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Virtual and mixed-reality (XR) technology has advanced significantly in the last few years

and will enable the future of work, education, socialization, and entertainment. Eye-tracking

sensors enable the design of immersive experiences and the deployment of display hardware.

Eye-tracking data is required for supporting novel modes of interaction, animating virtual avatars,

and rendering or streaming optimizations. While eye-tracking enables many beneficial

applications in XR, it also introduces risks related to the security and privacy of the user and their

captured data. I have explored solutions that address concerns related to the leaking of biometric

features that uniquely identify users at different components of the eye-tracking pipeline and

evaluated the impact on XR applications.

First, I explored the risk of user identification from the iris pattern as imaged by the

near-eye camera feed of the eye tracker. Image blur was applied to secure the user’s iris pattern

and lower identification rates from a standard iris authentication approach. Our experiments

demonstrated that there is a level of image blur that achieves recognition rates lower than 5%

from a standard iris authentication approach without negatively impacting the social experience of

using gaze data to animate the eyes of a virtual avatar.

Second, I developed privacy mechanisms that can be applied to gaze data streamed to

third-party applications. Features extracted from the time series of gaze positions enable

biometric identification with high accuracy. The explored privacy mechanisms can be applied to

real-time data streams to remove or reduce the risk of unique user identification depending on the

11



application. For applications that do not require gaze samples, relevant metrics are extracted

instead of streaming raw samples. When gaze samples are required, standalone privacy

mechanisms are applied that reduce the risk identification from the streamed samples. Our

evaluation of mechanisms showed that identification rates could be lowered from 85% to 30%

while introducing less than 40ms in Root Mean Squared Error for Area-of-Interest dwell time

analysis, a Kullback-Leibler Divergence of 0.04 or lower between saliency maps, and up to 1.14◦

of error in gaze prediction.

Third, I applied privacy mechanisms to eye-tracking datasets that provided formal

guarantees against re-identification attacks. Evaluated mechanisms adapted k-anonymity and

plausible deniability to eye-tracking data and were compared with results from differential

privacy. Our findings established a superior privacy-utility trade-off for k-anonymity on feature

datasets used to train a classifier for document type recognition. For sample datasets, the kalεido

DP mechanism performed best at retaining utility for training activity recognition models while

reducing identification rates to chance; while the k-same-synth mechanism performed best at

retaining utility for gaze prediction models.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

Mixed-reality devices, such as virtual reality (VR) and augmented reality (AR) displays,

create immersive experiences that have an impact on education [132, 82], socialization [116],

entertainment, and the future of work [6]. Mixed reality is already entering the enterprise market,

led by companies such as Magic Leap and Pico targeting enterprise users [238]. Enterprise XR

applications support private and government entities, evidenced by a $461 million investment by

Saudi Arabia [162] and visions of a future workplace from the CEO of Qualcomm [6]. VR and

AR devices, collectively referred to as XR, are rapidly becoming available to consumers. The

Oculus Quest 2 consumer VR display sold between two and three million units in Q4 of

2020 [107]. The deployment of devices will grow continuously, as the Quest 2 sold 8.7 million

units in 2021 [108]. XR devices are continuously engineered to make them ubiquitous and

accessible, accounting for users sensitive to simulator sickness or users with disabilities. To

enable this future, the XR ecosystem will collect data from users at a large scale with an array of

sensors, including integrated eye trackers [32].

Eye trackers perform gaze estimation to track where a user is looking and their visual

attention. Tracking gaze enables key applications for deploying mixed reality, including

intelligent interfaces [92, 63], social interaction [217], activity recognition [112], and foveated

streaming [157, 249, 117, 150] or rendering [192, 167, 166]. Gaze data either enhances users’

interactions or comfort within mixed reality or enables the practical use of low-power and mobile

devices accessible to the general population. Eye tracking has the potential to enable new

applications for mixed reality; however, the captured sensor data also enables unintended

inferences about users.

Sensor data and the scale at which it will be collected within a mixed-reality ecosystem

introduce new concerns for privacy and security. Compared to current technology in the form of

mobile devices, new challenges for mixed reality include the need to enable the high-resolution

camera and depth sensors for device operation, the addition of more intrusive sensors for tracking

user movement, and the ability for XR to influence perceptual behavior and user decisions [61].

Eye-tracking sensors are particularly concerning as they collect a high-resolution measure of
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users’ conscious and unconscious attention in where gaze was oriented most often and could be

used to reveal preferences for personalized ads.

Surveys of XR users have identified that the majority are uncomfortable with having their

XR data sold to advertisers [189], and most would not be comfortable sharing eye-tracking data

with non-trusted entities, i.e., third-party applications [232]. Meta’s next-generation Project

Cambria will be the first VR display to include integrated eye tracking directly marketed to

consumers [79]. The expansion of eye tracking to consumer-grade devices is dangerous, as

researchers have shown current XR applications violate their privacy policies and share tracking

data with third-party apps [241], linking the concerns of XR users with real-world harms. For

example, researchers have recently hypothesized how tracking user data in the United States

could enable tracking of women seeking abortions in states where it is illegal [163].

Eye-tracking data presents a critical risk to privacy, as it captures sensitive information

about the user based on where they look and introduces the risk of re-identification from captured

data. Re-identification from XR data was addressed as the first recommendation of the IEEE

Global Initiative on Ethics of Extended Reality report on XR and the Erosion of Anonymity and

Privacy [164]: “XR stakeholders should actively develop and/or support efforts to standardize

differential privacy and/or other privacy protocols that provide for the protection of individual

identities and data”. Eye tracking is among the sensors that enable accurate identification and

recognition of users. Eye-tracking data applied as a biometric is well studied between iris

recognition [58, 118] and gaze-based biometrics [172, 93, 86, 209, 73, 222, 156]. State-of-the-art

eye movement biometrics achieve an accuracy of 94% [222] and an Equal Error Rate of

2% [156], suggesting that, with high enough data quality, users are recognized as accurately as a

four-digit pin with as little as five seconds of data [155]. Achieved performance from sharing gaze

data with third-party applications risks leaking biometric identity. An adversarial application can

collect this data and spoof the user’s identity or compare it with data from known identities,

linking identity to any sensitive information that can be inferred from gaze.

An example of violating privacy through eye tracking is the monitoring of employee
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behavior outside of work. Gaze data captured from User X at work can be linked to their identity

and used to recognize User X in other environments. A feasible scenario includes User X

attending a virtual meeting anonymously to discuss forming a labor union at work and using

eye-tracking data to animate the eyes of a virtual avatar as part of the social platform.1 User X is

then discovered by their employer through app collusion when the gaze data from the meeting is

sold to local employers by data brokers.2 Data brokers regularly sell tracking data on users to

individuals or employers, enabling the sale of VR interactions and behavioral data in the

future [213]. Employer surveillance exists today using big data to track employee behavior with

respect to labor organizing [91]. Thus, the ability to identify User X is a risk when their data is

shared with untrusted platforms or third parties. Current data privacy policies in most states and

countries would not restrict the sharing of raw gaze data with external parties, despite being a

source of biometric identification [109].

Our approach to addressing future privacy risks from eye tracking is to form plausible threat

scenarios at different points in the data pipeline. Threat scenarios are inspired by previously

established attacks on sensors or datasets in similar domains and define a risk for users. Threat

models are a tool for developing secure systems and are derived from these scenarios to state

assumptions on what data an adversary has access to and how they perform an attack [248]. A

threat model defines the type of data being processed and metrics for evaluating whether an attack

can be prevented by privacy solutions [65].

Thesis statement: My work explores the following thesis statement: Privacy mechanisms

are capable of de-identifying eye-tracking data while enabling XR applications in social VR,

activity recognition, and gaze prediction. My thesis statement is supported by studies conducted

within three different points in the eye-tracking data pipeline:

1. Securing eye-tracking sensor data by reducing the risk of leaking iris biometric in infrared
eye images

1www.tcf.org/content/report/virtual-labor-organizing/
2www.pluralistic.net/2021/04/13/public-interest-pharma/#axciom
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2. Protecting eye-tracking data streams by withholding gaze samples or adding noise to reduce
the risk of identification from biometric features

3. Adding privacy to eye-tracking datasets with formal privacy guarantees to mitigate
re-identification attacks

Capturing infrared images of the eye for gaze estimation is the first step in the typical

eye-tracking pipeline. Eye images record the iris biometric, a gold standard for recognition, in

high resolution. Eye trackers capture images at 60Hz or more, introducing the risk of leaking

identity through eye images. Leaked eye images enable stealing identity by spoofing the iris

biometric. We propose using blur to remove high-frequency iris patterns while enabling

eye-tracking applications. Depending on the threat model, blur can be implemented in either

software or hardware, and protect the iris biometric by reducing the risk of user recognition. Our

experiments in Chapter 2 identify a trade-off between the risk of iris recognition and retaining

positive perceived attributes in social VR that lowers the iris recognition rate to 5% or less.

Higher blur levels further decrease the risk of iris recognition and degrade social attributes to

neutral or negative responses.

Eye images are processed to extract gaze positions and generate samples which are then

served to the XR platform or shared with third-party applications. Apps that have access to raw

gaze samples can extract biometric features from eye movement patterns and attempt to identify

the user. We propose a privacy-preserving Gatekeeper API to enable eye-tracking applications

that require aggregate or event-level data. The API computes relevant metrics for each application

without the risk of sharing gaze samples. For applications that require gaze samples, our privacy

mechanisms add noise or downsample data to enhance privacy. Our methods in Chapter 3 enable

privacy-preserving streaming by lowering the risk of biometric identification for applications such

as area-of-interest analysis and event-based interaction techniques through privacy-by-design and

real-time applications such as gaze prediction through standalone mechanisms.

Eye-tracking datasets aggregate gaze behavior from groups of individuals and enable

training machine-learning models for activity recognition and intent or gaze prediction. Datasets

are released publicly for research use or stored internally by XR companies to train proprietary
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models for product deployment. Datasets are anonymized by removing personal information such

as names, locations, and dates of birth; however, they are still susceptible to re-identification

attacks. A prime example of re-identification is the Netflix Prize challenge [180]. Narayanan and

Shmatikov took the released anonymous movie ratings and rental dates and paired them with

public reviews from IMDB that were timestamped and linked to the user’s real name. The risk of

leaking users’ identities led to a lawsuit that claimed a woman’s sexual orientation could be

revealed to her family as a result of the attack [227].

Re-identifying individuals contributing to an eye-tracking dataset also serves as a privacy

risk. A successful re-identification attack could link identity to sensitive attributes that can be

extracted from gaze data, such as medical diagnoses or sexual orientation. Current literature

proposes differential privacy mechanisms to protect eye-tracking data. In Chapter 4 we introduce

mechanisms that achieve privacy guarantees of k-anonymity and plausible deniability to mitigate

re-identification attacks on eye-tracking datasets. Our approach for protecting eye-tracking

feature data adapts existing methods from face images and location data. We then propose a novel

data synthesis approach to protect datasets of eye-tracking samples while training models of gaze

prediction and activity recognition. Our methods protect large-scale eye-tracking datasets with

formal guarantees against re-identification while retaining utility for relevant XR applications.
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CHAPTER 2
PROTECTING IRIS BIOMETRICS

2.1 Introduction

The most common eye-tracking devices utilize near-eye infrared cameras to perform gaze

estimation [131]. Eye-tracking cameras have a resolution of 320×240 or more, sufficient to

perform iris authentication when positioned near the eye. For example, the Microsoft Hololens v2

already enables iris authentication in this manner [4], essentially streaming the user’s biometric

password at 30 frames per second whenever they use the device.

Continuously recording the user’s iris biometric is both a feature and a risk. If an untrusted

system collects eye images for eye tracking, anonymous viewing is not guaranteed. If an

adversary captures a stream of eye images containing the iris biometric, they could beat spoof

detection methods and steal the user’s identity [141]. Protecting biometric data is critical, as

biometrics represent a physiological means for recognizing a user. Unlike text passwords, they

cannot be updated in the event of a security leak.

Before this work, methods to securely collect eye-tracking images without collecting the

iris biometric were not explored. Furthermore, numerous eye-tracking datasets release raw eye

images, including evaluating gaze estimation approaches [137, 90, 85] and 158 datasets for iris

segmentation and matching [186]. The risk of leaking the iris is unique to sensors that record

infrared eye images. While alternative sensors exist for eye tracking [253, 152], video-based eye

trackers that collect infrared images are still the standard in XR devices such as the HTC Vive Pro

Eye, Magic Leap, and Microsoft Hololens.

We propose using blur-based mechanisms to process eye-tracking images and remove the

high-frequency iris features used for authentication. Because of the networked nature of social

platforms and the use of cloud-based rendering techniques for VR [175], it is expected that XR

devices will follow an ‘always on and connected’ model. Streaming eye-tracking data makes it

susceptible to attacks. Most critically, the iris pattern of the user is vulnerable. The iris image is a

gold standard biometric used in high-security applications, such as border customs [2], and is

recognized as such by headset manufacturers [4].

We focus on methods that can be applied in real-time to the typical eye-tracking pipeline.
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The result is secure eye-tracking data flows that degrade the iris biometric pattern when streaming

eye images over a network for processing or when device hardware could be compromised.

The blur-based mechanism represents a trade-off between leaking the iris biometric within

the eye image and preserving the utility of gaze data generated from the eye images. Trade-offs

between privacy/security and utility are vital to evaluating the impact of privacy-enhancing

technologies. For example, blurring or masking out private regions of images has an impact on

whether images provide helpful information, are preferred by users, or are considered visually

appealing [106]. Our work explores the security-utility trade-off concerning gaze accuracy at the

data-level (Study 1) and perceptual impact when animating the eyes of a virtual avatar (Study 2).

Earlier versions of this work were first published at ACM ETRA 2019 [122] and IEEE VR

2020 [120]. The initial paper at ETRA 2019 highlighted the risk of leaking the iris biometric. It

spawned a sub-area of research within the eye-tracking community that has furthered methods

that protect raw eye images [42, 123, 47, 77].

In this chapter, we present blur-based mechanisms for degrading high-frequency iris

features that can be implemented in software within the eye-tracking pipeline or by hardware

prior to image capture using optical defocus. We demonstrate that eye images can be

appropriately blurred to reduce the presence of iris features while retaining social characteristics

for animating social virtual avatars.

2.2 Threat Scenario

Any device that captures infrared eye images used for eye tracking could be compromised

to leak raw image data. Raw sensor data is susceptible to leaking data to an application without

the user being aware. In the context of mobile devices, a permissions-based model is used to

protect certain data streams for apps. However, data can still be leaked through side channel

attacks exposed within the permissions system or covert attacks where an app with sensitive data

permissions shares data with others [201]. Thus, it is feasible that malicious applications could

gain access to raw sensor data of XR devices, as current systems employ extensions of the

Android operating system [241].
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An adversary can take infrared images of the user’s eyes and try to spoof the identity of the

user through iris authentication and access sensitive information. For example, an individual who

uses iris biometrics at work to access confidential information is at risk, such as a military

general. Security for biometric templates in sensitive databases has been explored for fingerprint

biometrics, where authentication is common for law enforcement and military agencies [251]. A

user at a VR arcade with their child can have eye-tracking data collected as part of a game

interface. If the arcade game is compromised then an adversary can gain access to the raw eye

images collected by the system. The adversary is assumed to have read access to the stream of

eye images and will then use them to try and authenticate as the victim. It is plausible that an

adversary can use the unmodified stream of raw eye images to beat liveness detection and

successfully spoof the user’s identity if the sequence is of sufficient length (15 seconds or

more) [208].

2.3 Related Work

2.3.1 Eye Tracking in Virtual Reality

Eye-tracking applications for VR include foveated rendering [192, 27], which optimizes

computational resources in rendering by reducing resolution in the periphery, streaming

algorithms that reduce the bandwidth of streamed 360◦ content [157, 115, 80], intuitive interfaces

for navigation and predicting intent [190, 28], subtle gaze direction using luminance cues in the

periphery to guide attention [96], redirected walking methods that take advantage of saccadic

masking and blinks to orient the user within a limited physical space [236, 146], classifying

neurodegenerative disease through eye movements [187], virtual experiences designed to improve

joint attention of children with ASD [165], and modeling how users explore 360◦ content [228].

Eye-tracking hardware in VR ranges from video-based oculography [131],

electro-oculography (EOG) [35], photo-sensor oculography (PS-OG) [253, 152], and magnetic

sclera coils [247]. EOG, PS-OG, and sclera coil eye trackers provide gaze estimation without

imaging the eye itself; however, video-based eye trackers are the most readily available solutions

today. EOG and sclera coil approaches are deployed less often as they are invasive, requiring
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electrodes to be attached to the user’s head or a magnetic contact lens worn by the user. PS-OG

trackers are limited in terms of power usage and the ability to deploy within consumer devices, as

the current implementation occludes the user’s field of view [253]. Companies like Facebook,

HTC, and Magic Leap have opted for a non-invasive video-based eye tracker that captures images

of the eye, including the iris and other identifiable features like eyebrows [67]. Thus, there is a

need to investigate techniques that secure the iris during gaze estimation.

2.3.2 Iris Authentication

Infrared images of the eye with sufficient resolution capture iris patterns unique to the

individual.1 Iris recognition ranks in the top tier of biometrics as it is universal, distinct,

permanent, and robust against spoofing attacks [118]. It is important to keep the iris pattern

secure, as recognition methods are robust to poor lighting [127], off-axis imaging [56],

occlusion [57], and distance [12] making the biometric accessible at times when the user may not

consent. Iris authentication has long been established through the work of John Daugman [58]

and many others as a statistically valid method for recognizing an individual.2 As a result, iris

patterns have been trusted for identification at voting booths [5], border customs [2], schools [1],

and in hospitals [3]. These applications highlight the sensitivity of the information accessed if a

hacker can steal an identity through a biometric. Thus, the presence of a user’s iris within a

dataset or application places the user’s identity at risk.

2.3.3 Privacy and Security in Eye Tracking

Mobile eye trackers rely on videos from an eye camera that captures the user’s eye and a

front-facing scene camera that records what they see. The scene camera is akin to wearable

devices that are always on and recording video data. Public perception of these devices is

overwhelmingly negative, as seen with the initial release of the Google Glass, as they infringe on

the privacy of both the user and bystanders [66, 179, 199]. Daily users of eye-tracking technology

trade-off the privacy of their everyday actions for the benefit of activity logging, gaze-based

1In our eye tracker configuration the iris pattern typically spans around 150 pixels in diameter, falling between
the 140 pixels recommended by Daugman et al. [57] and the 200 pixels recommended by the ISO standard for iris
biometrics [100].

2Please see [87] for a review.

21



interfaces, and assistive applications [111, 11, 244, 165]. Steil et al. have developed a privacy

approach specifically for the scene camera, using a controlled shutter to disable the video feed in

private situations [233]. The eye camera is unique in that it captures raw eye movements and

personally-identifying information without any layer of security. Previous findings for

wearable-based privacy and security do not directly apply to eye-tracking images. This chapter

focuses on a solution to protect against unauthorized iris-based identification from eye images.

2.3.4 Defocus Based Identity Preservation

Early work from Neustaedter et al. [182] explored adding blur to increase the privacy of a

teleconference video feed. They found that no general-purpose blur level preserves utility across

all scenarios in this context. For example, the participants specified a much higher amount of blur

in the video that captured embarrassing activities such as picking their nose or changing clothes,

compared to daily computer work. Participants were asked to identify the activities being

performed, with the blur level decreasing until they could confidently classify the activity. The

computed blur thresholds and classification rates determined that blur effectively increases

privacy while retaining utility. Hasan et al. [106] investigated various image filters such as

masking, blurring, and pixelation for their effectiveness in obscuring specific content features and

retaining the utility and aesthetics of the photograph. They reported that blur was effective at

obscuring the gender of the photographed person, though not the ethnicity or expression.

Ultimately, they determined that there was no ‘one size fits all’ solution for every scenario, and

object size or security context can influence the optimal method.

