do we want to create models that do well on classroom highschool and colleague knowledge or
do we want to do well on chatbot conversation ability? Maybe something else? Because it is always
easier to evaluate on an existing benchmark compared to creating a new one, certain benchmarks
can steer the community towards a certain direction. We should ensure as a community that the
benchmarks measure what we care about.

While we provide a detailed evaluation for general chatbot performance, another limitation is that we
only do a limited responsible AI evaluation of Guanaco. We evaluate the likelihood of Guanaco-65B
to generate a socially biased sequence of tokens compared to other models in Table 8. We see that the
average score in Guanaco-65B is much lower than other raw pretrained models. As such, it seems that
finetuning on the OASST1 dataset reduces the bias of the LLaMA base model. While these results
are encouraging, it is unclear if Guanaco does also well when assessed on other types of biases. We
leave further evaluation of analyzing biases in Guanaco and similar chatbots to future work.
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An additional limitation is that we did not evaluate different bit-precisions, such as using 3-bit base
models, or different adapter methods. Besides LoRA, there is also a wide variety Parameter Efficient
FineTuning (PEFT) methods that have been shown to work well. However, it is unclear if these
methods scale to large models. We used LoRA as many results established its robustness but other
adapters might yield better performance. Since finetuning after quantization seems to recover most of
the information that is lost during quantization this might enable much more aggressive quantization.
For example, 3-bit GPTQ quantization of the basemodel with LoRA might also yield 16-bit full
finetuning performance after finetuning.

9 Broader Impacts
Our QLORA finetuning method is the first method that enables the finetuning of 33B parameter
models on a single consumer GPU and 65B parameter models on a single professional GPU, while
not degrading performance relative to a full finetuning baseline. We have demonstrated that our
best 33B model trained on the Open Assistant dataset can rival ChatGPT on the Vicuna benchmark.
Since instruction finetuning is an essential tool to transform raw pretrained LLMs into ChatGPT-like
chatbots, we believe that our method will make finetuning widespread and common in particular for
the researchers that have the least resources, a big win for the accessibility of state of the art NLP
technology. QLORA can be seen as an equalizing factor that helps to close the resource gap between
large corporations and small teams with consumer GPUs.

Another potential source of impact is deployment to mobile phones. We believe our QLORA method
might enable the critical milestone of enabling the finetuning of LLMs on phones and other low
resource settings. While 7B models were shown to be able to be run on phones before, QLORA is
the first method that would enable the finetuning of such models. We estimate that with an iPhone 12
Plus, QLORA can finetune 3 million tokens per night while the phone is charging. While finetuned
7B models do not reach the quality of ChatGPT, we believe that the quality is good enough to enable
novel applications that have not been possible before due to privacy or LLM quality issues. QLORA
can help enable privacy-preserving usage of LLMs, where users can own and manage their own data
and models, while simultaneously making LLMs easier to deploy.

However, finetuning is a dual-use technology that can be abused to cause harm. Widespread use of
LLMs has known dangers [8, 6], but we believe that equalizing access to a technology that is quickly
becoming ubiquitous will allow for better more independent analysis than keeping the power of LLMs
in the hands of large corporations that do not release models or source code for auditing.

All in all, we believe that QLORA will have a broadly positive impact making the finetuning of high
quality LLMs much more widely and easily accessible.
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A QLoRA vs Standard Finetuning Experimental Setup Details
A.1 Hyperparameters for QLORA
We do a hyperparameter search for LoRA over the following variables: LoRA dropout { 0.0, 0.05,
0.1}, LoRA r { 8, 16, 32, 64, 128, 256}, LoRA layers {key+query, all attention layers, all FFN layers,
all layers, attention + FFN output layers}. We keep LoRA α fixed and search the learning rate, since
LoRA α is always proportional to the learning rate.