Pittaluga and Koppal [195] have implemented a similar blur-based privacy approach within

the context of micro-scale image sensors. A hardware-based approach is used to add blur instead

of a software-based Gaussian blur. The use of optics to scatter light before the image is captured

creates blur on the camera sensor. Applications like head tracking, person tracking, and facial

recognition are explored with several types of camera sensors (thermal, IR, RGB) imaging the

user. Each camera configuration and application must be optimized and designed to balance the

trade-off between security and utility. Our work investigates adding blur to eye images
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pre-capture; however, the goal is to do so without modifying the stock hardware or optics. This

allows consumers to control their privacy, as current consumer technology lacks any specialized

privacy hardware.

2.4 Methodology

Iris authentication is performed by comparing an input eye image with a stored reference

biometric from a known identity. Infrared images capture high-frequency features of the iris that

are unique to each individual. Iris features are encoded as a binary pattern that is then compared

to the stored template to determine if a match exists. The proposed blur mechanism is applied

directly to the eye image. Blur acts as a low-pass filter for the image and obfuscates the

high-frequency patterns needed for iris authentication. We propose applying blur in software

when the device platform is trusted and using optical defocus to blur the image pre-capture when

hardware is not trusted.

In this section, we describe the iris authentication process, define how blur degrades iris

authentication, provide each threat model, and demonstrate studies that explore the impact of blur

on data utility for gaze accuracy and avatar eye animation.

2.4.1 Iris Authentication

The process of performing iris-based authentication is well established, representing

features extracted from the high frequency component of the iris pattern as a binary code [58]. A

robust iris segmentation method [88] and standard encoding procedure [161] are used to create iris

codes for each eye image. Authentication is performed by computing the Hamming distance

between source and target iris codes [57]. Hamming distance is defined as the proportion of bits

that disagree between source and target binary codes computed using AND (∩) and XOR (⊗)

operations,

HD =
∥(Scode⊗Tcode)∩ (Smask∩Tmask)∥

∥Smask∩Tmask∥
, (2-1)

where Scode and Tcode are the input binary codes with their respective masks. The binary masks

indicate which pixels contain the iris pattern, with zeros indicating eye lids, eye lashes, or any

other detected noise [57]. In the subsequent data analysis, iris codes are excluded if at least 75%
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of the bits are considered noise. A positive match is returned if the Hamming distance is less than

a fixed threshold. A threshold of HDauth = 0.37 was used to authenticate a match between source

and target.3

2.4.2 Degrading Iris Authentication Using Blur

Let I = IC + IR denote an image received from the eye-tracking camera. Figure 2-1

visualizes grayscale intensity values along the iris, pupil, and glint regions of an eye image. We

define IC as the image component that contains an eye-tracking signal, i.e., the corneal glint or

pupil, and is modeled as a Gaussian distribution IC ∼ N(µ = 0,σC). The IR component represents

the iris pattern within the image, with the highest frequency in the signal limited by the camera’s

spatial resolution. Let us denote the highest frequency as B. While IC contains primarily

low-frequency content, IR contains both low and high-frequency content, with the higher

frequencies being the identifying features, up to a maximum frequency B.

Consider a low-pass filter F of the form F(x) = N(µ = 0,σ), i.e., a Gaussian blur or optical

defocus. When I is convolved with F(x), the result is

ID(x) = I(x)∗F(x) = IC(x)∗F(x)+ IR ∗F(x) = I′C(x)+ I′R(x). (2-2)

The objective is to determine an optimal parameter σ that defines F(x) such that

eye-tracking features are still detectable in I′C(x), while I′R no longer contains the higher

frequencies that enable iris-based authentication. A security-utility trade-off for σ balances the

ability to apply iris authentication to the features I′R and the ability to estimate accurate gaze

position from I′C(x).

2.4.3 Threat Models

Iris patterns present in eye-tracking sensor data streams can serve as a password and are

continuously streamed from the eye tracker. This data stream is subject to a man-in-the-middle

attack if images are sent over a network [52]. In configurations where images are not streamed

over a network, they are still subject to attacks when data is transferred at the hardware level [53].

3A threshold of 0.37 corresponds to a 0.0012% false positive rate [120].
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Figure 2-1. Illustration of iris signature in an eye-tracking image. Left: The iris spans ≈ 150
pixels along AB. Right: Grayscale values along line AB demonstrate high-frequency
features in the iris region, a step pattern representing the dark edges of the pupil, and a
Gaussian shaped bump for the corneal glint. This suggests that a low pass filter F(x)
can degrade the high frequency iris patterns while retaining low frequency features
needed for gaze estimation.

Our threat models model an adversary who obtains unauthorized eye images of an

individual. The adversary then uses the eye images to spoof the user’s identity. The authentication

process compares the leaked eye image with that of a known eye image of the individual. The

specifics of the authentication process are discussed in Section 2, producing a HD value that is

compared to a threshold to determine if the identity is a match or not. The ability to spoof the

authentication of a user is measured using the Correct Recognition Rate (CRR) [173]. CRR is the

percentage of leaked images where HD < HDauth when compared to unblurred reference eye

images from the individual. The threat model assumes that the platform leaks eye images before

being processed for gaze estimation. Thus, any eye image modification will affect iris security

and gaze estimation utility. We explored scenarios where the eye-tracking software platform that

records and transmits the image is either trusted or untrusted by the user.

2.4.3.1 Threat Model 1: Trusted Software Platform

A scenario in which the user trusts the eye-tracking platform depends on trusting the

manufacturer of the eye-tracking hardware and the platform implementation of the core

eye-tracking pipeline. In this scenario, the platform developers are trusted to implement the

blurring approach immediately after the near-infrared camera captures the eye image. The
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blurring approach is then applied to introduce biometric security before sending the eye image for

additional processing. This threat model covers eye trackers that perform gaze estimation onboard

the hardware, or stream the images to a server for further processing.

2.4.3.2 Threat Model 2: Untrusted Software Platform

We also considered a threat model in which the platform that captures the eye image is not

trusted. A similar scenario was discussed by Pittaluga et al. in which privacy-preserving optics

are designed to protect sensitive information prior to image capture [195]. This threat model

covers the scenario where the user does not trust the manufacturer to implement iris security

methods or suspects that the underlying eye-tracking hardware is compromised.

2.5 Study 1: Gaussian Blur

The first study was conducted to determine the ability of Gaussian Blur to increase iris

security while retaining accurate gaze estimation. Study 1 was conducted under the assumptions

of Threat Model 1, in which the Gaussian Blur was applied to eye images in software prior to

gaze estimation. Gaussian Blur has a single parameter σ representing the standard deviation of

the blur kernel in pixels. Defining the blur parameter in pixels depends on the resolution of the

eye camera. Blur parameter results are presented in normalized units for generalization of our

findings. Our evaluation produced a security-utility trade-off for different values of σ to

determine an optimal value for adding security while enabling accurate gaze estimation.

2.5.1 Research Question

This study was a principal investigation into RQ2.1:

Can we degrade identification from eye images without impacting gaze accuracy?

Specifically, this study investigated whether we can degrade the risk of iris recognition from

sensor data in the form of near-infrared eye-tracking images. We considered whether we could

find a value of σ in which the CRR is reduced to 0% while the introduced gaze error does not

exceed 2◦ visual angle. We selected 2◦ as a target for gaze accuracy as it is an upper bound on the

amount of systematic error from most commercial eye trackers and is small enough to enable

most gaze-based applications [78].
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2.5.2 Implementation

Gaussian blur was implemented using the imgauss f ilt function in MATLAB to simulate an

isotropic blur kernel. The input parameter σ represents pixels within the eye image. Values of σ

are presented in normalized units using the diagonal resolution of the camera. The eye images

collected in our experiments were 320 by 240 pixels, with a diagonal length of 400 pixels. The

captured eye images were blurred prior to an offline calibration of the eye tracker and gaze

estimation through the open-source Pupil Labs software [131]. An open-source version of

Daugman’s method that computes the HD between two input eye images was used to implement

iris authentication [161].

2.5.3 Protocol

Five participants with normal vision wore the Pupil Labs head-mounted eye tracker (ca.

2016, 30Hz) in a lab environment and performed a 5-point calibration. The eye tracker reported a

validation error of <1.5◦. Users sat with a chin rest and viewed circular targets presented on a

desktop monitor (Fig. 2-2, Left). They were instructed to move their eyes to look at five

targets (Fig. 2-2, Right). We recorded the eye image stream, scene camera video stream, and

ground truth gaze data. Target viewing took approximately 32 seconds. Three representative eye

images were selected from each participant viewing targets to evaluate iris authentication

performance. Data from participant S0005 had large inconsistencies in pupil detection and gaze

accuracy from the unmodified eye images and was removed from the analysis.

Eye Camera on 

Telescoping Arm

Chin Rest

Monitor

Head Mounted 

Eye Tracker

Mouse

Figure 2-2. Experimental setup for eye-tracking data collection. Participants were seated with a
chin rest and gaze data was collected while they viewed five on-screen circular targets.
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2.5.4 Metrics

Iris security was measured as the CRR when considering each participant’s three

representative eye images, which act as entries in a known database for authentication. The three

images for each participant are compared with the blurred eye images from all participants to

determine the HD values between each pair of participant identities. CRR was computed using

this set of HD values and an authentication threshold of HDauth = 0.37.

Utility was the average angular distance between the ground truth gaze positions and the

gaze positions produced by the set of blurred eye images. The angular error was computed as

θ = cos−1(x j · x′j), where both x j and x′j were normalized 3D gaze directions produced by

unblurred and blurred eye images respectively for each data point. An angular error can only be

computed if the pupil was detected in both eye images. Only the frames in which the pupil

detection was successful for both images were used to compute the average angular error for each

participant. To validate that the pupil was being detected consistently, an additional utility

measure of pupil detection rate was included. Pupil detection rate for each participant was

computed as the number of blurred eye images with a detected pupil divided by the number of

unblurred eye images with a detected pupil.

2.5.5 Results
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Figure 2-3. Average HD from within and between participant iris authentication. Dark blue
values represent a correct recognition, while lighter values depict a failed match. The
first matrix on the left shows perfect matching and the next two show that simulated
defocus decreases CRR. In particular, σ = .0125 degrades iris authentication to
produce a CRR of 0%.

28



.0025 .005 .0075 .01 .0125 .015 .0175

Blur Parameter ( )

0

1

2

3

4

5

6
A

ng
ul

ar
 E

rr
or

 (
°)

Eye Tracking Error

1.5°
Average
S0001
S0002
S0003
S0004

0 .0025 .005 .0075 .01 .0125 .015 .0175
Blur Parameter ( )

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

Pupil Detection Rate

Average
S0001
S0002
S0003
S0004

Figure 2-4. Study 1 eye-tracking data utility results. Left: Error in visual degrees of eye tracking
data produced with simulated Gaussian blur up to σ = .0175. Note that at σ = .0125,
where iris degradation is significant for this eye tracker, the tracking error is at or
below 1.5◦. Right: Detection rate for participants S0001-S0004 with simulated
Gaussian blur up to σ = .0175. Note that at σ = .0125, where iris degradation is
significant for this eye tracker, detection rate is still at ≈ 80%.

The resulting set of HD values with no blur produced a CRR of 100%, while CRR is

reduced to 0% at σ = .0125 (Figure 2-3). A blur value of σ = .0125 introduced gaze error that

was less than 1.5◦ on average (Figure 2-4, Left). While gaze accuracy was retained at σ = .0125,

the pupil detection rate was reduced to 80% on average with a minimum of 60% (Figure 2-4,

Right). Reducing blur to σ = .0075 lowers the negative impact on pupil detection with an average

rate of 96%.

2.6 Study 2: Optical Defocus

Study 2 followed the assumptions of Threat Model 2, in which blur is introduced prior to

image capture by the eye-tracking camera. Optical defocus is introduced in a user-controlled

manner by increasing the physical distance between the eye and the eye-tracking camera. The

effect of optical defocus is modeled with a Gaussian Blur kernel to measure the introduced blur in

terms of σ . Our evaluation implies that by introducing enough distance between the eye and

camera, the CRR can be reduced while still enabling reasonable gaze estimation. Next, we

computed a security-utility trade-off for a key application of eye tracking to social VR and the

impact of eye image blur on the characteristics of the resulting avatar eye animations.

Eye movements play an essential role in non-verbal communication and thus are critical in

creating compelling social interactions with virtual avatars. For example, Steptoe et al. [235]
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showed that eye movements caused participants to more accurately determine if an avatar was

being truthful or not when compared to an avatar without eye movements. Eyes are important for

conversational avatars that discuss sensitive information, such as medical diagnoses [245]. The

animation of virtual eyes can be data-driven or generated by procedural algorithms that model the

dynamics of the eye. Realistic eye animations may include micro-saccadic jitter, blinks, eyelid

displacement, and pupil diameter [216]. Results from Garau et al. [89] suggest that a virtual

avatar rendered with naturalistic eye and head movements did not improve communication over

an audio-only conversation when the eye and head movements do not match the context of the

conversation. The authors also showed that an avatar with eye movements based on the current

conversation produced similar attentiveness and involvement to a video call with a real person.

This finding implies that while models can generate natural eye movements for an avatar, they

may not contain the non-verbal cues and subtleties needed to simulate a real conversation. In

these cases, real eye-tracking data is critical.

2.6.1 Research Questions

This study provides further investigation into RQ2.1:

Can we degrade identification from eye images without impacting gaze accuracy?

An optics-based approach to introducing blur was explored to secure the iris biometric

during eye tracking. Adjusting the eye-tracking camera fits Threat Model 2, in which the

eye-tracking platform is untrusted, and blur cannot be applied after the image is captured. The

data-level utility is measured in an extension of the Study 1 protocol that features an in-focus and

out-of-focus configuration. To answer the research question, we considered whether the

out-of-focus camera configuration could reduce CRR to 0% while introducing less than 1.5◦ gaze

error, as in Study 1.

The study also addresses RQ2.2:

Can we degrade identification from eye images without impacting virtual avatars

animated with gaze data?
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An additional set of experiments are conducted where blurred eye images are processed to

animate the eyes of a virtual avatar. Our perceptual experiments determined a detection threshold

for when a viewer would notice a difference due to security blur and explored the impact on

attributes of a virtual avatar. Specifically, the perceptual experiments answered the following two

research sub-questions:

• RQ2.2.1: At what level of defocus do viewers detect a difference in the animation of a virtual
avatar’s eyes compared to a reference?

• RQ2.2.2: What is the relationship between eye image defocus and the perception of avatar
truthfulness, naturalness, attentiveness, comfort, and eye contact?

2.6.2 Implementation

Optical defocus is introduced as a hardware configuration by adjusting the eye camera to

increase the distance from the eye (Figure 2-5, Right). This solution requires that the user has

access to and can manipulate the eye-tracking camera. The introduced distance between camera

configurations can be mapped to a value of σ for comparison with the Gaussian Blur

implementation [120]. Gaze data was collected using the same eye tracker as Study 1 and

processed similarly using Pupil Labs software. A simulated conversation with a video was used to

collect conversational eye movements and animate the virtual avatar.

Virtual avatars were rendered using Unity version 2017.4.24f1 and animated directly using

the 3D gaze direction generated by Pupil Labs. Gaussian blur was added to the eye images from

the conversational gaze data in software with blur parameter σ . Figure 2-6 shows an example of

what a participant would see when viewing the virtual avatar and the difference introduced with a

blur level of σ = .0125.

2.6.3 Protocol

The existing study protocol was extended with fifteen additional participants and included a

target viewing session across both in-focus and out-of-focus configurations. Prior to target

viewing, the participant was asked to look directly at the eye-tracking camera for five seconds,

eliciting on-axis eye images that simulate a “stop-and-stare” interface to evaluate iris

authentication [56, 197]. The in-focus configuration was then implemented by placing the eye
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Figure 2-5. Experimental setup for optical defocus evaluation. The adjustable telescoping arm of
the eye tracker is used to create an out-of-focus configuration. Eye images from an
in-focus configuration (23.3mm) and out-of-focus configuration (35.4mm) are shown.

camera as close as possible to the participant’s eye while keeping the eye in the center of the eye

image frame. The participant then viewed the five circular targets. Next, to create the out-of-focus

configuration, the experimenter adjusted the telescoping arm to the farthest point possible, again

orienting the camera such that the eye stayed within the frame. The participants then viewed the

circular targets for a final time. Finally, the participants repeated the “stop-and-stare” procedure

for five seconds to collect a second set of on-axis eye images. Data from these fifteen participants

were used to evaluate the security-utility trade-off when applying optical defocus.

Two perceptual experiments were conducted to determine the impact of applying blur to an

eye image prior to gaze estimation to animate a virtual avatar’s eyes. The first experiment (20

participants) determined the detection threshold using a same-different task when shown eyes

animated with modified data side-by-side animations from the original data. The second

experiment (20 new participants) presented eye animations one at a time and recorded five-point

Likert scale responses to measure perceived eye contact, comfort in the interaction, avatar

truthfulness, avatar naturalness, and avatar attentiveness. The eye images that generated the eye

movements of the avatar gaze were created using Gaussian blur. Five levels of σ were considered:

None (σ = 0), Low (σ = .0025), Medium (σ = .0075), High (σ = .0125) and Very

High (σ = .0225).
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Figure 2-6. Eye animations from blurred and unblurred images were presented side-by-side with
identical avatars for the same-different evaluation. The deviation in gaze from
defocus (σ = .0125) is shown in the avatar on the right.

2.6.4 Metrics

Iris security was measured as the CRR when comparing the eye images collected during our

“stop-and-stare” authentication routine. Each eye image was compared with all other images to

generate sets of HD values within and between participants. In-focus and out-of-focus eye images

were compared to see at what rate an individual can be identified by eye images when using an

out-of-focus configuration for an eye tracker.

Utility at the data level was measured as the average angular gaze error between the center

of targets presented on-screen to the user and gaze positions recorded by the eye tracker. Unlike

Study 1, gaze error was not computed using all the collected samples, only using samples

collected when viewing each of the five presented targets.

The detection threshold of a stimulus determines how much can be added before the user

noticed it. Captured data was used to compute a Miss Rate that measures the percentage of times

a participant did not notice a difference for each blur level σ . Response data were modeled using

a psychometric curve that establishes a relationship between stimulus intensity, i.e., blur, to the

resulting Miss Rate. The model is characterized using the Point of Subjective Equality (PSE) and
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Detection Threshold (DT), which are computed as the σ where a psychometric curve is equal to

50% and 25% respectively [234]. These thresholds capture how much blur is needed to produce a

response rate of chance as well as the amount of blur where a viewer will consistently detect a

difference. The second experiment of the avatar study collected Likert scale responses from a

series of questions for each avatar animation. Responses were visualized using box and whisker

plots to understand the summary statistics and compared using pairwise Wilcoxon signed-rank

tests to determine when blur caused a significant decrease in the perception of each attribute.

2.6.5 Results

Table 2-1. Security and utility results for in-focus and out-of-focus eye-tracking configurations.
On average, there was a difference of 8mm between in-focus and out-of-focus
configurations. Defocusing the camera caused a decrease in CRR without an
appreciable impact on gaze accuracy.

Mean Std. dev.
In-focus distance (mm) 25.1 2.8
Out-of-focus distance (mm) 33.1 2.3
In-focus CRR (%) 78.9 14.7
Out-of-focus CRR (%) 7.4 9.2
In-focus gaze error (◦) 1.4 0.4
Out-of-focus gaze error (◦) 1.7 0.5
In-focus gaze precision (◦) 0.1 0.04
Out-of-focus gaze precision (◦) 0.1 0.04

2.6.5.1 Iris Authentication

Table 2-1 reports the mean and standard deviations of computed metrics for each

configuration, with an average in-focus CRR of 78.6%, while the out-of-focus images had a rate

of 7.1%. Figure 2-7 (Right) demonstrates the relationship between camera distance and CRR by

fitting a sigmoid function of the form f (d) = 1
1+e−(a·d+b) , where a =−0.43, b = 12.10, and d is the

input distance in mm. At 30mm CRR was 45%, and by 35mm CRR has dropped to 8%, showing

only a small percentage of frames can successfully authenticate the user at increased distances.

2.6.5.2 Perceptual Studies

Our analysis determined that the defocus value of σ = .0088 is the average PSE, i.e., at this

defocus level the viewer had a Miss Rate of random guessing (50%). The average DT is
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Figure 2-7. Results for security and utility show that CRR is degraded by defocus (σ ) and
increased camera distance. Circles indicate data from the in-focus configuration,
while crosses indicate data from the out-of-focus configuration. The dashed line
represents a sigmoid curve fit to CRR as a function of distance. Angular error
measured between targets and gaze data for the out-of-focus configuration was at
most 2.7◦.

σ = .0142, which is the defocus level at which there is a 75% chance that viewers will be able to

detect that the eye animation of the avatar is different compared to the original. The psychometric

curves are visualized in Figure 2-8.

Likert scale responses for each dependent variable (truthfulness, naturalness, attentiveness,

comfort, eye contact) represent ordinal data grouped by the defocus parameter σ . Figure 2-9

shows the average and standard error values for each attribute. The Kolmogorov-Smirnov test for

normality was applied to each group and variable. Data were not normally

distributed (p < 0.001), and therefore non-parametric statistical tests were used. A Friedman test

showed a significant main effect of σ for truthfulness (χ2(4)=162.72,p < 0.001),

naturalness (χ2(4)=290.2,p < 0.001), attentiveness (χ2(4)=300.41,p < 0.001),

comfort (χ2(4)=279.15,p < 0.001), and eye contact (χ2(4)=199.23,p < 0.001). For each attribute

pairwise Wilcoxon signed rank tests with Bonferroni correction showed significant differences

between σ = .0125 and all other levels of σ (p < .05 or less); as well as between σ = .02 and all

other levels of σ (p < .001). Additionally, for naturalness and eye contact significant differences

were found between σ = 0 and σ = .0075, with (p < .01) and (p < .05) respectively.

The takeaways with respect to RQ2.2 suggest that a defocus parameter of σ = .0088 (3.5

pixels) should be used if utility is preferred over security, and σ = .0125 (5 pixels) if security is
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Figure 2-8. Resulting psychometric functions of the same-different task for individual and pooled
responses. Gray dashed lines represent individual responses, and the solid black line
represents a function fit to the average responses across individuals. Error bars
represent the 95% confidence interval for PSE and DT values.

preferred based on the detection of a difference in eye animations. Results indicated that at σ

values of .0125 and .02 the avatar no longer maintains eye contact, attentiveness, or naturalness.

Thus, for animating an avatar’s eyes in an environment similar to our experiment, a blur level less

than σ = .0125 is recommended. The presented security-utility trade-off provides the opportunity

to use gaze data for social VR with σ = .0088 with a lower risk (≤5%) of leaking the iris

biometric through captured eye images.

2.7 Discussion

To explore RQ2.1 for Threat Model 1 (trusted software), we computed the security-utility

trade-off for Gaussian Blur applied to eye-tracking images. The resulting trade-off indicates that

with σ = .0125 of blur, the iris pattern is secured with a Correction Recognition Rate (CRR) of

0%, and the error introduced was less than 1.5◦ on average. The level of biometric security and

gaze utility at σ = .0125 protects the iris pattern when considering the Daugman authentication

approach while still enabling gaze applications that can tolerate up to 1.5◦ of additional error.
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Figure 2-9. Box plots indicating the median, 25%, and 75% quartiles for Study 2 results.
Significantly different groups are marked with * when p < .05, ** when p < .01, and
*** when p < .001. For clarity ** significance brackets were established but not
drawn between groups σ=[0, .0025] and σ=.0125, along with *** significance bars
for groups σ=[0, .0025, .0075] and σ=.02 across all attributes.

To further explore RQ2.1 for Threat Model 2 (untrusted software), we also computed the

security-utility trade-off for hardware-based optical defocus on eye-tracking images. The secure

out-of-focus configuration produced an average of σ = .0083 and CRR of 7% across individuals,

compared to an average CRR of 79% before optical defocus was introduced. These findings

connected well with Study 1, as software blur produced with σ = .0075 degraded iris

authentication for most individuals, and σ = .0125 completely degraded iris

authentication (Figure 2-3).

Our results also addressed RQ2.2 to explore the impact of eye image blur on gaze data utility

when animating the eyes of a realistic virtual avatar within a social VR application. Perceptual

studies (Sec. 2.6.5.2) identified detection thresholds for the levels of image blur σ on resulting eye

animations and demonstrated how increased blur negatively impacted the social characteristics of

the virtual avatar. Our takeaway for the explored configuration is that at σ = .0075, viewers will

not consistently notice a difference in the resulting avatar eye animations and maintain positive

social characteristics. At levels of σ = .0125 or higher, viewers are likely to detect a difference

and rate social characteristics with neutral or negative responses.

The presented methods provide tools to control the risk of leaking a user’s iris biometric

while balancing data utility for eye tracking. Early publications of our work spawned a new

research sub-area in protecting users from identification based on eye images collected by an eye

tracker. Our work demonstrates an approach to balancing security for raw sensor data in the
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context of VR applications. Mixed-reality devices integrate multiple sensors, such as ECG or

EEG sensors, that also act as biometrics for identifying the user or their sensitive attributes. We

imagine that our results will inspire future research on protecting additional XR sensors while

enabling cutting-edge sensor data and XR applications.

2.8 Limitations

A fundamental limitation of parameterizing blur by σ in pixels is a dependency on the

resolution and field of view of the eye-tracking camera. For example, if a camera has double the

resolution but an identical field of view, the blur parameter σ would have to be scaled by two to

account for increased pixel resolution along each dimension. Computing σ during hardware

defocus for a new camera requires a calibration procedure [120].

Using optics to introduce blur pre-capture is an efficient solution that puts the user in

control of the security of their iris biometric; however, this assumes that the user can access and

manipulate the focus on the camera. While this is true for most popular glasses-based eye

trackers, not all head-mounted XR displays with eye-tracking sensors are accessible to the user or

have adjustable focus. More robust solutions might investigate clip-on optics similar to Pittaluga

and Koppal [195] that can be used to augment the eye tracker and enable blur-based iris security.

The stimuli used for our perceptual evaluation of animated virtual avatars also have

limitations. Notably, our evaluation does not consider the impact of defocus on eye movement

characteristics such as blinks, the dynamics of saccades with large amplitudes, or estimated pupil

diameter. These characteristics play a role in complex social interactions and are more prominent

the closer the user is to the avatar [68]. The stimuli did not include head or mouth movements.
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CHAPTER 3
PRIVACY FOR STREAMING EYE-TRACKING DATA

3.1 Introduction

Eye-tracking biometrics extend beyond images collected from raw sensor data. Streams of

gaze positions output from an eye tracker are processed to extract features that quantify behavior

patterns. The resulting features are then classified to perform identification. Even if blur is

applied to eye-tracking images to protect the iris, the resulting stream of gaze positions enables an

adversary to recognize a known user. Furthermore, eye trackers will always output a stream of

gaze positions, even if non-video-based eye trackers become standardized in the future [253].

This chapter presents a privacy-preserving approach to streaming data to gaze applications in XR.

Eye tracking is a specific case of more general behavioral tracking services in mixed reality,

including head, hand, and body tracking. Mixed-reality platforms collect raw data from the native

sensors, process it to perform noise removal and event detection, and pass the processed data up

the software stack [64]. Current mixed-reality platforms enable third-party content through app

stores [241] and web browsers [101], similar to mobile devices.

We propose a privacy-by-design approach to protecting eye-tracking sample data. The

approach uses a Gatekeeper API that protects sample data by providing metrics relevant to

specific application utilities. For application utilities requiring gaze samples, we propose using

standalone privacy mechanisms that modify sample data to reduce the risk of identification from

the data stream. Optimal privacy mechanisms reduce the risk of identification to near

chance (guessing) rates while retaining utility for the respective data application.

An earlier version of this work was published at IEEE VR 2021 [62] and was nominated for

a best journal track paper award. The presented framework served as a motivating template for

designing privacy-preserving systems at the PrXR workshop at IEEE VR 2021 [61].

In this chapter, we present a framework for protecting privacy when streaming gaze data to

XR applications. We demonstrate that aggregate and event-level eye-tracking applications are

enabled by designing a Gatekeeper API. For sample-level applications, we found that an additive

Gaussian noise mechanism can reduce the risk of identification from released gaze samples while

introducing less than 1.2◦ degrees of spatial error when input to a deep gaze prediction model.
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3.2 Threat Scenario

The problem of applications receiving data and passing it along to colluding apps or parent

companies erodes public trust in technology and cannot be “regulated away” completely. For

example, Reardon et al. highlighted data leakage attacks on Android devices from popular apps

on the Google Play Store [201]. Attacks included collusion between apps that make use of SD

card storage to save user information and make it available to other apps where permissions had

not been restricted. Such attacks violate existing privacy laws such as GDPR and CCPA, but were

still prominently featured on the platform app store. Apps that violate user privacy use the

collected data for unintended purposes outside of their main application. Recently, The Weather

Channel took location data it mined from users’ foot traffic at different businesses, and sold it to

hedge funds to inform their investments before quarterly income statements were released.1 Even

with regulation, the weather app collecting location data can collude with an advertising

application that belongs to the same parent company. The user will then be served personalized

ads based on location: such as car ads appearing after a visit to the car dealership for an oil

change. Ads generated with information about which cars were glanced at most or that a

motorcycle caught the user’s eye can make the user feel that their privacy has been violated

without their consent.

This problem becomes even more severe when we recognize that mixed-reality headsets are

being explored as a future solution for remote meetings in work environments [125]. Employers

today use social media activity outside of work when screening applicants or for firing current

employees [81]. Data-oriented companies such as Amazon analyze the social demographics of

their workers, such as the percentage of workers below the poverty line, to flag the Whole Foods

stores most likely to unionize [102]. In response, a user could log in at work to do job-related

training with their known real-world identity, but attend virtual labor union meetings as

anonymous User X to avoid negative repercussions.2,3 An adversary that connects these two

1www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
2www.tcf.org/content/report/virtual-labor-organizing/
3www.foley.com/en/insights/publications/2015/09/be-careful-what-you-say-during-a-unio

n-organizing/
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identities has the power to “out” the user to their work organization. Furthermore, recent

investments by the Saudi Arabian government highlight that mixed-reality data may be owned

and processed by government entities [162]. Mixed-reality data, including eye tracking, can be

used to infer sensitive information such as sexual orientation [206], creating the potential to harm

LGBTQ+ individuals in countries where homosexuality is considered a crime [246].

3.3 Eye-Tracking Applications

3.3.1 Aggregate-Level Eye-Tracking Applications

Aggregate gaze data from many viewers are input to applications such as highlighting

salient regions using heatmaps [198, 59, 228] and learning perceptual-based streaming

optimizations for 360◦ content [157, 249]. These applications typically rely on a data collection

process conducted in research lab environments for a sample of viewers. Viewer data acts as

training datasets for machine-learning models, and results from the model performance are then

released to inform the deployment of such methods on consumer devices. Using a research

dataset provides utility to the consumer without creating privacy risks for them. However,

machine-learning models still pose a risk to privacy when they leak information about individuals

that contributed to the training dataset [50].

3.3.2 Event-Level Eye-Tracking Applications

Eye movement behavior captured by eye-tracking events, such as fixations, saccades, and

smooth pursuit, contribute to gaze-based interfaces [190, 92], evaluating training

scenarios [69, 45, 121], and identifying neurodegenerative diseases [187] or ASD [43]. Detecting

eye-tracking events enables improved techniques for redirected walking [146, 134, 135], a critical

application for VR that expands the usable space of a virtual environment within a confined

physical environment. The most common method to quantify an individual’s gaze behavior is to

mark Areas of Interest (AOIs) within the content and measure how gaze interacts with this

region [110]. AOIs are commonly used in UX or web design to evaluate different interfaces based

on when and how long a user looks at different regions [252]. Typical metrics for these regions

depend on fixation and saccade events only, recording dwell times, the number of fixations or
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glances, and fixation order [148, 188].

3.3.3 Sample-Level Eye-Tracking Applications

Multiple critical mixed-reality applications depend on individual gaze samples from an eye

tracker with a sampling rate of at least 60Hz. Applications include foveated rendering and

streaming [192, 27, 167, 166, 51], which enable deploying immersive VR experiences on

low-power and mobile devices. These applications rely on gaze samples to track where the foveal

region of the user currently is and predict where it will land during an eye movement to ensure

that the user does not perceive rendering artifacts [16]. Similarly, gaze prediction models are

trained that predict future gaze points while viewing 360◦ images or video, and 3D rendered

content [113, 114, 115].

Another set of applications that require sample-level data are gaze guidance

techniques [214, 215]. Gaze guidance takes advantage of sensitivity to motion in the periphery to

present a flicker in luminance that will attract the user’s eyes, using eye tracking to remove the

flicker before the user can fixate upon the region and perceive the cue [24, 97]. This technique

enables manipulation of visual attention and, ultimately, user behavior. For example, gaze

guidance in 2D environments improved spatial information recall [23], training of novices to

identify abnormalities in mammogram images [231], and retrieval task performance in real-world

environments [36]. Gaze guidance also enhances redirected walking techniques in VR by evoking

involuntary eye movements and taking advantage of saccadic suppression [236]. Guiding gaze

through saccades and manipulating the user allows for the use of a 6.4m×6.4m virtual space

within a 3.5m×3.5m physical space, significantly expanding the usable area within VR

experiences. This application requires an eye tracker sampling rate of 250Hz or more and

sample-level data to know precisely when gaze moves towards the periphery cue. Providing

sample-level data with high accuracy at this frequency poses a serious risk to user privacy in the

form of gaze-based biometric features that can then be extracted from these gaze positions.
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3.4 Related Work

3.4.1 Inferences From Eye Movements

Human eyes reflect their physical attributes. For example, algorithms can estimate the ages

of users by monitoring the change in the gaze patterns as they age [177, 255], their gender based

on the temporal differences in gaze patterns while viewing faces [221], and their race from the

racial classification of faces they tend to look at [25].

Beyond physical attributes, gaze allows rich insights into psychological attributes, such as

neurological [149] and behavioral disorders [54, 193, 176]. The eyes can also reveal whether an

individual suffers from an affective disorder, as anxious individuals’ gaze patterns are

characterized by vigilance for threats during free viewing. In contrast, depressed individuals’

gaze is characterized by reduced maintenance of gaze on positive stimuli [18]. Eye tracking has

also been used to investigate gaze behavior in individuals on the autism spectrum, finding that

they generally tend to fixate less on faces and facial features [37, 48]. Body mass index (BMI)

status appears to influence gaze parameters that are not under conscious control, allowing BMI

estimation when presenting individuals with images of foods of differing caloric content [94].

These risks involve knowledge of eye position and stimuli, whereas user identification can be

applied to raw eye movements without knowledge of the stimuli.

3.4.2 State-of-the-Art in User Identification Based on Eye Movements

Gaze patterns can be used to identify individuals as they contain unique signatures that are

not under a user’s voluntary control [129, 130]. The Eye Movement Verification and

Identification Competitions in 2012 and 2014 challenged researchers to develop algorithms that

identified users based on their eye movements when they followed a jumping dot (2012) and

when they looked at images of human faces (2014). The best models’ accuracy ranged from 58%

to 98% for the jumping dot stimuli, and nearly 40% accuracy compared to a 3% random guess

probability for viewing faces.

Based on recent surveys on eye movements biometrics [86, 209] and literature search, we

identified algorithms that successfully identify individual users from their eye movements in
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Table 3-1. State-of-the-art gaze-based biometric methods. Key: RBF = Radial Basis Function
Network, RDF = Random Decision Forests, CNN = Convolutional Neural Network,
STAT = Statistical test, SVM = Support Vector Machine.

Method Features Classifier Dataset Results
Schroder et al. [222] Fixation, saccade RBF BioEye 2015,

MIT data set
IR: 94.1%

86.8%
Schroder et al. [222] Fixation, saccade RDF BioEye 2015,

MIT data set
IR: 90.9%

94.7%
George&Routray [93] Fixation, saccade RBF BioEye 2015 IR: 93.5%
Lohr et al. [154] Windows of gaze

velocities
CNN GazeBase,

BioEye 2015
EER: 11.3%

21.1%
Lohr et al. [156] Fixation, saccade STAT VREM-R1,

SBA-ST
EER: 10.0%

2.0%
Lohr et al. [156] Fixation, saccade RBF VREM-R1,

SBA-ST
EER: 14.4%

5.1%
Eberz et al. [73] Fixations, binoc-

ular pupil
SVM [73] EER: 1.9%

Rigas et al. [207] Fixations, sac-
cades, density
maps

Multi-score
fusion

[207] EER: 5.8%
IR: 88.6%

Monaco [172] Gaze velocity &
acceleration

STAT EMVIC 2014 IR: 39.6%

Table 3-1. These algorithms have been evaluated on existing gaze-biometric challenge datasets

and the natural viewing of image stimuli in 2D (MIT data set). The method with the best

biometric performance produces an Equal Error Rate of 1.88% using pupil-based features [73];

however, the majority of consumer applications in mixed reality do not require pupil diameter.

Thus, we selected to implement the RBF approach proposed by George and Routray [93], as it

relies only on fixation and saccade events. This method also produces impressive results with VR

eye-tracking data [156] and natural viewing of 2D images [222].

3.4.3 State-of-the-Art in Eye-Tracking Security and Privacy

In recent years, privacy concerns related to eye-tracking applications has grown

significantly [142, 233, 122, 120, 42, 151]. In response, researchers have developed methods to

enhance privacy of aggregate features, like saliency heatmaps [153] and event

statistics [232, 40, 83]. These methods have been shown to reduce performance in the

classification of gender and identity. However, the methods operate only on extracted gaze
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features after processing raw data. Recent work by Li et al. has applied a differential privacy

noise mechanism to raw streams of gaze to obfuscate the viewer’s gaze relative to AOIs within

stimuli over time [151]. The noise mechanism protects gaze positions relative to the size of

objects viewed in the scene, so an adversary would not be able to determine what a user was

looking at by observing the gaze stream and respective content. The ability to protect biometric

identity was also evaluated empirically on the 360_em dataset [10], reducing identification to

chance rate. While the chance rate of identification was achieved for one dataset, the formal

differential privacy guarantee specifically targets the privacy of what was looked at, not the risk of

identifying the user from their data. This chapter develops a threat model based on the streaming

of gaze samples and the privacy risk related to biometric identification within an XR ecosystem.

3.5 Methodology

The typical architecture and data flow for an eye-tracking platform is to provide an API to

request gaze data or access a stream of data by listening for specific types of events [131, 239].

The API provides access to gaze data and metrics for third-party applications. The eye-tracking

platform performs access control for applications and the implementation of gaze estimation.

3.5.1 Eye Movement Biometrics

We define two classifiers for biometric identification using a Radial Basis Function (RBF)

network [93, 222, 156], with one network to classify fixation events and one to classify saccade

events. This method is analogous to a traditional neural network with an input layer representing

a feature vector x⃗ ∈ Rp containing p fixation or saccade features from a single event, one hidden

layer consisting of m nodes, and an output layer containing c class scores, one for each unique

individual in the dataset. The output class scores are used to measure the individual to which the

input feature vector is most similar. Thus, larger scores indicate a higher probability of the fixation

or saccade event being from that class or individual. The classifier is implemented identically to

the prior works [93]. Classification probabilities are equally weighted between the fixation and

saccade event classifiers and summed to classify the eye movements captured from each stimulus

in the testing set. The protocol for splitting training and testing data is described in Section 3.6.3.
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The single hidden layer is implemented using nodes defined by an activation function φi(⃗x)

and a set of real-valued activation weights wi,c, where i ∈ [1,2, . . . ,m] and j ∈ [1,2, . . . ,C]. The

similarity score for a given class c in the output layer is computed as a weighted sum of all

activation functions in the hidden layer,

Scorec(⃗x) =
m

∑
i=1

wi,c ·φi(⃗x). (3-1)

The activation function of each hidden node takes the form of a Gaussian distribution

centered around a prototype vector µ⃗i with spread coefficient βi. The function is defined as

φi(⃗x) = e−βi||⃗x−µ⃗i||2, (3-2)

with shape coefficient βi and prototype feature vector µ⃗i defined prior to training the

network. Thus, an RBF network must be constructed in two stages by first defining the prototypes

and then optimizing the activation weights.