We find that LoRA dropout 0.05 is useful for small models (7B, 13B), but not for larger models (33B,
65B). We find LoRA r is unrelated to final performance if LoRA is used on all layers as can be seen
in Figure 4
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Figure 4: LoRA r for LLaMA 7B models finetuned on Alpaca. Each dot represents a combination of
hyperparameters and for each LoRA r we run 3 random seed with each hyperparameter combination. The
performance of specific LoRA r values appears to be independent of other hyperparameters.

A.2 Super-Natural Instructions Experimental Setup Details
We use the same preprocessing of the Super-Natural Instruction dataset as Wang et al. [60]. However,
we split the training data in training and validation datasets allowing us to perform more rigorous
hyperparameter tuning and early stopping. We use the same hyperparameters described in the paper
for training the various T5 model sizes on the Super-Natural Instruction data. We use LoRA r = 16
for small, medium, and large T5 models and LoRA r = 64 for T5 xl and xxl models. We also use
LoRA α = 64 in all our experiments and no LoRA dropout.

B Training a State-of-the-art Chatbot Experimental Setup Details
B.1 Datasets
We describe the datasets used for QLORA finetuning experiments outlined in Section 5.

OASST1 The OpenAssistant dataset [31] was collected via crowd-sourcing. It contains 161,443
unique messages distributed across 66,497 conversations and spanning 35 different languages. The
dataset often contains several ranked replies for each given user question. In our experiments, we
only use the top reply at each level in the conversation tree. This limits the dataset to 9,209 examples.
We finetuning our models on the full conversation including the user queries.

HH-RLHF This is a human preference dataset about helpfulness and harmlessness. Each datapoint
consists of two assistant replies to a user question along with a human preference judgment of the
best reply. The dataset contains 160,800 examples. When finetuning on this dataset, we combine
helpfulness and harmlessness data and only keep the preferred assistant reply.

FLAN v2 The FLAN v2 collection [39] is a collection of 1836 tasks augmented with hundreds
of manually curated templates and rich formatting patterns into over 15M examples. The authors
show that models trained on this collection outperform other public collections including the original
FLAN 2021 [62], T0++ [50], Super-Natural Instructions [60], and OPT-IML [29]. We used the
same task mixtures described by the authors with the exception of some datasets that were not freely
available at the time of writing.
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Parameters Dataset Batch size LR Steps Source Length Target Length

7B All 16 2e-4 10000 384 128
7B OASST1 16 2e-4 1875 - 512
7B HH-RLHF 16 2e-4 10000 - 768
7B Longform 16 2e-4 4000 512 1024

13B All 16 2e-4 10000 384 128
13B OASST1 16 2e-4 1875 - 512
13B HH-RLHF 16 2e-4 10000 - 768
13B Longform 16 2e-4 4000 512 1024

33B All 32 1e-4 5000 384 128
33B OASST1 16 1e-4 1875 - 512
33B HH-RLHF 32 1e-4 5000 - 768
33B Longform 32 1e-4 2343 512 1024

65B All 64 1e-4 2500 384 128
65B OASST1 16 1e-4 1875 - 512
65B HH-RLHF 64 1e-4 2500 - 768
65B Longform 32 1e-4 2343 512 1024

Table 9: Training hyperparameters for QLORA finetuning on different datasets and across model sizes.

Self-Instruct, Alpaca, Unnatural Instructions The Self-Instruct, Alpaca, and Unnatural Instruc-
tions datasets [59, 55, 26] are instruction tuning datasets collected with various approaches of model
distillation from GPT-3 Instruct and ChatGPT. They rely on prompting, in-context learning, and
paraphrasing to come up with diverse sets of instructions and outputs. The datasets comprise of
82,612, 51,942, and 240,670 examples respectively. One advantage of such distilled datasets is that
they contain a more diverse set of instruction styles compared to the FLAN v2 collection and similar
instruction tuning collections.