First, k-means clustering is applied to a training set of n feature vectors to determine k

representative feature vectors per individual [93, 156]. Through this process βi and µ⃗i are defined

for each of the m = k · c hidden nodes. The activation function φi(⃗x) is then defined using the

cluster centroid as µ⃗i, and βi as 1
2σ

, where σ is the average distance between all points in the

cluster and the centroid µ⃗i.

Second, the activation weights wi,c are learned from the same training data used to define

the activation functions. Weights are trained using only fixation or saccade features from the

training set. Training can be implemented using gradient descent [224], or by the Moore–Penrose

inverse when setting up the network as a linear system [93]. The latter method is implemented in

this work by defining the RBF network using an activation output matrix An×m, where rows

consist of the n training feature vectors input to the m previously defined activation functions,

weight matrix Wm×c comprised of activation weights wi,c, and an output matrix Yn×c generated as

a one-hot encoding of the ground truth identity labels. The RBF Network is defined as A ·W = Y

using matrix multiplication.
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The weight matrix W is then learned by computing W = A∗ ·Y , where A∗ is the

Moore-Penrose inverse of A computed using MATLAB’s pinv implementation. Class score

predictions Ŷ are then generated for the testing data Â by computing Â ·W = Ŷ . Every sample in

the testing set is classified as the class label with the maximum score. The class scores from all

events are summed together, and then the class with the maximum value is returned to classify a

stream of events. Scores from the fixation RBF and saccade RBF are combined by summing the

average of scores from each network for equal contribution to the final classification.

3.5.2 Threat Model

We assume that the components comprising the eye-tracking platform and API are trusted,

i.e., the integrity of the hardware and software could be attested through mechanisms such as

secure boot [17] and integrity measurement [218], and we assume that the operating system is

protected, e.g., through SELinux mandatory access controls [174]. The adversary can examine all

data transmitted to the eye-tracking applications and seeks to use this information to re-identify

the user. A malicious application can collude with other applications by sharing information

through overt or covert channels [159] in order to re-identify users.

Our privacy-preserving solution is focused on preventing biometric identification of users

from their gaze data when collected by colluding applications. User data comes from a known set

of identities linked by computing gaze features while performing the same task in both

applications. The success criteria for our privacy mechanisms is to reduce the successful

identification rate from eye-tracking features to chance rates. Chance rates represent the same

accuracy as randomly guessing the identity, or 1
#Ppts . A mechanism that reduces identification

rates to chance can defend against an adversary’s attack for a certain task, the volume of data,

feature set, and classification model.

3.5.3 Gatekeeper API

The simplest way to provide a gaze API would be to pass the raw gaze data to applications.

At any point in time, the application would be able to request getGazePosition(). From this,

the application would be able to compute fixations, saccades, and dwell time; in particular, an
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Figure 3-1. Illustration of the Gatekeeper framework. The Gatekeeper protects identity by
delivering relevant data at different levels directly through the API, while withholding
raw gaze samples that contain biometric features. This approach cannot be used
directly with applications that require raw gaze samples.

application would be able to compute fixations in an AOI, time to first saccade into the AOI, and

dwell time in the AOI. Providing raw gaze data also allows for computation of gaze velocity and

other features commonly used for biometric identification [93, 86, 222]. Allowing for raw gaze

access in an untrusted context, such as the web, allows arbitrary apps to re-identify users.

However, we can modify the gaze API to be privacy-preserving by acting as a Gatekeeper.

Privacy vulnerabilities are caused by the design assumption that the application is benign and the

data is used only for the purpose for which it is collected. As discussed previously, applications

may not be benign, and connecting user data across devices will allow for richer inferences about

that user. This threat motivates our proposed Gatekeeper design. An added benefit of our

proposed design is that the Gatekeeper model provides desired metrics directly to applications

instead of requiring them to process streamed user gaze data and calculate the metrics themselves.

3.5.3.1 Enabling AOI Metrics

Advertisers and other AOI applications are interested in the number of fixations and the

fixation dwell time in a predetermined AOI [194]. Under the Gatekeeper framework, an API

allows requests for metrics instead of passing along raw gaze positions. For example, a

getFixations method takes a rectangular area and returns a list of fixations that had occurred in

that area, and a getDwellTime method takes as input a fixation and returns in milliseconds the

dwell time of the fixation. Additionally, we design a getSaccades method that would return a list
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Figure 3-2. Illustration of standalone privacy mechanisms for eye-tracking data. In scenarios
where a Gatekeeper API cannot be implemented, we instead apply a privacy
mechanism to raw gaze samples to serve applications that use gaze samples or event
data directly. Noise and downsampling are applied during eye movement events to
reduce the risk of user re-identification from the stream of released gaze samples.

of saccades into the AOI. Saccades are a strong classifier feature for identity when raw gaze points

are included; however, we mitigate this risk by providing only lower-dimensional summary data.

3.5.3.2 Enabling Real-Time Event Data

In situations such as gaze-based interfaces and redirected walking, applications need to be

notified when a new fixation or saccade occurs instead of querying for all fixations or saccades. In

this scenario, we can use an EventListener model instead of a query-based model. When a new

event occurs, the EventListener will be notified and given the event data, (x, y, t) and a

boolean indicating if it is a fixation, saccade, or smooth pursuit. More complex eye movements

are difficult to detect in real-time with the sampling rate of mixed reality eye-tracking devices and

typically are not implemented in real-time applications.

Our model for streaming event data sends an event when the eye movement has concluded.

In a gaze-based interface, the application needs to be notified that a smooth pursuit occurred and

where it landed [21]. In applications such as redirected walking, it is critical to know when a

saccade begins to take advantage of saccadic blindness [236, 134, 135]. In this case, one mode of

the EventListener would indicate when a saccade event has started instead when it has finished.
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3.5.3.3 Discussion

It is important to note that the Gatekeeper API is explicitly designed to provide AOI metrics

and summary data of eye movement events. The streamed metrics and event data are identical to

the original data implying that there would be no loss in utility when using the Gatekeeper, and

the risk of re-identification is eliminated as gaze samples are never shared outside of the

eye-tracking platform. This covers a range of gaze applications for XR, ranging from AOI

analysis in virtual training environments to redirected walking and gaze-based interaction. The

Gatekeeper API does not scale to address applications such as foveated rendering or short-term

gaze prediction, which requires raw gaze samples with low latency for their utility.

3.5.4 Standalone Privacy Mechanisms

While a set of applications will be able to function with the API mentioned above, core

mixed-reality applications will require sample-level data. In these scenarios, the eye-tracking

platform must stream sample-level data, and it is impossible to simply abstract data using a

privacy-preserving API. Therefore, we proposed using a privacy mechanism to manipulate gaze

samples as they are streamed to increase privacy.

Privacy is increased when the accuracy of user identification is reduced. Eye movement

biometrics are based on features derived from common eye events, such as fixations and saccades.

Thus, we proposed that privacy mechanisms can be deployed in conjunction with real-time event

detection to modify the gaze samples that are released during events (Figure 3-2). Implementing

privacy mechanisms in this manner preserved the event boundaries of the gaze data and enabled

measuring the utility lost as a result of the different privacy mechanisms and parameters.

We considered the following privacy mechanisms: adding Gaussian noise to raw gaze data,

temporal downsampling, and spatial downsampling.

The data received by the privacy mechanisms are defined to be a time series where each

tuple is comprised of horizontal and vertical gaze positions (x,y), a time stamp t, and the event

label e assigned to the sample. For example, X = {(x1,y1, t1,e1),(x2,y2, t2,e2), ...,(xG,yG, tG,eG)}

is a set of G gaze positions in our representation of the data. This data is processed via a privacy
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mechanism and the processed output is a time series X ′. Additional variables for the privacy

mechanisms are defined in Table 3-2.

Additive Gaussian noise: Noise is sampled from a Gaussian distribution of zero mean

and standard deviation σ defined in visual degree and added to the gaze positions. Noise is

independently sampled for horizontal and vertical gaze positions as X ′ = {(x1 +N(0,σ),y1 +

N(0,σ), t1,e1),(x2 +N(0,σ),y2 +N(0,σ), t2,e2), ...,(xG +N(0,σ),yG +N(0,σ), tG,eG)}.

Temporal downsampling: Temporal downsampling reduces the temporal resolution of

the eye-tracking data stream. Downsampling is implemented by streaming the data at a frequency

equal to the original sampling rate divided by a scaling parameter K. The output time series is

defined as X ′ = {(x(K·p)+1,y(K·p)+1, t(K·p)+1,e(K·p)+1), ...} for all integers p ∈ [0, G
K ]. For example,

with a scaling parameter of two, the private gaze positions are defined as

X ′ = {(x1,y1, t1,e1),(x3,y3, t3,e3),(x5,y5, t5,e5), ...}, retaining only every other gaze sample. For

a scaling parameter of three, X ′ = {(x1,y1, t1,e1),(x4,y4, t4,e4),(x7,y7, t7,e7), ...}.

Spatial downsampling: Spatial downsampling reduces the resolution of eye-tracking data

down to a discrete set of horizontal and vertical gaze positions. The scene is divided into a grid

and each gaze sample is approximated by the grid cell that it lies within. Spatial downsampling is

performed by defining a target equirectangular domain spanning 180◦ vertically and 360◦

horizontally with M rows and N columns. For smaller values of M and N there are less possible

positions, and thus reduced spatial resolution. Raw gaze positions (x ∈ [0,360◦),y ∈ [0,180◦), t)

are transformed by first computing the horizontal step size δy =
180
M and vertical step size

δx =
360
N . Downsampled gaze positions are then computed as (⌊ x

δx
⌋ ·δx,⌊ y

δy
⌋ ·δy, t), where ⌊·⌋

represents the floor function that rounds down to the nearest integer.

Spatial downsampling is parameterized as a factor L relative to an equirectangular domain

of M = 2160 and N = 3840, mapping to a domain of M = 2160
L and N = 3840

L . For example, an

input downsampling factor of L equals two will result in M = 1080 and N = 1920, a factor of L

equals three will result in a resolution of M = 720 and N = 1280, and so on.
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Table 3-2. Standalone privacy mechanism variable definitions.
Variable Description
x Horizontal gaze position
y Vertical gaze position
t Timestamp
e Event label: Fix. (F), Sacc. (S), Smooth Pursuit (SP)
X Input time series of gaze samples
G Number of gaze positions in time series
X ′ Output privacy-enhanced time series
K Temporal downsample factor relative to sampling rate
L Spatial downsample factor relative to 3840×2160
M Number of rows in equirectangular projection
N Number of columns in equirectangular projection
δx Horizontal step size: 360

N
δy Vertical step size: 180

M

3.6 Study: Evaluating Standalone Privacy Mechanisms

3.6.1 Research Questions

Privacy-utility trade-offs are explored for each privacy mechanism across several VR

datasets to identify the best performing of the three mechanisms and assess the current risk of

user re-identification for each dataset.

Formally we propose the following research questions:

• RQ3.1: Which privacy mechanism had the lowest impact on utility while reducing
identification rate the most for each application?

• RQ3.2: Is the optimal privacy mechanism able to reduce identification rates from an RBFN
model to chance for all datasets?

3.6.2 Implementation

The performance of eye movement biometrics depends on the amount of data, the task

being performed, and the features used for classification. State-of-the-art approaches leverage

statistical features extracted from fixation and saccade events to perform identity classification

with an accuracy as high as 95% [93, 222]. We consider an attempt at re-identification by

collecting eye movements for a specific stimulus or task and computing a sequence of features

that can be used for identification. Privacy mechanisms are applied to both the training and the

testing set. Noisy data is used for both sets of data to satisfy the assumption that there is a trusted
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platform for processing data before streaming it to colluding third-party applications. The

identification protocol relies on eye-tracking features generated during a specific task from a set

of VR stimuli to train the identification model. The model is then tested on data from the same

task but a different set of stimuli to emulate two apps colluding to recognize a user.

3.6.3 Protocol

In order to evaluate the privacy mechanisms on how effectively they prevented an adversary

from re-identifying the user, we selected five existing VR datasets. Table 3-3 presents

characteristics of each dataset included in analysis. Datasets were selected to have diversity in the

number of participants, the number of stimuli presented, and the task being performed.

The evaluation protocol for the RBF-based biometric (Sec. 3.5.1), illustrated in Figure 3-3,

is derived from [222], where a stream of gaze data collected from multiple participants viewing

numerous static images is used for training and testing the identity classification. The size of the

training and testing sets are defined by the number of stimuli from which gaze data is used. For

example, with a train/test split of 50%/50%, gaze data from half of the dataset is selected

randomly and used for training and the other half for testing. Each participant is present in both

the training set and the testing set.

3.6.4 Metrics

Biometric identification was performed by classifying streams of gaze data from multiple

stimuli into one user identity. The identification rate was then computed as the number of correct

matches divided by the number of classifications. Identification rates reported are the average

over ten runs with random stimuli selected as part of the training and test set to account for

variance in stimuli content.

3.6.4.1 Gaze Prediction

Using the DGaze architecture and dataset, we evaluated the ability to predict ground-truth

gaze position 100 ms into the future when gaze data output from a privacy mechanism is used as

the testing data and as both the training and testing data. The utility was measured as angular gaze

prediction error for each input gaze sample, with lower values indicating higher accuracy.

53



Table 3-3. Characteristics of VR eye-tracking datasets.
Dataset # Ppts. # Stimuli Avg. # stimuli Stimuli duration Stimuli type
ET-DK2 (ours) 18 50 50 25s Images
VR-Saliency [228] 130 23 8 30s Images
VR-EyeTracking [250] 43 208 148 20s-70s Videos
360_em [10] 13 14 14 38s-85s Videos
DGaze [114] 43 5 2 180s-350s 3D scene
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Figure 3-3. Evaluation protocol for computing Identification Rate with the gaze-based biometric
classifier.

3.6.4.2 AOI Analysis

The most common form of eye-tracking analysis is performed using static AOIs defined

within image content [148, 188]. AOI analysis is used to study gaze behavior during social

interaction [29], while viewing websites [252], and to evaluate content placement in 3D

environments [13], among many other applications. A key AOI metric that is robust to fixation

detection parameters is dwell time [188]. Dwell time measures how long a viewer’s gaze fell

within an AOI, and allows for comparison between which AOIs attracted the most attention. We

evaluated the loss in utility between ground truth and modified gaze data by computing the Root

Mean Squared Error (RMSE) between AOI dwell times. AOI utility was measured for the

ET-DK2 dataset, as two rectangular AOIs were marked within each image. The AOIs

corresponded with salient objects, such as people or natural landmarks within the scene.
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3.6.4.3 Saliency Maps

Eye-tracking data are also used to generate saliency maps, which represent a probability

distribution over visual content that highlights regions most likely to be looked at by a

viewer [148]. Saliency maps are generated from aggregate eye-tracking data across many viewers

and are used to train and evaluate deep learning models for saliency and scanpath

prediction [19, 49]. Saliency metrics are computed for both 360◦ images (VR-Saliency), and 360◦

video (VR-EyeTracking and 360_em). We compute KL-Divergence [148] to measure the

deviation between saliency maps from raw and modified data. Among other saliency map

metrics, KL-Divergence is most sensitive to false positives and provides a differentiable loss

function that is useful for training deep networks [46].

3.6.5 Results

3.6.5.1 Privacy

Figure 3-4 presents the mean and standard deviation of identification rates for each dataset,

along with baseline rates corresponding to random guessing. For all datasets, identification rates

were highest when there was more training data than testing data, i.e., a 75%/25% split. The

ET-DK2 dataset with 18 individuals produced the highest identification rate of 85%, while DGaze

with 43 individuals produced the lowest identification rate of 2%.

Figure 3-5 presents the mean and standard deviations achieved for privacy mechanisms

applied to each dataset. A training/testing split of 75%/25% was used to generate these results.

We observe that Gaussian noise achieves the most privacy, reducing the identification rate of

ET-DK2 from 85% to 30% on average. Temporal downsampling is not recommended, as it had

the least observed impact on identification rate, and event detection is degraded at sampling rates

less than 120Hz [253].

3.6.5.2 Utility

The utility of eye-tracking data depends on the context of the application. Thus, we

evaluated the impact of our privacy mechanisms at three different scales: sample-level gaze

points, individual-level gaze behavior, and aggregate-level gaze behavior over many individuals.
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Figure 3-4. Mean and standard deviations of identification rates across datasets. Datasets
included 360◦ images (ET-DK2, VR-Saliency), 360◦ videos (VR-EyeTracking,
360_em), and 3D rendered scenes (DGaze). Lines for each dataset indicate a baseline
of random guessing for the given number of subjects.

First, we evaluate sample-level utility by computing gaze prediction error using the DGaze neural

network architecture, then, individual-level utility by computing dwell time for AOIs defined in

the ET-DK2 dataset, and finally, we compute aggregate-level utility measures for generating

saliency heatmaps of 360◦ images and video by computing KL-Divergence for the VR-Saliency,

VR-EyeTracking, and 360_em datasets.

Gaze prediction: Evaluating gaze prediction accuracy involved configuring the DGaze

neural network to predict gaze position 100ms into the future, which as a baseline produces an

average gaze prediction error of 4.30◦. The DGaze prediction model combines fully connected

networks that take saliency information as input with 1D convolutional layers that process

sequences of head, gaze, and object positions to predict future gaze positions. Data from the past

500 milliseconds are used as input for the prediction model.

Gaze prediction error using the pre-trained DGaze model was as high as 9.50◦ for the

Gaussian mechanism, more than double the baseline gaze prediction error reported in [114].

Next, we evaluated performance by re-training the DGaze model from scratch and applying
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Figure 3-5. Mean and standard deviation of identification rate for each privacy mechanism with
different internal parameters. Gaussian noise generates the lowest observed
identification rates across all datasets, while temporal downsampling has the least
impact.

privacy mechanisms to both the training and testing dataset. Applying noise to training data

resulted in much lower prediction errors, with results as low as 5.44◦, comparable to the 4.30◦

reported in [114].

Introducing the privacy mechanism to training and testing data implies that raw gaze data is

not shared with any party during model training and deployment. Our experiments indicated that

learning a reasonable gaze prediction model is still possible without access to the raw gaze data.

Withholding raw gaze data from the training dataset is desirable, as it removes the need to

safeguard additional data and alleviates the risk of membership inference attacks [50]. Future

gaze prediction models will improve in prediction performance, evidenced by a 11.7% decrease

in error between DGaze and the successor FixationNet [113]. Future advancements will further

decrease the absolute gaze prediction error when using gaze data output from the privacy

mechanisms and retain higher utility.

AOI analysis: RMSE in dwell time computation for additive Gaussian noise and temporal

downsampling was found to be below 40ms, which is insignificant for applying AOI metrics, as a

fixation typically lasts 200ms [219, 254]. However, for spatial downsampling, an RMSE of

247ms is introduced, which is greater than the length of one visual fixation. While being a few

fixations off on average may not have a large effect on AOI applications such as user experience

design, it may be noticeable in scenarios with multiple small AOIs close together or when a

stimulus is only viewed for a short period [185].
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Saliency map generation: The spatial errors introduced by the privacy mechanism may

cause regions highlighted by the saliency map to shift or spread out, leading to larger

KL-Divergence values. A recent survey revealed that the best performing model in predicting

human fixations produced a KL-Divergence of 0.48 for the MIT300 dataset, with baseline models

producing values of 1.24 or higher [38]. We observed that spatial downsampling produces the

largest KL-Divergence on average of 0.1293, while Gaussian and temporal downsampling

mechanisms produce much smaller values of 0.0367 and 0.0019, respectively. Spatial

downsampling introduced errors of approximately a fourth of the existing gap in fixation

prediction. Errors of this magnitude will cause saliency maps generated from spatially

downsampled gaze data to deviate from ground truth and negatively impact the performance of

models that use the maps for training.

3.7 Discussion

We proposed a Gatekeeper model to alleviate biometric authentication by apps that need

AOI metrics or event-specific data for their utility. This model provides API calls that return

desired metrics and summary information of fixation and saccades to applications without

providing streams of raw gaze data, which suffices for certain classes of mixed reality use cases.

However, streaming gaze data is required for use cases such as foveated rendering. We propose

that in this case, privacy mechanisms can be applied to the raw data stream to reduce the

identification rate while maintaining the utility needed for the given application.

We evaluated three privacy mechanisms that reduce the risk of identification: additive

Gaussian noise, temporal downsampling, and spatial downsampling to answer RQ3.1. Our

evaluation found additive Gaussian noise performed best compared to the other evaluated

methods in reducing identification rate from 85% to 30% while retaining practical data utility for

AOI analysis, gaze prediction, and saliency map generation. Table 3-4 summarizes the impact of

standalone privacy mechanisms and highlights the applications enabled by the Gatekeeper API.

The computed identification rates were above chance for all evaluated privacy mechanisms and

parameters, answering RQ3.2 and indicating that additional exploration of mechanisms is needed
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to achieve biometric privacy for eye-tracking datasets.

The presented methods provide a template for developing a privacy-preserving system for

individual sensors with XR applications. Privacy-by-design is an ideal approach for protecting

user privacy; however, such designs are at odds with applications that require accurate low-level

data. Our initial exploration shows that we can add privacy to real-time eye-tracking systems

while understanding the impact on XR applications. Standalone privacy mechanisms do not

require information about the scene being viewed by the user as inputs to the algorithm, in

contrast to the Kalεido streaming approach [151]. Practitioners can deploy our methods to let

users control their data privacy level, and explore the implications on additional applications or

when considering different XR sensors.

Table 3-4. Summary of utility loss and impact on identification rates for standalone privacy
mechanisms and data applications. Check marks indicate that the application is
enabled by a Gatekeeper API and does not require a standalone mechanism.

Application Gatekeeper Standalone Mechanism Utility loss Identification rate
AOI Analysis ✓ Gaussian 36 ms 85%→ 30%
AOI Analysis ✓ Spatial downsample 247 ms 85%→ 48%
AOI Analysis ✓ Temporal downsample 6 ms 85%→ 79%
Saliency maps ✓ Gaussian KLD = .036 47%→ 14%
Saliency maps ✓ Spatial downsample KLD = .129 47%→ 29%
Saliency maps ✓ Temporal downsample KLD = .002 47%→ 42%
Gaze prediction × Gaussian 1.14◦ 3%→ 2%
Gaze prediction × Spatial downsample 0.51◦ 3%→ 3%
Gaze prediction × Temporal downsample 0.22◦ 3%→ 3%

3.8 Limitations

The key limitation of the Gatekeeper approach is that it only applies to aggregate and

event-level eye-tracking applications. Such applications do not require gaze samples, and the

threat model considered in this chapter is based on withholding gaze samples as they can later be

processed for user identification. The standalone mechanisms applied when streaming gaze

samples serve as a set of baseline methods. Further work should explore combinations of

mechanisms or propose alternatives that can reduce the identification rate further.

The current threat model assumes a trusted platform that can implement the Gatekeeper or

standalone mechanisms without the risk of leaking sample data. In cases where the platform
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processing data itself cannot be trusted, there is a need for alternative solutions, such as hardware

modifications controlled by the user that impact gaze estimation and protect raw samples.

Our characterization of identification from gaze features is based on one biometric

authentication approach (RBF). As newer identification approaches are developed [154], we will

need to continuously consider new privacy mechanisms and evaluate the identification risk across

applications and datasets.

Our data utility characterization employed offline model accuracy analysis in terms of gaze

prediction error. The computed error results provide a quantitative measure of how well private

data can be used to train and test a gaze prediction model. However, the trained model was not

evaluated with a user study to understand the impact on perceived differences between the model

trained on private data and the original model.
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CHAPTER 4
PRIVACY FOR EYE-TRACKING DATASETS

4.1 Introduction

Re-identification attacks in literature have been extensively explored for social

networks [181], location data [196], and medical data [75]. Real-world re-identification attacks

have been demonstrated to learn the medical prescriptions of a politician [237] or reveal the

Netflix preferences of half of a million users [180]. Re-identification attacks have real

implications for user privacy. For example, in the Netflix dataset attack, a woman sued the

company over the risk that her leaked viewing patterns would reveal her sexual orientation to her

family [227]. In eye tracking, there are multiple algorithms that can authenticate and identify a

user based on eye movement data alone [93, 230, 222, 154]. Numerous datasets of eye-tracking

data for XR applications are publicly available [250, 228, 9, 232, 62, 76, 112]. There is a clear

trend towards increased datasets in public repositories and large-scale data collection to support

deep learning model training and deployment within the major XR platforms. The risk of making

available or leaking large-scale datasets, coupled with the deployment of integrated eye trackers

in the next wave of consumer XR devices [79], motivates the need for methods that retain utility

for developing eye-tracking applications while addressing and reducing privacy risks for users.

Surveys by Adams et al. [8] and Steil et al. [232] have established that both users and

developers have privacy concerns over XR and eye-tracking data collection and how they are

applied to make inferences about the user. For example, XR developers have cited that they are

aware of privacy concerns for users and share their sentiments; however, most developers are not

experts in these fields and thus lack the tools to address topics like ethics or privacy issues. For

users, survey participants have indicated that they would be willing to accept beneficial XR

applications that collect eye-tracking data if they are sharing the data with trusted governmental

health agencies or with a university for research purposes. The same users also responded that

they would not share their data publicly or with private services unless there were constraints on

how the data would be used. Privacy-preserving mechanisms provide a straightforward solution

by adding privacy at the data level. Legal approaches such as GDPR address risks by restricting

high-level access control and data sharing.
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Privacy laws and regulations protect traditional biometric identifiers, such as iris patterns

and face scans [109]. The established privacy laws protect users with a framework that limits how

long biometrics are stored before being discarded and manage data access by requiring user

consent before biometric data are shared or sold to other private entities. However, legal scholars

have pointed out that these privacy laws rarely hold up in court and would not apply to behavioral

data streams, as they feature ambiguous wording over what data is considered a biometric [210].

A lack of enforceable privacy laws and data release standards implies that XR platforms could

store or sell identities through eye-tracking and behavioral data captured alongside demographics,

typically used for personalized ads on the web [55]. Beyond personalized ads, identifying users

could lead to more harmful consequences such as stalking and cyber-bullying in the context of

XR platforms and communities [8, 158].

Prior work has addressed re-identification attacks on eye-tracking datasets through

mechanisms that add privacy noise to released data. Privacy mechanisms for eye-tracking

saliency maps, feature data, and gaze samples achieve differential privacy (DP) at different stages

in the eye-tracking pipeline. DP is a formal privacy guarantee that provides a mathematically

proven bound on the amount of information leaked by the presence of a single element in the

dataset. DP guarantees’ implications depend on the type of data protected and what can be

inferred from such data.

For example, a DP mechanism for saliency maps protects the contribution of any

individual’s fixation locations on the released saliency distribution, even in a worst-case scenario

where data from all users had leaked. Fixation locations of an individual could reveal personal

interests within web pages or behavioral diagnoses in an educational environment [153]. When

considering gaze-based features extracted from fixations, saccades, blinks, and pupil responses,

sensitive attributes about the user such as age [255], sexual orientation [203], and personality

traits [30] can be inferred. DP in this context protects the feature values extracted from the gaze

data recorded from each user, obscuring the ability to train models that infer such attributes [232].

For the case of gaze samples, i.e., time series of where the user is looking at any point in
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time, DP applies to protect against singling out what specific users were paying attention to [151].

For samples, a spatial DP bound provides privacy within the content being viewed. Li et al. vary

the spatial bound based on the width of an object or AOI in the scene, such as a human face. The

method limits the adversary’s ability to distinguish what was looked at as long as gaze positions

fall within the spatial bound. Practically, this means what is gazed upon within the span of an AOI

region could not be inferred. For the example of face AOIs, an adversary cannot detect whether a

user had increased eye contact that could reveal whether they are familiar with the other person or

not [169]. In contrast, a spatial DP bound based on the distance between AOIs would protect

saccadic shifts in the user’s gaze between the different regions, protecting against being able to

determine which AOI was looked at most. When considering transitions between AOIs that

correspond to faces, shifts could reveal how attentive a user is at maintaining eye contact, showing

behavioral markers for autism [226], or which human face they were most attracted too [144].

DP has a standard definition, though how it is applied to data determines how to interpret

the implications of the privacy guarantee. With DP protection comes an inevitable loss to data

utility [136]. The negative impact on data utility must be determined for each application to

understand where the DP privacy-utility trade-off is practical. Prior to this work, DP methods

were the only formal privacy guarantee for eye-tracking data.

We developed privacy mechanisms for eye-tracking datasets that serve as an alternative to

DP. The proposed mechanisms achieve k-anonymity and plausible deniability (PD) for both

eye-tracking feature and sample datasets. The ability of our privacy mechanisms to protect

against re-identification while enabling eye-tracking applications create a trade-off between

privacy and utility for XR applications. Our results demonstrate that eye-tracking feature

mechanisms mitigate re-identification attacks while retaining the dataset’s utility for training a

document type recognition model (Study 1, Sec. 4.4). For datasets of sample data, synthesis

methods and DP noise can prevent re-identification while supporting utility for training activity

recognition models and gaze prediction models (Study 2, Sec. 4.5). An earlier version of this

work was published at ETRA 2022 [60]. The ETRA 2022 paper presents the feature mechanisms
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and results from Study 1. The methods and results from Study 2 are intended to be submitted to

the IEEE TVCG journal by the end of August 2022.

4.2 Related Work

4.2.1 Privacy Guarantees for Eye-tracking Data

Mechanisms that achieve formal privacy guarantees for protecting eye-tracking data against

re-identification attacks apply to gaze samples [151] and features extracted from gaze

data [232, 41]. Table 4-1 lists existing mechanisms that achieve formal privacy guarantees for

eye-tracking data, the type of input data, and how the mechanism was adapted to eye tracking.

The only formal privacy guarantee that has been previously explored was DP. While DP is

popular in the privacy community due to the robust definition, there is an inevitable trade-off

between increased DP privacy and lower data utility [136].

The two most prominent data types listed in Table 4-1 are statistical features and gaze

samples. Statistical features refer to statistics extracted during a fixed time window, such as the

count of small, medium, or large amplitude saccades or the average fixation duration [44].

Alternatively, statistical features can be extracted from each identified fixation and saccade event,

capturing information like the average gaze velocity during a saccade or the spatial dispersion of

gaze points during a fixation [93]. Statistical features summarize eye movement behavior, and a

wide array of features have been explored for biometric identification of users (Section 3.4.2). In

addition, the same sets of features can also be used to train a classifier for sensitive attributes,

such as age or gender [232, 41].

DP applied to feature datasets protects the feature values of each individual from being

released. Specifically, DP bounds how much the output distribution of data from the mechanism

changes in the case where any one feature vector in the dataset is omitted or included. DP is

traditionally applied to output aggregate data, such as the average heights of a demographic or the

average daily power consumption of homes on a specific block. In the context of eye-tracking

datasets, released data matches the same format as the input with separate files for each

individual. The result of the DP guarantee means that the variation across individuals is reduced,
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Table 4-1. Privacy mechanisms for eye-tracking data with formal privacy guarantees. Shaded
rows indicate our mechanisms. Key: DP = Differential Privacy, PD = Plausible
Deniability.

Mechanism Guarantee Data
type

Mechanism
input

Adaption to eye tracking

Gaussian [153] ε,δ -DP Saliency
maps

User fixation
map

Adapt DP noise mechanism [70] to
protect fixation counts over image
pixels

Exponential-
DP [232]

ε-DP Statistical
features

Gaze features ex-
tracted over win-
dow of time t

Adapt DP Noise mechanism [72]
applied to features independently

DCFPA [41] ε-DP Statistical
features

Gaze features ex-
tracted over win-
dow of time t

Adapt Fourier DP mecha-
nism [200] to include difference
and chunking of sliding windows
over time

k-same-select
sequence (ours)

k-anonymity Statistical
features

Gaze features ex-
tracted over win-
dow of time t

Randomly group features and ap-
ply k-same-select [98] over a se-
quence

Task-based
Marginals (ours)

k,γ-PD Statistical
features

Gaze features ex-
tracted over win-
dow of time t

Apply Marginals Generative
Model and PD test [34] to each
task

Kalεido [151] ε,w,r-DP Gaze
samples

Window of w
gaze positions,
spatial bound r

Adapt spatial DP mechanism [15]
to incorporate a sequence [133] of
gaze positions relative to ROIs in
scene

k-same-
synth (ours)

k-anonymity Gaze
samples

Gaze positions
with event labels

Apply k-same-select sequence to
parameters of models that generate
event gaze positions

Event-synth-
PD (ours)

k,γ-PD Gaze
samples

Gaze positions
with event labels

Sample generative model for event
gaze positions and apply PD test to
each task

forcing the released data to be more homogenous and making individual differences harder to

detect. Thus, identifying individual users or detecting group traits such as age, gender, or

ethnicity becomes more difficult as privacy noise is added and masks individual differences.

Masking individual differences enforces that less information is leaked by the presence of any

particular element released in the dataset. However, the privacy noise needed to achieve such a

guarantee also reduces the utility of the released data by masking valuable insights.

The only mechanism for DP applied to sample data has adapted existing definitions to
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protect the spatial-temporal trace of gaze positions. DP in the context of spatial data ensures a

bound on how much output locations change within a spatial radius around the original data. The

only DP guarantee achieved for gaze samples is from the kalεido mechanism. The kalεido

approach protects gaze positions at most a distance of r away from each other within windows of

size w.

The algorithm runs in real-time and allows for streaming of gaze samples with a DP

guarantee; however, the context of this DP guarantee does not provide theoretical protection

against re-identification. It has been demonstrated that the amount of privacy noise added with

kalεido does reduce the risk of re-identification to chance for the 360_em dataset. Yet, there is no

analytical method to directly link the DP parameter ε with the theoretical risk of re-identifying

the user from features that will be extracted from the released gaze positions.

4.2.2 Alternative Privacy Guarantees

Many formal privacy guarantees exist to protect against different types of privacy risks. We

pursued k-anonymity and k,γ-plausible deniability (PD) as alternatives to DP, as they directly

protect against re-identification attacks. First, we explored k-anonymity to provide intuitive

protection in that individual data cannot be distinguished from k-1 others. The

k-same [183, 98, 205] approach is common to achieve k-anonymity for numerical data and works

by averaging data together in groups of size k and releasing duplicate values. The duplicate values

have equal contribution to the released data, establishing an upper bound of 1
k on the probability

of individuals being re-identified. k-same is typically used to protect identity within facial images,

as the numeric pixel values can easily be averaged across individuals. From an eye-tracking

perspective, releasing duplicate data is not a satisfying solution.

Limiting output data to k copies of the same data led us to k,γ-PD, which extends a similar

intuition applied to synthetically generated data [33, 34]. PD retains the intuition of the k

parameter in terms of privacy for linking synthetic data to the real dataset. The γ parameter is

used to threshold the probability that k−1 real data inputs could have generated the synthetic

output before it can be released, allowing control over the level of privacy for data synthesized by
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a generative model. PD has been applied in the domain of spatial-temporal data in the form of

location traces [33], motivating an application to spatial-temporal gaze data. Synthetic location

traces retained utility for location-based services while protecting real individuals from being

re-identified and leaking the specific location of their home, doctor’s office, or work locations.

Adaptions of existing mechanisms for k-anonymity and k,γ-PD (Table 4-1) process feature

data directly and allow for the protection of datasets that only release eye-tracking features. The

mechanism’s guarantee holds for the released feature data, as the only source of identification are

the released feature values. In contrast, datasets of eye-tracking samples are difficult to protect

against re-identification with a formal guarantee. The feature set an attacker may use for

identification might not be known at the time of dataset release, preventing the privacy

mechanism from providing a robust guarantee against future attacks. As described above, even

the DP methods do not offer a direct theoretical guarantee against re-identification. They would

require empirical analysis to determine if data is safe for release against a given feature set and

model. To address this limitation, we consider generative models that can synthesize gaze

positions during the most common eye-movement events, fixation and saccades. Synthesizing

new gaze samples within each detected event preserves realistic eye movement behavior,

compared to kalεido in which DP privacy noise is added in a manner that would no longer retain

event boundaries within the released data. Modeling eye movements from generative models

allows the assignment of probabilities on whether actual data from individuals could have

generated a set of synthetic gaze positions. Mechanisms can achieve privacy guarantees for

synthetic sample data and the models that generate them with respect to re-identification.

4.2.3 Synthesizing Gaze Data

Synthesizing eye-tracking data has been explored in the eye-tracking community to drive

saliency-based applications [198, 160, 256], and for training deep network models [145]. For

these applications, generative models of gaze data are trained with the intention of deploying the

model on new unseen data. For example, a deep model that predicts a fixation scanpath can take

as input an unseen image and predict the most relevant regions to optimize while streaming the
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content. Deep data synthesis models typically take the stimulus as input and predict the eye

movement behavior of a viewer, which is considered synthetic data. In contrast, our proposed

approach considers eye movements at the event level, synthesizing data from a saccade of a

particular amplitude and direction or a fixation with a specific horizontal and vertical spread.

Historical work on modeling eye movements have developed both simple [243, 16, 95] and

complex models [139, 140, 128] for events that vary in the number of model parameters and

whether they are based on heurisitics [22] or physical simulation [128]. Models based on

statistical distributions are amenable to modeling the probabilities that relate distributions from

each individual with samples of real gaze data. Modeling the probability that an individual

produced a set of samples or a particular event is key to preventing re-identification from features

that generalize common behavioral trends as features.

We considered applications that process individual events or raw samples in our work. Such

applications benefit from modeling eye-tracking data at a low level compared to the high-level

prediction and synthesis models discussed above. For example, in training a real-time gaze

model, the output could predict where the user will look in 100 milliseconds. This task requires

high utility of data at the sample level, which is achieved by modeling each event detected in a

sequence of eye-tracking data. Predicting a fixation scanpath to synthesize sample data may miss

minor details in the time frame of 100 milliseconds and lose utility in the characteristics of

fixation and saccade events.

In the context of privacy, researchers have also turned to machine-learning methods to learn

how to manipulate eye-tracking data and balance privacy and utility. Fuhl et al. [84] deployed a

reinforcement learning model that integrates privacy terms into the optimization. The model

learns to protect specific attributes like identity by adding error terms to the cost optimization

function. Implementing these terms depends on a trained model to be evaluated against,

optimizing the representation of the released data to achieve high privacy for a known

identification model while retaining utility for the task at hand. The limitation of such an

approach is that the dataset is released assuming that an attacker will use a similar attack model.
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However, with rapid advancements in deep learning biometrics, this assumption may not hold for

the lifespan of the dataset [155]. Thus, formal privacy guarantees are the preferred approach when

considering large-scale datasets and re-identification attacks [191].

4.3 Methodology

Applying formal privacy guarantees to eye-tracking datasets depends on the format of data

being processed and determines whether feature or sample mechanisms are used. Figure 4-1

illustrates the flow of raw data collected from an eye tracker as images of the eye to 3D gaze

positions represented as a time series. It is assumed that the time series of eye-tracking data is

segmented into separate files by identity and stimulus. Gaze data are then processed to extract

events that are available to feature and sample mechanisms. For feature datasets, computed

features are specified before data processing and define the input to the feature mechanisms.

We considered three formal definitions of privacy that are applied to eye-tracking data:

k-anonymity, k,γ-plausible deniability, and ε-differential privacy. Algorithms that achieve these

definitions for feature and sample data are defined in Section 4.4 and Section 4.5, respectively.

Section 4.3.2 motivates the use of privacy mechanisms on eye-tracking data to protect against

re-identification with a threat scenario. Section 4.3.3 provides the assumptions of the threat model

considered in this chapter.

4.3.1 Privacy Definitions

This section defines three privacy definitions that can be applied to re-identification attacks

on eye-tracking data. First, we discuss k-anonymity as the seminal definition of anonymity for a

released dataset. Second, we present the definition of plausible deniability, which leverages the

intuition of k-anonymity for synthetically generated data. Last, we provide the definition and

practical implications of ε-differential privacy.