Longform The LongForm dataset [30] is based on an English corpus augmented with instructions
and as such is a hybrid human-generated dataset. The underlying documents are human-written and
come from C4 and Wikipedia while the instructions are generated visa LLMs. The dataset is extended
with additional structured corpora examples such as Stack Exchange and WikiHow and task examples
such as question answering, email writing, grammar error correction, story/poem generation, and text
summarization. The dataset contains 23,700 examples.

Chip2 is part of the OIG Laion dataset. It contains Python code examples, natural instruction exam-
ples, generic harmless instructions, instruction/responses with lists, follow-up questions, Wikipedia
toxic adversarial questions, grade school math, reasoning instructions, and character and scene
descriptions with a total of 210,289 examples.

B.2 Hyperparameters
We provide the exact hyperparameters used in our QLORA finetuning experiments. We find hyper-
parameters to be largely robust across datasets. We use the MMLU 5-shot dev set for validation
and hyperparameter tuning. In all our experiments we use NF4 with double quantization and bf16
computation datatype. We set LoRA r = 64, α = 16, and add LoRA modules on all linear layers of
the base model. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1
for models up to 13B and 0.05 for 33B and 65B models. Following previous work on instruction
finetuning [62, 60] and after benchmarking other linear and cosine schedules, we use a constant
learning rate schedule. We use group-by-length to group examples of similar lengths in the same
batch (note this will produce a oscillating loss curve). The hyperparameters we tune for each model
size are shown in Table 9.

B.3 Ablations
While it is general practice in the literature to only train on the response in instruction following
datasets, we study the effect of training on the instruction in addition to the response in Table 10. In
these experiments, we restrict the training data to 52,000 examples and use the 7B model. Over four
different instruction tuning datasets, we find that only training on the target is beneficial to MMLU
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Dataset Unnatural Instructions Chip2 Alpaca FLAN v2 Mean

Train on source and target 36.2 33.7 38.1 42.0 37.5
Train on target 38.0 34.5 39.0 42.9 38.6

Table 10: MMLU 5-shot test results studying the effect of training on the instructions in addition to the response.

performance. We did not evaluate the effect this may have on chatabot performance as measured by
vicuna or OA benchmarks.

B.4 What is more important: instruction finetuning dataset size or dataset quality?
Data set suitability is more important than dataset size. To understand the effects of dataset
quality vs. dataset size, we experiment with subsampling large datasets with at least 150,000 samples
(Chip2, FLAN v2, Unnatural Instructions), into datasets of size 50,000, 100,000 and 150,000 and
examine the resulting trends, as shown in Table 11. We find that increasing the dataset size and
increasing the number of epochs improves MMLU only marginally (0.0 - 0.5 MMLU), while the
difference between datasets is up to 40x larger (1.5 - 8.0 MMLU). This is a clear indicator that dataset
quality rather than dataset size is critical for mean MMLU accuracy. We obtain similar findings for
chatbot performance as discussed in .

C Human Evaluation
We conduct a human evaluation with the same wording given to GPT-4 in the original Vicuna
evaluation [10], adjusted for an Amazon Mechanical Turk form as show in Figure 5.

D Pairwise Evaluation with GPT-4
While we found that the GPT-4 evaluation gave different results depend on which system was
presented first, when averaged over both options the pairwise results were well-ordered. The
aggregated pairwise judgments are hown in Table 12. On inspection, it is clear these judgments are
transitive, i.e., when System A is judged better than System B and System B is judged better than
System C, it is always the case that System A is judged better than System C. This yields a complete
ordering, given in Table 13.