4.3.1.1 k-anonymity

k-anonymity is a seminal definition of privacy within a dataset proposed by Samarati et

al. [220]. In 2002, k-anonymity was used by Sweeney to protect against re-identification attacks

for public medical datasets [237]. Sweeney wanted to show that the public medical dataset of
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Figure 4-1. Data flow for sample and feature-based privacy mechanisms. Feature sets extract
information from gaze samples over windows of time. Features can be extracted over
time windows of fixed length, or extracted from fixation and saccade events of
variable duration.

Massachusetts state employees did not protect privacy by simply removing their names, in

contrast to claims made by the then Governor of Massachusetts. Sweeney demonstrated that the

public medical dataset paired with voter registration data could identify the prescriptions of the

Governor of Massachusetts himself, as he was in the dataset of state employees. The

re-identification attack was made possible as the medical dataset contained the gender, date of

birth, and zip code of patients along with a list of prescriptions. By purchasing the state voter

records for $20, Sweeney could match the Governor’s zip code and birth date to a single record

within the medical dataset. Sweeney showed that re-identification would be prevented if more
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than one record matched the given demographics. The definition of k-anonymity guarantees that

at least k released data records would match any unique combination of such feature values.

Formally,

Definition 1. k-anonymity

Given a person-specific dataset D, a de-identified dataset D’ is k-anonymized by privacy

process P : D 7→ D′ if all released features Γd = P(Γ) ∈ D′ cannot be recognized as Γ with

probability higher than 1
k .

We say a dataset has k-anonymity if the above condition is true for all unique combinations

of feature values, including zip code and birth date in the given scenario. In other words, this

means that at least k−1 other data records would have matched the demographics of the

Governor, and the attacker would not be sure which one corresponds to the Governor. Using

k-anonymity to protect the privacy of individuals within a dataset is useful as it provides an upper

bound of 1
k on the probability of re-identification. However, the implications on privacy depend

on what value of k is used to release the dataset. Selecting an appropriate value of k is not always

intuitive and varies depending on what knowledge we assume that the adversary has access to. In

the case of the Governor of Massachusetts, the risk of re-identification resulted from a specific

external dataset of voter records. Knowing an adversary’s information or features is critical in

determining a value of k that prevents re-identification. In practice, a value of k between five and

fifteen is common in releasing medical datasets as a rule of thumb [74]. There is no standard

approach for determining k across fields, as the optimal value of k depends on the type of data,

and what probability of re-identification would make an individual safe from attacks. In the

context of eye-tracking data and our threat model (Sec. 4.3.3), we consider a k-anonymous dataset

privacy-preserving if the upper-bound on probability of re-identification 1
k is near chance rates.

4.3.1.2 Plausible Deniability

Plausible deniability (PD) was first defined by Bindschaedler and Shokri in the context of

location traces [33] and later extended to general data formats [34]. PD prevents re-identification

by utilizing the generation of synthetic data to achieve privacy. A synthetic dataset is released that
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captures the original characteristics without leaking the identity of those that contributed to the

original dataset. PD provides a guarantee that there are at least k individual records that could

have plausibly generated a synthetic data output.

PD has two privacy parameters: k, an integer greater than or equal to one, and γ , a real

number greater than or equal to one. Let M be a probabilistic generative model that takes as input

a data record d and generates synthetic records y with probability equal to Pr{y = M(d)}.

Definition 2. Plausible Deniability

For any dataset D where |D| ≥ k, and any record y generated by a probabilistic generative

model M such that y = M(d1) for di ∈ D, we state that y is releasable with (k,γ)-plausible

deniability if there exist at least k−1 unique records d2, ...,dk ∈ D\{d1}, such that

γ
−1 ≤ Pr{y = M(di)}

Pr{y = M(d j)}
≤ γ

where k ≥ 1 is an integer and γ ≥ 1 is a real number.

The level of privacy is controlled by parameters k and γ . Large values of k and values of γ

that are closer to one imply higher privacy. In practice, PD ensures that at least k−1 plausible

seeds, i.e., inputs, to the model M could have plausibly produced the synthetic output record y.

The parameter γ bounds how close together the probabilities are to determine that they are

plausible. Privacy-preserving datasets are generated by only releasing synthetic records y if they

pass the PD privacy test.

PD privacy test:

1. Let i ≥ 0 be the only integer that fits the inequality γ−i−1 < Pr{y = M(d)} ≤ γ−i

2. Let k′ be the count of records da ∈ D such that γ−i−1 < Pr{y = M(da)} ≤ γ−i

3. If k′ ≥ k: return PASS, else return FAIL

Step 1 is formulated as there is only one integer that satisfies the inequality when γ ≥ 1, as

the range of values covered by the set (γ−i−1,γ−i] represent disjoint sections of the real number

72



line for different integer values of i. Therefore, Pr{y = M(d)} can only fall within one such

range. Step 2 is a sufficient condition to achieve (k,γ)-PD when both Pr{y = M(d)} and

Pr{y = M(da)} fall within the range of (γ−i−1,γ−i]. Please see the Appendix for a proof of the

sufficient condition.

Implementing the Privacy Test requires a method to compute probability values of the form

Pr{y = M(d)} that represent the probability that random mechanism M would generate the

synthetic output y for a given input. Bindschaedler et al. model the conditional probabilities of

tabular data with a Multinomial Dirichlet distribution (MDD) [242]. An MDD assumes that

feature values are a set of discrete values and cannot be applied to continuous values. Continuous

features can be made discrete by binning values into buckets over a range of values.

The process of estimating conditional probabilities using the MDD depends on the number

of data records in the dataset that have a particular value for each feature, i.e., the histogram

counts of each value. Conditional probabilities from the MDD model are used to compute the

probability that synthesized feature values match the set of feature values from actual data. The

conditional distributions are then used to calculate Pr{y = M(d)}, and execute the Privacy Test.

Plausible deniability provides a definition of privacy that is intuitive against re-identification

in terms of k, similar to k-anonymity. Using synthetic data achieves privacy while retaining data

utility if the generated data captures the characteristics of the original dataset. In the context of

eye-tracking data and our threat model (Sec. 4.3.3), we compare achieved privacy of PD against

re-identification attacks on eye-tracking features for different values of k and γ .

4.3.1.3 Differential Privacy

Differential privacy (DP) is a theoretical definition of privacy that has quickly become a

standard in the privacy community [71]. First proposed by Dwork in 2006 [70], DP is popular as

it provides a theoretical bound on the output data distribution. The privacy guarantee applies even

in the worst-case scenario where all other entries from the original dataset have been leaked. The

privacy parameters for DP are defined to quantify how much information an adversary gains when

they access data released by the privacy mechanism. Compared to k-anonymity, selecting the
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privacy parameters for DP does not require an assumption on what type of external information

an adversary has. An assumption on adversary knowledge is unnecessary as the DP guarantee

applies to any two datasets that differ by at most one element.

Formally, ε-differential privacy is defined as,

Definition 3. ε-Differential Privacy

A mechanism M provides ε-differential privacy if for all databases D,D′ that differ in at

most one element and for every O⊆ Range(M), we have

Pr[M(D) ∈ O]≤ eε ·Pr[M(D′) ∈ O]

It is important to note that the definition of ε-Differential Privacy (ε-DP) applies to the

mechanism M, and not the database D or D′. A guarantee on the mechanism ensures that the

formal guarantee generalizes to all possible datasets. The eε term in the privacy guarantee bounds

the probability that an adversary can detect a difference if a given data element was or was not

contained within the original dataset.

A major benefit of DP mechanisms is the ability to generalize the information that an

adversary has. Unlike other privacy definitions, it does not depend on assumptions of external

information that would influence the initial suspicion that a record is in the dataset. As a result,

the privacy parameter ε is easier to interpret across specific datasets and applications when

applied to the same data type. In the context of eye-tracking data and our threat

model (Sec. 4.3.3), we consider a differentially private dataset privacy-preserving if the

probability of successful re-identification attacks is near chance rates.

4.3.2 Threat Scenario

Publicly released datasets risk leaking the identity of individuals that contributed to the

dataset. Using the classic example described in Section 4.3.1.1, the Governor of Massachusetts’s

medical prescriptions were leaked as a result of releasing gender, date of birth, and zip

code [237]. For a high-profile politician, the risk of re-identification could reveal an undisclosed

medical condition that fuels negative propaganda. Extending this example, consider a
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hypothetical dataset from a medical study that releases XR data to classify a medical condition.

The released data is de-identified by removing participant names and date of birth, but age and

gender were included along with eye-tracking data. Given past re-identification attacks, the

sponsored study is required to implement k-anonymity with k greater than or equal to four.1

k-anonymity can easily be achieved for the released age and gender data by generalizing the

values of the age data into ranges of age values [220]. However, if k-anonymity is not also

achieved for the released eye-tracking data, then the risk of a successful re-identification attack is

no longer bounded above by 1
k . We demonstrate this risk with an example using the ET-DK2 and

360_em datasets (see Section 4.4.3 for more details on these specific datasets).

In this scenario, it is assumed that the adversary can select the identities that match the

demographics of their target and then train and apply a model to the subset of identities. For

example, suppose only four identities in the dataset have an age between 18 and 20 and identify

as Male. In that case, the adversary can train the model and predict which of the four identities is

predicted to be the target.

A prototype of a gaze-based re-identification attack is conducted by combining the ET-DK2

and 360_em eye-tracking datasets with age and gender demographics. The combined dataset in

total includes 24 identities. A standard method of data generalization is used to achieve

k-anonymity on age and gender data by releasing ranges of values instead of exact values (see the

Appendix for the generalized k-anonymous groupings). Figure 4-2 demonstrates the success rate

of re-identification attacks with and without the k-same-select sequence mechanism applied to the

eye-tracking data (Section 4.4.2.1). The biometric identification evaluation detailed in

Section 4.4.5.1 was applied to perform the re-identification attack. Attack success remained above

80% for all values of k if only the age and gender demographics were k-anonymous. In contrast,

attack success remained less than the theoretical 1
k bound when the eye-tracking data was also

made to be k-anonymous prior to release.

1El Emam et al. [74] discussed the values of k typically seen in medical datasets, with a value of k equals three
considered a minimum and a value of five being most common. Values of k as large as fifteen are rarely seen in the
context of medical datasets.

75



Figure 4-2. Success rate of re-identification attacks on ET-DK2 and 360_em using age, gender,
and eye-tracking data with k-anonymity. Solid bars indicate results where age and
gender are k-anonymous, while bars with lines indicate results when eye-tracking data
is also made k-anonymous. The orange dashed line plots 1

k , the theoretical upper
bound on re-identification. For all values of k, re-identifications attacks remain below
the theoretical bound only if the released eye-tracking data are also made
k-anonymous.

In this example attack, a public dataset does not meet the k-anonymity privacy guarantee

required by the research sponsor, impacting the researchers and institution that released the

dataset. Furthermore, the scenario puts participants’ privacy at risk, with successful

re-identification attacks allowing the adversary to identify medical conditions or other sensitive

information about victims. Applying k-anonymity to eye-tracking data would enable the

researchers to satisfy their data privacy requirements while still contributing a public dataset to

the research community.

4.3.3 Threat Model

Assumptions for the considered re-identification attack include an adversary who has a

target identity that they want to identify within the dataset. The adversary has read access to the

public dataset. The adversary knows the demographics of their target user and has access to

eye-tracking data from them performing the same task as the dataset. The adversary can then

76



build a model trained on the public dataset that predicts which identity most closely matches the

input data. If the prediction is correct, the target is successfully re-identified.

In this chapter, we considered a threat model where a privacy mechanism has processed the

public dataset while the testing data used to re-identify individuals is unmodified. It is reasonable

to assume that an adversary could gain access to raw tracking data through unauthorized code or

by logging data streamed to third-party applications [241]. The explored privacy mechanisms also

rely on processing the entire dataset at once and would not apply to eye-tracking data collected in

the wild.

4.4 Study 1: Privacy Guarantees for Feature Datasets

Datasets of eye-tracking features without corresponding gaze samples are helpful for

analyzing human behavior during experimental tasks or training machine learning models when

developing naturalistic interfaces. The risk behind releasing or storing eye-tracking features that

may be leaked to adversaries is the ability to use the features directly to identify individuals.

Figure 4-3 outlines the process for taking a dataset of eye-tracking features as input and releasing

them in the same format. Features from the input dataset are assumed to be segmented in separate

files across C individuals viewing a set of M stimuli. Three distinct privacy mechanisms are

explored: k-same-select sequence, Marginals Generative Model (PD), and Exponential-DP.

4.4.1 Research Questions

Formal privacy guarantees for eye-tracking datasets have been limited to the definition of

DP. We explored how to achieve additional privacy guarantees to protect against re-identification

attacks and evaluated the privacy-utility trade-off when using feature data to train a document

type classifier.

Formally we propose the following research questions:

• RQ4.1: Can we protect eye-tracking feature data against re-identification through
k-anonymity and plausible deniability?

• RQ4.2: Which privacy mechanism achieves the highest level of utility for document type
recognition while reducing identification rate to chance?
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Figure 4-3. Privacy mechanisms for releasing eye-tracking feature data.

4.4.2 Implementation

We contribute two privacy mechanisms, one that satisfies k-anonymity and one that satisfies

plausible deniability. We provide pseudocode for ease of re-implementation and publicly release

code for k-same-select sequence.2 Both mechanisms are adaptations of prior work to consider

sequences of eye-tracking features. For completeness, we also provide pseudocode and code for

our implementation of the DP-oriented mechanism defined by Steil et al. [232].

4.4.2.1 k-same-select sequence

The k-same family of mechanisms [183, 98] accomplish k-anonymity by first splitting

individual data into groups of size k. Each group is averaged to produce a value which is then

released k times in the released dataset (Figure 4-4). Releasing duplicates enforces the upper

bound on re-identification probabilities, as k of the identities from the original dataset will

contribute equally to the privatized data.

2www.doi.org/10.5281/zenodo.6463849
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Figure 4-4. The k-same-select sequence mechanism processes sequences of feature vectors from
each individual within the target utility class (stimulus). First, the identities are
grouped into ⌈N

k ⌉ groups of size k. The sequences of feature vectors are then aligned
temporally and averaged within the assigned groups. The average feature sequence of
each group is published for each individual assigned to that group. Releasing k copies
in this manner establishes k-anonymity for the released sequence of feature vectors,
bounding the probability that any individual in the group could be identified from the
k−1 others.

The implementation of k-same depends on the format of data being released. For example,

k-same can be applied directly to face images by clustering and releasing averages [183]. For

eye-tracking data, the computed feature vectors are grouped and averaged to satisfy k-anonymity.

We adapted the k-same-select mechanism by separately processing the sequence of feature

vectors generated for each task in the dataset. The data from all individuals are processed

sequentially, i.e., the first feature vector of all individuals viewing a specific stimulus within a

given task are randomly placed into groups of size k to compute average values for release. The

mechanism assumes that data from at least k individuals is available for grouping. The same

groupings of individuals are used within each stimulus to achieve k-anonymity across the entire

sequence of feature vectors. The adapted sequence mechanism is generalized by processing

feature vectors in sequence; however, there is no guarantee that each individual has the same

number of feature vectors per stimulus. Data are padded to repeat the last feature vector in the

sequence for individuals with fewer features.
1: procedure k-SAME-SELECT SEQUENCE(k, feature_data)

2: Parameters: k - k-anonymity parameter
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3: feature_data - sequences of feature vectors, indexed by stimulus m and identity i

4: for m = 1 to num_task do ▷ Process features from each task independently

5: curr_data← f eature_data[m, :]

6: G← Randomize N individuals into H groups of size k

7: for i = 1 to num_ f eature_vectors do ▷ Loop over sequence of feature vectors within task m

8: curr_ f eatures← curr_data[i, :] ▷ i-th feature vector from all individuals

9: avg_ f eatures← avg_groups(curr_ f eatures,G) ▷ Average feature vectors for each group

10: curr_data[i, :]← avg_ f eatures

11: f eature_data[m]← curr_data ▷ Update feature vector data for task m
return f eature_data

4.4.2.2 Marginals Generative Model (PD)

As defined in Section 4.3.1.2, PD is not a condition of a privacy mechanism but a privacy

criterion that is checked before a data record can be released [34]. Thus, various approaches can

be applied to generate data satisfying PD.

To achieve PD for eye-tracking features, we applied the Marginals generative model

approach proposed in the original paper with the publicly available code [34].3 Marginals builds a

distribution of discrete values for each feature column in the dataset and releases synthetic data by

randomly sampling each feature independently. The Marginals approach was applied to model

feature distributions representative of each stimulus or task. The resulting distributions are used to

synthesize data by document type and retain utility.

3https://vbinds.ch/node/69
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Figure 4-5. The Marginals generative model with PD criterion uses feature vectors from each
target utility class or stimulus to build a distribution of values for each feature. The
feature values are first binned to build a discrete probability distribution, or histogram
with B bins for each feature. Then, a large dataset of synthetic feature vectors is
generated by randomly sampling each feature distribution independently. The
generated synthetic feature vectors are then subject to the PD Privacy test, and those
that pass are retained as candidates for release. The k,γ-PD synthetic feature vectors
are then randomly assigned to the different individual identities contained in the
dataset. The number of synthetics per individual and task is stratified to match the
number in the real dataset.

We adapted this approach by binning each continuous feature into B = 30 uniformly sized

buckets over the range of feature values. Each bucket corresponds to a discrete value that the

feature could take. The generated synthetic feature vectors consist of values corresponding to the

buckets used to discretize each feature. The counts of data points that fall into each bucket define

a probability mass function for each feature. To map synthetic data back into a set of continuous

feature values, we sample values between the min and max range from the corresponding bucket

using a random uniform distribution. The synthetic dataset is stratified to contain the same

number of feature vectors for each individual and stimulus as the original dataset. The guarantee

of the resulting data differs from that of k-anonymity in that PD guarantees k−1 other features

from the original dataset could have generated the synthetic output, while k-anonymity guarantees

that k−1 other individuals could have generated a sequence of output features.
1: procedure TASK-BASED MARGINALS MODEL(k, γ , B, num_samples, feature_data)

2: Parameters: k,γ - plausible deniability parameters, B - # of bins for discrete feature data

3: num_synthetics - sequences of feature vectors, indexed by stimulus m and identity i
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4: feature_data - sequences of feature vectors, indexed by stimulus m and identity i

5: bin_ f eature_data←BinData( f eature_data,B) ▷ Map each feature into B uniformly sized bins

6: for m = 1 to num_task do ▷ Process features from each task independently

7: M←MarginalsDist(bin_feature_data[m]) ▷ Learn distribution of discrete feature values

8: synth_data←Generate(M,num_synthetics) ▷ Randomly generate synthetic dataset

9: private_data← PD Privacy Test(synth_data) ▷ Retain synthetics that pass PD privacy test

10: bin_ f eature_data[m]← private_data ▷ Update feature vectors with synthetic data

11: f eature_data←BinToContinuous(bin_ f eature_data) ▷ Map back to continuous features

return f eature_data

4.4.2.3 Exponential-DP Mechanism

The Exponential-DP noise mechanism was proven to be ε-DP by Steil et al. [232] and

applies to each individual feature in the feature set.4 Exponential noise is sampled independently

for each feature vector extracted during stimulus viewing and depends on the range of each

feature and the stimulus duration. The first step in applying Exponential-DP is to compute the

range δi for each feature i as the maximum value minus the minimum value. The maximum

number of feature vectors tmax from any individual viewing the stimulus is used for padding the

data from other individuals. The mechanism repeats the last feature vector recorded for an

individual to ensure that each individual has tmax total feature vectors. For each feature a value y

is sampled from an Exponential distribution with a scale of 1
λ

, where λ = ε

2·tmax·δi
. The additive

noise is then computed as r =± loge(y)
λ ·tmax

and the positive or negative sign is randomly assigned. The

additive noise values of r are computed for every feature from the stimulus and are added to the

original data to produce noisy feature vectors for release.
1: procedure EXPONENTIAL-DP(ε , feature_data: structure indexing data by identity and task)

2: δ ← Range( f eature_data) ▷ Maximum value for each feature minus minimum value

3: for m = 1 to num_stimuli do ▷ Process feature vectors from each individual and task independently

4: Compute tmax for task m and pad individual data

4Note that due to The Composition Theorem, the Exponential mechanism achieves an overall guarantee of ε times
the number of feature columns in the dataset. For consistency with [232], we reference ε as the privacy parameter for
each feature and not the composed guarantee.
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5: λ ← ε

2·tmax·δ ▷ λ computed using δ , and tmax from task

6: Exp← Exponential(scales = 1
λ
) ▷ Define Exponential distribution for each feature based on λ

7: for i = 1 to num_ f eature_vectors do ▷ Loop over sequence of feature vectors within task m

8: y← Sample(Exp) ▷ Sample synthetic value from Exponential distribution for each feature

9: r← loge(y)
λ ·tmax

▷ Compute additive noise value

10: f eature_data[m, i]← f eature_data[m, i]± r ▷ Randomly flip noise sign
return f eature_data

4.4.3 Datasets

We evaluated the above-detailed privacy mechanisms on publicly available VR datasets of

eye-tracking features. The datasets varied based on the number of individuals, amount of data

available, task, and type of stimulus. Table 4-2 summarizes the characteristics of dataset included

in our evaluation.

4.4.3.1 MPIIDPEye

The MPIIDPEye dataset contains eye-tracking features extracted from sliding windows of

fixation, saccade, blink, and pupil statistics for 20 individuals [232]. The purpose of the dataset

was to benchmark privacy-preserving mechanisms for eye-tracking data. The dataset’s utility is

recognizing what type of document a user reads in VR between Comic, Newspaper, or Textbook.

4.4.3.2 ET-DK2

The ET-DK2 dataset contains eye-tracking data from 18 individuals freely viewing 50

different 360◦ images in VR. The purpose of the dataset was to generate saliency maps [124].

4.4.3.3 VR-Saliency

The VR-Saliency dataset contains eye-tracking data from 130 individuals freely viewing

eight different 360◦ images in VR [228]. The purpose of the dataset was to explore visual

saliency and human behavior in VR viewing.

4.4.3.4 360_em

The 360_em dataset contains eye-tracking data from 13 individuals freely viewing eight

different 360◦ videos in VR [10]. The purpose of the dataset was to explore classification

methods for eye movement events.
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4.4.3.5 VR-EyeTracking

The VR-EyeTracking dataset contains eye-tracking data from 43 individuals freely viewing

360◦ videos in VR [250]. The purpose of the dataset was to compute saliency maps and provide

input to a deep neural network-based gaze prediction model.

4.4.3.6 OpenEDS

The OpenEDS dataset contains eye-tracking data from 44 individuals interacting with

objects and exploring a 3D rendered VR environment [76]. The dataset was part of the Facebook

OpenEDS 2021 gaze prediction challenge.

4.4.3.7 EHTask

The EHTask dataset contains eye-tracking data from 30 individuals viewing 360◦ videos in

VR while performing four different tasks (Free Viewing, Search, Saliency, Track) [112]. The

purpose of the dataset was to train a deep neural network-based model that classifies tasks based

on eye and head movements.

Table 4-2. Characteristics of VR eye-tracking datasets.
Dataset # Ppts. Chance rate # Stim. Data per ppt. Stimuli type Task
MPIIDPEye
[232]

20 1/20 = 5.0% 3 30 mins Documents VR reading

ET-DK2
[62]

18 1/18 = 5.5% 50 21 mins 360◦ images Free viewing

VR-Saliency
[228]

130 1/130 = 0.8% 8 4 mins 360◦ images Free viewing

360_em [10] 13 1/13 = 7.7% 14 17 mins 360◦ videos Free viewing
VR-
EyeTracking
[250]

43 1/43 = 2.3% 208 Avg: 88 mins 360◦ videos Free viewing

OpenEDS
[76]

44 1/4 = 2.3% 2 10 mins 3D scene Scene
exploration

EHTask
[112]

30 1/30 = 3.3% 15 30 mins 360◦ videos Free
viewing,
search,

saliency,
track
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4.4.4 Feature Sets

Five of the datasets listed in Table 4-2 release raw gaze sample data, while the MPIIDPEye

dataset included both raw samples and a set of pre-computed sliding windows of gaze-based

features [44]. To maintain consistency with past results from MPIIDPEye, we used their feature

set in our analysis of this dataset. For all other datasets, we extracted features from fixation and

saccade events detected using the I-S5T algorithm with default parameters [62]. The features

extracted from the stream of fixation and saccades events leverage common statistics such as

duration and amplitude, as well as the velocity and acceleration of gaze positions during the

event [93]. A feature set is generated for each type of event, and a separate classification model is

trained for each feature set.

4.4.5 Metrics

4.4.5.1 Privacy

Biometric identification was performed by classifying streams of gaze data from multiple

stimuli into one user identity, as previously described in Section 3.5.1. The only difference from

the previously described re-identification approach is the use of a training set processed by the

privacy mechanism and testing data left unmodified. The identification rate metric was computed

as the total number of correct matches divided by the total number of classifications. Reported

identification rates are averaged over ten runs with random stimuli selected as part of the training

and test set to account for variance in stimuli content.

As described in Section 4.4.4, most datasets included in our evaluation use features

extracted from both fixation and saccade events, requiring an RBF network trained independently

on both features [93]. The output identification scores are averaged within each type of event, and

then a final classification is made with a weighted average between fixation and saccade scores. A

weight of 0.4 was applied to the fixation scores, with a weight of 0.6 for saccade scores, as

saccade features provided a slightly higher accuracy. In the case of MPIIDPEye, the prediction

scores from all inputs within a stimulus are averaged before classifying identity.
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4.4.5.2 Utility

Releasing a useful privacy-preserving dataset relies on achieving a practical level of utility.

The MPIIDPEye dataset classified sliding windows of eye-tracking features to determine what

type of document was being read by the user [232]. We evaluated the utility of each privacy

mechanism applied to the MPIIDPEye dataset by computing the accuracy of a classification

model trained with the parameters presented in the original paper. The utility evaluation differed

from identification in that we classify each feature vector independently and compute

performance instead of classifying a sequence of features from each stimulus.

Steil et al. [232] first evaluated MPIIDPEye using an SVM model to classify document type

as either Comic, Newspaper, or Textbook. The SVM used an RBF kernel, bias parameter set to

one, and expressivity parameter set to one divided by the number of features. The model was

trained on data from each individual during the first half of the reading processed by the privacy

mechanism, and tested on data from the second half. Classifier performance is based on the true

positive, false positive, true negative, and false negative predictions for each feature vector

classified in the test dataset using accuracy, computed as T P+T N
T P+FP+T N+FN .

4.4.6 Results

Re-identification risk for eye-tracking data is evaluated by splitting eye-tracking features

into training sets processed by privacy mechanisms and testing sets of unmodified data.

Identification rates higher than chance, one divided by the number of individuals in a dataset,

indicate the risk of re-identification from released data. Figure 4-6 presents the identification rates

for each dataset and mechanism. The ET-DK2 dataset produced the highest identification rate of

all datasets, with 100% identification with the original data. All datasets generally produced

identification rates higher than chance before privacy mechanisms were applied.
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Figure 4-6. Privacy evaluation for identification rate from eye-tracking features. Privatizing the
dataset with our presented mechanisms lowers all identification rates to chance for
k = 8 in k-same and Marginals (γ = 1), and ε = 2 for Exponential-DP. Chance
identification rates demonstrate that identity is protected within a group of
individuals. The different datasets contain eye-tracking data on tasks performed
within a variety of VR environments (reading documents, 360◦ images, 360◦ videos,
and 3D rendered scenes). Chance rates (1/#Ppts.) vary for each dataset based on the
number of identities and are listed in Table 4-2.

When privacy mechanisms were applied, the identification rates of all datasets dropped to

chance rates. The Exponential-DP and Marginals methods degraded the identification rates to

chance across all parameter values. The only exception was the MPIIDPEye dataset for

Exponential-DP, which required a parameter value of ε equals two for an identification rate of

6%, compared to a chance rate of 5%. k-same also reduces identification rates to chance, with a

larger value of k needed to bring ET-DK2 to chance (5.6%). Our results suggested that privacy

mechanisms protect against re-identification attacks on eye-tracking features using a standard

biometric identification model.

Figure 4-7 presents model accuracy results for each mechanism. Each plot demonstrates

utility relative to the original data and chance rate of guessing (33%). The Exponential-DP

mechanism reduced accuracy to chance or near chance rates. For Exponential-DP, accuracy

started at 80% for ε = 100, and fell to chance at ε = 20. For Marginals, low utility was retained

as accuracy remained near 53% for all parameters. The k-same approach was stable across

parameter values, with slightly lower accuracy for higher levels of k. k-same across all parameters

maintained performance greater than 72%. This level of accuracy would be practical for an

assistive reading interface that must identify the correct document type most of the time [240].
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Figure 4-7. Utility evaluation for accuracy of document type classification with an SVM model.
Privatizing the dataset with our k-same mechanism retains the utility of the dataset for
its intended application. In comparison, the Marginals Generative method does not
retain utility above 53%, and the Exponential-DP mechanism rapidly leads to utility
loss at the parameter range where MPIIDPEye identification rates fell below chance.

4.5 Study 2: Privacy Guarantees for Sample Datasets

Datasets of eye-tracking samples are useful for analyzing low-level human behavior during

experimental tasks [143, 223, 178] or for training deep machine learning models from large-scale

datasets [137, 115, 114, 112, 76]. The risk of releasing or leaking eye-tracking samples is that

adversaries can apply any feature extraction method for biometric identification.

Figure 4-8 outlines the process for taking a dataset of eye-tracking samples as input and

releasing synthetic gaze samples output from a privacy mechanism. The privacy mechanisms

have access to event labels (Fixation/Saccade) for every sample, as our proposed methods process

sample data separately for each event.

4.5.1 Research Questions

Formal privacy guarantees for eye-tracking sample datasets have been limited to the

definition of DP. We explored how to achieve alternative formal privacy guarantees against

re-identification for gaze samples. The meaning of formal privacy guarantees on samples depends

on where they are implemented in the pipeline and the risk being addressed. Our approach applies

privacy guarantees to samples within fixation and saccade events that comprise most data and are

typical for re-identification.

We evaluated our k-anonymity and plausible deniability mechanisms against

re-identification attacks and compared results with the established kalεido DP mechanism. Utility
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Figure 4-8. Privacy mechanisms for releasing eye-tracking sample data.

for synthetic data was using datasets to train deep learning models for activity recognition and

gaze prediction tasks.

Formally we propose the following research questions:

• RQ4.3: Can we protect eye-tracking sample data against re-identification through
k-anonymity and plausible deniability?

• RQ4.4: Which privacy mechanism achieves the highest level of utility for activity type
recognition and gaze prediction while reducing identification rate to chance?

4.5.2 Implementation

This section introduces two new privacy mechanisms for eye-tracking sample datasets that

achieve k-anonymity and PD through generative models. First, we describe the generative models

used to synthesize gaze samples during fixation and saccade events. Second, we describe and

provide pseudocode for our proposed methods and the existing kalεido DP mechanism.

4.5.2.1 Synthesis Models

Privacy for sample-level data is achieved by synthesizing new gaze samples (Fig. 4-9). Data

synthesis methods use the real data distributions to capture characteristics of the dataset that

89



preserve utility. The approach to gaze synthesis is first to identify fixation and saccade events and

then replace gaze samples during the events with synthetic data. For fixations, we fit a standard

2D Normal distribution for sampling new gaze positions spatially. For saccades, we fit a three

parameter Gaussian well established in literature [243] to the velocity profile and train a

conditional variational auto-encoder (C-VAE).

Sampling new gaze samples based on model parameters enabled computing the probability

that a particular model generated a given set of synthetic samples from a fixation or saccade

event. The sampling approach has the benefit of assigning conditional probabilities to gaze

samples for use with the PD Privacy Test.

4.5.2.1.1. Fixations Fixations are low-velocity eye movements best described as clusters of

gaze positions that center around a fixation point. We applied a simple model that fits an

anisotropic 2D Normal distribution with parameters µx, µy, σx, and σy for each fixation cluster

and generated synthetic gaze samples by sampling from this distribution. The generated synthetic

samples maintain the centroid of the fixation and preserve utility while degrading features that are

extracted from the spatial distribution of gaze samples around the centroid.

To determine the probability that a set of t gaze samples were sampled from a given 2D

Normal distribution,

Pr{y = {(x1,y1), · · · ,(xi,yi), · · ·(xt ,yt)}← N(µx,µy,σx,σy)}, (4-1)

we considered the joint probability that all of the points come from the Normal distribution

N(µx,µy,σx,σy). The joint probability for independently sampled points is computed as a product

of probabilities that each point came from the same distribution

t

∏
i=1

Pr{(xi,yi) = N(µx,µy,σx,σy)}.

Gaze positions in this context are considered a continuous random variable defined by

N(µx,µy,σx,σy). Continuous random variables do not have an analytical probability mass
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function to compute Pr{(xi,yi) = N(µx,µy,σx,σy)} directly as a function of (xi,yi). Thus, we

computed the individual probabilities by considering the cumulative distribution function (CDF)

for the Normal distribution. The CDF returns probabilities that the random variable falls within a

range of values a and b in the form Pr{(ax,ay)< N(µx,µy,σx,σy)≤ (bx,by)}. We approximated

Pr{(xi,yi) = N(µx,µy,σx,σy)} as Pr{(xi−∂ ,yi−∂ )< N(µx,µy,σx,σy)≤ (xi +∂ ,yi +∂ )},

where ∂ = .01 represents a sufficiently small region around the gaze position to consider.

Estimating the probability from the CDF between (xi−∂ ,yi−∂ ) and (xi +∂ ,yi +∂ ) is

interpreted as the probability that a value near (xi,yi) comes from the distribution

N(µx,µy,σx,σy). The probability that a value near that (xi,yi) came from N(µx,µy,σx,σy)

enabled computation of the probability term in EQ. 4-1, thus allowing the PD Privacy Test to be

applied at the fixation level. Figure 4-9 (Left) shows a set of synthetic gaze samples (orange)

generated from a 2D Normal distribution fit to real data (blue). Synthetic data preserves the mean

location of the fixation, while spatially changing the gaze sample positions.

4.5.2.1.2. Saccades A three parameter Gaussian function is fit to the profile of instantaneous

saccade velocities computed from the raw gaze samples [95]. The velocities for each gaze sample

vi are computed as d((xi−1,yi−1),(xi,yi)) where d is the shortest angular distance between two

points on a sphere of uniform radius computed with the haversine formula [211]. The Gaussian

function used to model the velocity profile of a saccade is defined as

G(a,b,c, t) = a∗ e−
(t−b)

c
2

,

where a, b, and c control the shape of the velocity profile and t ∈ [0,1] represents time steps for

each sample within the saccade. Raw velocity values are re-sampled uniformly so that each

saccade consists of a fixed number of values between the start and landing point of the saccade.

We fixed the number of saccade points to 30 samples for all saccade profiles. The parameters a, b,

and c are determined by solving for the values that minimize the sum of squared errors for each

saccade profile, ∑
30
i=1(vi−G(a,b,c, ti))2, where ti = (i−1) · 1

29 .5 The least squares optimization is

5A step size of 1
29 is used for t to uniformly split the interval [0,1] and enforce t1 = 0 and t30 = 1.0.
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Figure 4-9. Illustration of synthesizing gaze samples for fixations and saccades. Left: Samples
from a fixation modeled using a 2D Normal distribution. Blue circles represent real
data used to compute mean and standard deviations and orange circles are new
positions sampled around the center of the distribution. Center: Saccade velocity
profile modeled using a three-parameter Gaussian model. Blue circles represent
actual data used to fit the velocity profile, and orange circles represent the output of
the fit model. The model fit provides a smooth profile throughout the saccade with a
smaller peak velocity. Right: To generate gaze positions for a saccade the velocity
profile must be integrated to generate displacements between consecutive points. The
displacements are added to the saccade start point along a straight line in the direction
of the landing point. Blue circles represent the real gaze positions, and orange circles
represent those generated from the model.

performed using the scipy.optimize.least_squares function to return the optimal parameters that fit

the Gaussian curve to the raw velocity data.

The Gaussian fit profiles specify the shape of a curve and are input to the k-same-synth

approach by averaging shape parameters. The fit profiles are not a probability distribution or

generative model that can be sampled, and cannot be used to model conditional probabilities

directly. Instead, we used a generative model with an encoder and decoder with a latent feature

space that is modeled as a probability distribution.

The encoder learns to take a uniformly sampled saccade velocity profile as input and

outputs a lower-dimensional feature vector in latent space. The latent space feature vector is input

to a decoder model that learns how to map the low dimensional feature values back into a velocity

profile. The encoder acts as the generative model by manipulating values of the latent feature

vectors and passing them into the decoder to produce synthetic data in the same domain as the
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original data. To preserve utility, generative models should provide accurate data reconstructions

and enable users to control the output with additional parameters, known as conditions.

A C-VAE model is employed as it provides a deep generative model that can reconstruct

velocity profiles using conditions of identity label, amplitude, and duration as input. The C-VAE

model benefits from including conditional values as they provide control over the generated

synthetic data as parameters.

Probabilities that an individual in the dataset produced a given synthetic saccade profile is

required to implement the PD test for C-VAE generated data. The C-VAE inputs and outputs must

have the same dimension of 30 values sampled across the saccade profile. The saccade velocity

values for each uniform time step i of the real dataset are used to define probability mass

functions by mapping continuous values to discrete bins, similar to the step described in

Section 4.4.2.2. Fifty bins discretized the velocity values for each time step. The velocity bins

uniformly covered a range of velocity values between 0 and a maximum velocity of 1000 degrees

per second. A histogram of velocity values for each individual counted the number of values that

fell into each bin at every time step i. The counts are divided by the total number of saccades from

each individual, so the sum of all probabilities is equal to one. The resulting values provide a joint

probability distribution over the likelihood of producing a specific velocity value across the

saccade duration. The probabilities across time points are summed to compute the likelihood that

an individual generated the set of values in a synthetic saccade profile.

Figure 4-9 (Center) shows a saccade velocity profile from real and synthetic data in the

Gaussian model form. The generated velocity profile is smoother than the raw data and retains the

starting and landing positions of the saccade. The synthetic saccade positions are then generated

from the velocity profile by first computing the displacement between each sample. The

displacement A represents the distance between subsequent gaze positions at each time step. The

displacement is used to generate to generate a new point (xi+1,yi+1) = (xi,yi)+A ·T where T is a

normalized vector from the saccade start position towards the original landing

point (Figure 4-9 (Right)).
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4.5.2.2 k-same-synth

In this context, the meaning of k-anonymity is that a released event has an equal probability

of coming from the original identity and k−1 others. Gaze samples from each detected fixation

and saccade event are used to fit model parameters for each event in the dataset. Fixation or

saccade events are processed sequentially in the order in which they occurred. The k-same-select

sequence mechanism for features is applied directly to the model parameters. The k-anonymous

model parameters are then used to sample synthetic data points for fixations and saccades.

For fixations, the µx, µy, σx, and σy parameters are processed by the mechanism to modify

the centroid position of the fixation using other individuals’ data and varying the spatial spread of

the samples. The absolute position of the fixation within the stimulus could be shifted to a

completely different region as a result. For saccades, the parameters of a Gaussian function model

are averaged and used to construct a k-anonymous velocity profile.
1: procedure k-SAME-SYNTH(k, sample_data, fix_event_params, sacc_event_params)

2: Parameters: k - k-anonymity parameter

3: sample_data - time series of gaze samples, indexed by stimulus m, identity i, and fix/sacc events e

4: fix_event_params - Fixation Gaussian parameters, indexed by stimulus m, identity i, and event e

5: sacc_event_params - Velocity profile parameters, indexed by stimulus m, identity i, and event e

6: f ix_event_params← k-same-select sequence(k, f ix_event_params) ▷ Make fix. params k-anonymous

7: sacc_event_params← k-same-select-sequence(k,sacc_event_params) ▷ Make sacc. params k-anonymous

8: for m = 1 to num_stimuli do ▷ Process events from each stimulus independently

9: for i = 1 to num_identities do ▷ Process samples for each identity

10: f ix_data_params← f ix_event_params[m, i, :] ▷ List of fixation event parameters

11: for e = 1 to num_ f ixations do

12: µx,µy,σx,σy, t← f ix_data_params[e]

13: sample_data[m, i,e]← SynthFixation(µx,µy,σx,σy, t) ▷ Synthesize samples for fixation e

14: sacc_data_params← sacc_event_params[m, i, :] ▷ List of saccade event parameters

15: for e = 1 to num_saccades do

16: a,b,c, t← sacc_data_params[e]

17: sample_data[m, i,e]← SynthSaccade(a,b,c, t) ▷ Synthesize samples for saccade e
return sample_data
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4.5.2.3 event-synth-PD

Plausible deniability is achieved for samples by generating synthetic gaze positions for

fixation and saccade events. The feature vector extracted from the events must pass the privacy

criteria (EQ. 2) before being released, as illustrated in Figure 4-8. For fixations, gaze samples are

generated by randomly sampling the Gaussian distribution defined by µ , σx, and σy parameters

until the privacy criteria are met. For saccades, gaze samples are generated by synthesizing new

velocity profiles with the C-VAE model until the criteria are met.