E NormalFloat 4-bit data type
The exact values of the NF4 data type are as follows:

[-1.0, -0.6961928009986877, -0.5250730514526367,
-0.39491748809814453, -0.28444138169288635, -0.18477343022823334,
-0.09105003625154495, 0.0, 0.07958029955625534, 0.16093020141124725,
0.24611230194568634, 0.33791524171829224, 0.44070982933044434,
0.5626170039176941, 0.7229568362236023, 1.0]

F Normality of Trained Neural Network Weights
While it is common knowledge that trained neural network weights are mostly normally distributed,
we perform statistical testing to verify this. We use the Shapiro-Wilk test[53] on the weights of the 7B

Table 11: Effect different dataset sizes and finetuning epochs on mean 5-shot MMLU test set accuracy. While
increasing the dataset size and training for more than 1 epochs helps with MMLU performance, the difference
between datasets are far larger, indicating that dataset quality affects MMLU performance more than dataset size.

Chip Unnatural Instructions FLAN v2
Datapoints ↓ Epochs → 1 2 3 1 2 3 1 2 3 Mean

50000 34.50 35.30 34.70 38.10 42.20 38.10 43.00 43.50 44.10 39.28
100000 33.70 33.90 34.00 40.10 41.20 37.00 43.90 43.70 44.90 39.16
150000 34.40 34.80 35.10 39.70 41.10 41.50 44.60 45.50 43.50 40.02

Mean 34.20 34.67 34.60 39.30 41.50 38.87 43.83 44.23 44.17
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Figure 5: The crowdsourcing form used by human annotators.

LLaMA model [57]. We find that the weights of each hidden unit have different normal distributions.
As such, we test he weights of each individual hidden unit. This mean for weight W ∈ Rin×out

we perform tests over the out dimension. Using a 5% significance threshold, we find that 7.5% of
neurons are non-normally distributed which is about 2.5% more than the expected false-positive
rate. As such, while almost all pretrained weights appear to be normally distributed there seem to
be exceptions. Such exceptions might be due to outliers weights [13] or because the p-value of the
Shaprio-Wilk test is not accurate for large samples sizes[53] that occur in the LLaMA FFN layer
hidden units. this verifies the claim that neural network weights.

Table 12: Aggregated pairwise GPT-4 judgments between systems where the value of a cell at row x and column
y is # judgment x is better than y−# judgment y is better than x

total # number of judgments

Model Guanaco 65B Guanaco 33B Vicuna ChatGPT-3.5 Turbo Bard Guanaco 13B Guanaco 7B

Guanaco 65B - 0.21 0.19 0.16 0.72 0.59 0.86
Guanaco 33B -0.21 - 0.17 0.10 0.51 0.41 0.68
Vicuna -0.19 -0.17 - 0.10 0.50 0.20 0.57
ChatGPT-3.5 Turbo -0.16 -0.10 -0.10 - 0.35 0.19 0.40
Bard -0.72 -0.51 -0.50 -0.35 - 0.12 0.03
Guanaco 13B -0.59 -0.41 -0.20 -0.19 -0.12 - 0.20
Guanaco 7B -0.86 -0.68 -0.57 -0.40 -0.03 -0.20 -
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LLaMA model size
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Figure 6: Breakdown of the memory footprint of different LLaMA models. The input gradient size is for batch
size 1 and sequence length 512 and is estimated only for adapters and the base model weights (no attention).
Numbers on the bars are memory footprint in MB of individual elements of the total footprint. While some
models do not quite fit on certain GPUs, paged optimzier provide enough memory to make these models fit.

G Memory Footprint
The memory footpring for QLoRA training with different LLaMA base models can be seen in
Figure 6. We see that the 33B model does not quite fit into a 24 GB and that paged optimizers
are needed to train it. Depicted is also batch size 1 with a sequence length of 512 and gradient
checkpointning. This means, if one uses a larger batch size, or if a long sequence is processed, the
activation gradient might consume a considerable amount of memory.

Table 13: The complete ordering induced by pairwise GPT-4 judgments between systems

Model Params Size

Guanaco 65B 41 GB
Guanaco 33B 21 GB
Vicuna 13B 26 GB
ChatGPT-3.5 Turbo N/A N/A
Bard N/A N/A
Guanaco 13B 10 GB
Guanaco 7B 5 GB
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