We defined a PD Event Privacy Test that determines if a synthetic fixation or saccade is

k,γ-PD as an alternative to the original privacy test defined in Sec. 4.3.1.2. For each synthetic, the

modified privacy test loops over event parameters from other individuals. After identifying an

event that passes the test for an individual, k′ is incremented and the loop moves on to the next

individual. The last step returns pass or fail based on whether k′ ≥ k−1. A fixation or saccade

event that passes the privacy test has the guarantee that at least k−1 other individuals could have

plausibly generated it.

The difference in the guarantee achieved by the PD and PD Event privacy tests is that the k

parameter refers to either data records or individuals, respectively. The original PD Privacy Test

counts k′ based on the number of events that satisfy the PD criterion and could provide a passing

result even though all of the records that incremented k′ were from the same individual. For Event

PD, k′ is only incremented once per individual.
1: procedure PD EVENT PRIVACY TEST(k,γ ,Prd ,M,D))

2: Parameters: k,γ - plausible deniability parameters, Prd - Probability of real seed for y, Pr{y←M(d)}

3: M - generative model that synthesized y, D - data records from identities other than input

4: i′← unique integer i′, s.t.γ−i′−1 < Prd ≤ γ−i′

5: k′← 0

6: for i = 1 to num_identities do

7: Di← D[i]

8: for da ∈ Di do

9: if γ−i′−1 < Pr{y = M(da)} ≤ γ−i′ then

10: k′← k′+1

95



11: Break

12: if k′ ≥ k−1 then return Pass

13: else return Fail

C-VAE Architecture

Input: x 

Velocity profile
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Figure 4-10. C-VAE architecture deployed to generate synthetic saccade velocity profiles. The
encoder network maps input velocity profiles and saccade conditions into a latent
feature space of normal distributions. The latent feature space is sampled to produce
a noise vector that is input to the decoder network along with the saccade conditions.
The decoder reconstructs a synthetic velocity profile that appears similar to the input.

The deployed C-VAE model for saccades is used to output synthetic velocity profiles.

Synthetic velocity profiles are then used to generate new gaze position samples between a saccade

starting and ending point. The decoder network D of the C-VAE takes a randomly sampled noise

vector z along with the conditions of a real saccade event, i.e., the saccade amplitude, duration,

and individual identity as input, and outputs a corresponding synthetic profile. The synthetic

profile captures the characteristics of the original saccade to preserve utility while also introducing

random variability that will allow the extracted feature vector to pass the privacy criterion.

As shown in Figure 4-10, the C-VAE takes as input a velocity profile x of 30 samples

concatenated with conditions c that characterize the saccade. The encoder E consists of a one

layer fully connected (FC) network with 32 nodes and a ReLU activation layer. The encoder
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outputs 64 parameters defining a latent space of Normal distributions µ and σ . The Normal

distributions defined by µ and σ parameters are then sampled independently using inverse

transform sampling to produce a noise vector z with 64 elements. The decoder D(z) is a one-layer

FC network with 96 nodes and a linear activation layer that takes the noise vector concatenated

with c, and outputs the reconstructed synthetic profile. See the Appendix for a detailed

description of model training and optimization of parameters.
1: procedure EVENT-SYNTH-PD(k, γ , sample_data, fix_event_params, sacc_vel_profiles, CVAEenc, CVAEdec)

2: Parameters: k,γ - plausible deniability parameters

3: sample_data - time series of gaze sample, indexed by stimulus m, identity i, and fix/sacc events e

4: sacc_vel_profiles - saccade velocities and conditions, indexed by stimulus m, identity i, and event e

5: CVAEenc - Encoder network of C-VAE, maps input to latent space distributions defined by µ and σ

6: CVAEdec - Decoder network of C-VAE, maps input random samples z
⊕

c to synthetic velocities

7: for m = 1 to num_stimuli do ▷ Process events from each stimulus independently

8: for i = 1 to num_identities do ▷ Process samples for each identity

9: f ix_data_params← f ix_event_params[m, i, :] ▷ List of fixation event parameters

10: for e = 1 to num_ f ixations do ▷ Synthesize fixation samples until PD criterion is met

11: d = (µx,µy,σx,σy, t)← f ix_data_params[e] ▷ Params for fixation e

12: M f ix← N(x,y) ▷ 2D Normal distribution that returns t values

13: result← False

14: while result == False do

15: y←Mfix(d) ▷ Generate t samples from distribution with curr params

16: Prd ← Pr{y←Mfix(d)} ▷ Probability real seed generated synthetic samples y

17: result← PD Event Privacy Test(k,γ,Prd ,M f ix, f ix_event_params[m, ̸= i, :]))

18: sample_data[m, i,e]← y

19: sacc_data← sacc_vel_pro f iles[m, i, :] ▷ List of real data saccade profiles

20: for e = 1 to num_saccades do ▷ Synthesize fixation samples until PD criterion is met

21: d = (µ1,σ1, · · · ,µL,σL)←C−VAEenc(sacc_data[e])

22: Msacc← N1, · · · ,NL ▷ Define M as L independent Normal distributions

23: result← False

24: while result == False do

25: y = (z1, · · · ,zL)←Msacc(d)

26: Prd ← Pr{y←Msacc(d)} ▷ Probability real seed generated synthetic samples y
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27: result← PD Event Privacy Test(k,γ,Prd ,Msacc,sacc_vel_pro f iles[m, ̸= i,e])

28: sample_data[m, i,e]← y
return sample_data

4.5.2.4 Kalεido

The kalεido privacy mechanism is a composition of multiple DP definitions for processing

streams of eye-tracking samples in a real-time manner [151]. The original algorithm processed

gaze samples as 2D pixel locations, while our evaluation considered 3D gaze positions. The 3D

gaze positions are represented as horizontal and vertical gaze angles mapped on a unit 3D sphere.

The distance between gaze positions is computed using the haversine formula as the shortest

distance between positions on a sphere [211]. Kalεido combines the concept of

(ε ,r)-geo-indistinguishability [15] and w-event DP [133]. Geo-indistinguishability is a spatial DP

guarantee that is applied to a set of spatial locations. When the pair-wise distance between any

two locations x and x′ are all less than or equal to r, then Pr[M(x) ∈ O]≤ eε ·Pr[M(x′) ∈ O]. This

definition is analogous to the traditional DP guarantee (EQ. 3), except the inputs to the mechanism

M are replaced by spatial positions within a distance of r from each other.

The concept of w-event DP is applied to protect sequences of events within a data stream.

In the context of gaze data, events refer to gaze positions. The windows of gaze positions are

considered neighboring if they overlap for all samples besides one. The guarantee establishes

Pr[M(St) ∈ O]≤ eε ·Pr[M(S′t) ∈ O] holds for any w-neighboring stream prefixes. In this context,

a prefix St is all of the gaze samples that occur prior to a specific timestamp, and O represents the

output of mechanism M. The guarantee from w-event-DP establishes that any consecutive

sequence of w gaze positions before the current time point has an eε bound on the change in

output probabilities of the Kalεido mechanism. Larger values of w mean longer sequences are

protected, using more spatial noise to satisfy DP for the same value of ε .

The privacy guarantee of kalεido combines geo-indistinguishability with w-event DP to

define (ε ,w,r)-DP. Combining the definitions allows users to publish differentially private streams

of gaze data within a spatial bound of r on sets of w gaze positions.

Formally, this is defined as
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Definition 4. (ε ,w,r)-DP for gaze stream prefixes

A mechanism M : Sg→Cg where Sg is the domain of all stream prefixes, satisfies

(ε ,w,r)-DP if for all pairs (w,r)-neighboring gaze stream prefixes {Sg
t ,S

g′
t } ∈ Sg×Sg, we have

∀O ∈Cg,∀t,Pr[M(Sg
t ) = O]≤ eε ·Pr[M(Sg′

t ) = O],

where Sg
t and Sg

t are neighboring sequences of w gaze positions prior to timestamp t, and Cg

is the output set of private gaze positions.

The kalεido algorithm ensures the privacy budget ε is distributed over each window of w

consecutive samples within the data stream. The algorithm relies on splitting ε into a testing

budget ε test and a publishing budget ε pub. The testing budget generates random noise that is

added to lthresh and determines whether a new gaze sample should be released based on whether it

is part of the current fixation. The spatial threshold plus noise acts as a fixation detector by

determining if the current gaze position is close enough to the previous position to skip publishing

a new position. If the distance between gaze positions is less than the threshold, then the previous

gaze position is repeated in the data stream. Repeating published samples essentially lowered the

temporal resolution of the released gaze positions.

The publishing budget influences the scale of spatial noise added when a new gaze sample

must be released. The parameter h defines the ratio of testing budget to publishing budget,

providing a trade-off between skipping samples more randomly and adding more spatial noise to

the released data. The parameters lthresh and h were determined empirically and scaled based on

values of r and are not explicitly specified by Liu et al. [151]. Determining optimal parameters for

the adaptive budget algorithm does not impact DP privacy, as ε does not change, but impacts

utility by determining how often gaze positions are repeated.

The pseudocode below details the kalεido approach for a stream of nraw gaze samples

g1,··· ,nraw , window size w, privacy parameter ε , sample distance threshold lthresh, sample skipping

parameter tskip, spatial parameter r, and ratio of testing to publishing privacy budget h.
1: procedure KALε IDO DP(g1,··· ,nraw , w, ε , lthresh, tskip, r, h)

99



2: Parameters: g1,··· ,nraw - stream of gaze positions, w - window size (# samples), ε - DP privacy level

3: lthresh - Distance threshold for testing, tskip - # of samples to skip over during testing

4: r - Privacy radius for DP, h - ratio of privacy budget used for testing

5: ntest ← ⌈w/tskip⌉ ▷ Number of points to test for each window

6: εtest ← ε/(h ·ntest) ▷ Privacy budget allocated to test each sample

7: itest ← null ▷ Index of the last tested gaze position.

8: ipub← null ▷ Index of the last published gaze position.

9: g′i← zeros(nraw) ▷ Published gaze position for sample i, initialized to zeros.

10: ε
pub
i ← zeros(nraw) ▷ List of privacy budget consumed for sample i, initialized to zeros.

11: for i = 1 to num_raw do ▷ Process each window of raw gaze samples

12: if itest ̸= null AND t(i)− t(itest)< tskip then ▷ check if should skip based on tskip parameter

13: g′i← g′ipub

14: ε
pub
i ← 0

15: Continue

16: itest = i

17: ldis = d(gi,g′ipub
) ▷ Distance between gaze sample i and last published

18: η ∼ Lap(1/εtest) ▷ Sample from Laplace distribution, small values of εtest introduce more noise

19: if ldis ̸= null AND ldis ≤ lthresh +η then ▷ Test if current gaze is close enough to last published to repeat

20: g′i← g′ipub

21: ε
pub
i ← 0

22: Continue

23: ipub← i ▷ We will publish a new gaze sample, update index of last published

24: εrem← ε− ε/h−∑
i−1
k=i−nraw+1 ε

pub
k ▷ Compute remaining privacy budget for this window

25: ε
pub
i ← εrem/2

26: g′i← PlanarLap(gi,ε
pub
i /r)

return g′

The adaptive algorithm includes several parameters that allow for privacy budget savings

while processing the gaze sample at each timestamp. First, a fixed time duration tskip = 50ms is

used to skip gaze samples that arrive within tskip of the last published gaze position. Next, after

tskip has passed since the last published gaze point, the algorithm moves on to the testing phase. If

the current gaze position is within the fixation threshold determined by lthresh and ε test , then the

previously published position is re-used, and only ε test of the budget for the current time window
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is consumed. The algorithm enters the publishing phase if the new gaze position is farther than

the threshold. A noisy gaze position is generated using the ε pub budget with a Planar Laplacian

mechanism [15]. The amount of the ε pub budget used decreases adaptively to preserve as much

utility as possible while maintaining ε-DP guarantee within each time window. This process is

repeated for each time window, and any leftover ε pub budget is recycled into the next window. A

complete description of the algorithm and a proof that each window consumes at most ε of the

privacy budget is available in the original paper [151].

Li et al. evaluated window sizes of 0.5 seconds and 2 seconds and propose a novel approach

for setting the spatial bound parameter r based on the ROIs contained within the stimulus content.

We reproduced window sizes for the 100Hz eye-tracking data in our evaluation by setting w to 50

and 200 samples, respectively. For a fair comparison with k-same-synth and event-synth-PD,

which do not consider stimulus content, we fix the value of r as either the typical spatial

dispersion of fixations or the amplitude of saccade events during viewing tasks. Fixations are

typically contained within two visual degrees, and the median saccade amplitude for the EHTask

dataset was ten visual degrees during the viewing task [112].

The privacy protection of kalεido is unique in that it can be applied in real-time to arbitrary

length streams of eye-tracking data. The DP guarantee through noisy gaze position bounds the

probability that the attacker learns what the user was looking at by eε . Kalεido is the only existing

mechanism applied to generate differentially private gaze data at the sample level.

4.5.3 Datasets

We evaluate the above-detailed sample privacy mechanisms on publicly available VR

datasets for activity recognition and gaze prediction. The public datasets were released to enable

researchers to explore deep learning models and evaluate progress towards better understanding

their respective tasks.

4.5.3.1 EHTask

The EHTask [112] dataset includes VR gaze data collected at 100Hz from 30 participants

viewing three 360◦ videos. Participants viewed each video four times, performing different tasks:
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free viewing, visual search, saliency, and tracking. Free viewing involved the participant freely

exploring the video, visual search had the participant search for and count shapes, saliency asked

participants to estimate if the top half or bottom half of the environment was more salient, and

tracking required the user to look at and track the nearest moving object. A deep network was

trained to process gaze and head data to classify windows of samples into the four activity classes.

Activity recognition has applications in adaptive XR interfaces that leverage context when

presenting digital content [126]. For example, detecting when a user is performing a visual search

in a grocery store could trigger visual labels that guide the user to the cheapest item or an item

from their shopping list [92].

4.5.3.2 DGaze

The DGaze [114] dataset included VR gaze data collected at 100Hz from 43 participants

that explored and navigated two 3D rendered scenes. Within each environment, multiple animals

dynamically move around, attracting the visual attention of the participant. Gaze data trained the

DGaze deep learning model for gaze prediction. DGaze processed saliency of scene content,

tracked objects, and current gaze position to predict a future gaze position. Gaze prediction by

DGaze has been demonstrated in the context of foveated rendering and can help account for

latency in the eye-tracking and rendering pipeline [192, 16, 114].

4.5.4 Metrics

4.5.4.1 Identification Rate

Identification rate is computed by extracting features and applying an RBFN as described in

Section 4.4.5.1. Privacy mechanisms are applied to sample data before events are detected and

biometrics features are extracted. The mechanism impacts the resulting feature values, reducing

the risk of re-identification.

4.5.4.2 EHTask

Utility for EHTask is based on classifying windows of samples into one of four tasks.

Performance is computed as the accuracy of window classification T P+T N
T P+FP+T N+FN . The chance

rate of guessing for EHTask is equal to 25% as there are four possible activities.
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The EHTask classification model computes features from 1D convolutional layers applied

to sequences of eye-in-head, head-in-world, and gaze-in-world samples fed into bidirectional

GRU layers with outputs that are concatenated into a fully-connected network used to predict the

activity being performed. The classification model considers data from the past ten seconds for

inputs to the model.

Classification accuracy is computed with test data from 25% of the total data for each task

by segmenting users into train and test sets. The EHTask model is a deep architecture based on

1D CNNs, processing gaze-in-world, eye-in-head, and head-in-world movement signals. The

gaze privacy mechanisms only modify the eye-in-head and gaze-in-world data streams to affect

the task classification utility.

4.5.4.3 DGaze

Gaze prediction accuracy is measured as the angular error for predicted gaze position

100ms in the future compared to the actual gaze position for each input to the gaze prediction

model, as described in Section 3.6.4.1.

4.5.5 Results

4.5.5.1 EHTask

Utility results from each privacy mechanism are presented in Figure 4-14. Visual results for

each mechanism applied to EHTask can be seen in Figures 4-11, 4-12, and 4-13. Gaze positions

from an individual in EHTask viewing a stimulus for 150 seconds is plotted for each privacy

mechanism across various parameters.

Table 4-3. EHTask results for the k-same-synth privacy mechanism. EHTask classification rates
showed a sharp decline for large values of k, lowering rates to 29.1% at k=8.
Identification rates fell to as low as 8.5%, remaining above the chance rate of 3%.

Params RBFN identification rate % (↓) EHTask classification accuracy % (↑)
No mechanism 28.0 82.8
k = 2 9.7 61.8
k = 4 8.7 45.8
k = 6 8.5 40.6
k = 8 7.5 29.1
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Table 4-4. Privacy and utility results for the event-synth-PD privacy mechanism. Re-identification
rates ranged from 9.2% to 15.0%, while classification rates covered a range of 66.7%
to 73.0%.

Params RBFN identification rate % (↓) EHTask classification accuracy % (↑)
No
mechanism

28.0 82.8

k γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0 γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0
k = 2 12.5 13.5 11.7 13.8 71.9 74.0 72.2 71.1
k = 4 9.2 12.2 15.0 14.2 73.0 73.5 70.1 66.7

The k-same-synth mechanism enforces k-anonymity on the parameters that define fixation

and saccade events from each individual. Figure 4-11 shows the k-same-synth mechanism and the

effect of privacy parameter k on the output gaze sample positions. Horizontal gaze positions are

impacted more than vertical positions as typically, viewers keep their head level during image

viewing [59]. Large shifts in the synthetic horizontal gaze positions are observed as early as k

equals two, as fixation positions are updated based on other individuals’ µx and µy values.

Table 4-3 provides re-identification rates and classification accuracy for several values of k.

The mechanism produced re-identification rates in the range of 7.5% to 9.7%, lower than 28.0%

from unmodified data. Computed re-identification rates remained less than 1
k . The lowest

re-identification rate was 7.5% at k equals eight, which is higher than chance (1/30 = 3.3%). Rates

above chance result from the type of biometric features extracted from the synthesized data. For

example, the fixation feature set includes the duration of fixations and the spatial dispersion

within a fixation. The fixation synthesis method we deployed does not directly modify fixation

duration but does modify the spatial distribution that influences dispersion. Updating the samples

may impact the event boundaries detected in the synthetic data but overall have a smaller impact

on the features that are temporal in nature. Thus, any individual trend uniquely influenced by

temporal features is not guaranteed to be removed by k-same-synth.
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Table 4-5. EHTask results for the kalεido privacy mechanism. The input parameters ε,w,r
determine the amount of privacy noise added to the released gaze samples. Lower
values of ε and larger values for r and w indicate higher privacy. DP parameters of
(r = 10◦, w = 200 samples, ε = 1) produced re-identification rates near chance while
lowering accuracy on the utility classification task to 73.3% (10% less than the original
data).

Params RBFN identification rate % (↓) EHTask classification accuracy % (↑)
No
mechanism

28.0% 82.8

ε w = 50
r = 2◦

w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

w = 50
r = 2◦

w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

ε = 10 10.2 5.7 8.0 6.7 71.6 70.9 70.6 74.9
ε = 5 7.3 4.0 6.0 7.2 43.9 76.6 72.2 73.5
ε = 2 7.7 10.5 9.0 10.3 64.8 73.5 55.1 61.0
ε = 1 7.8 9.3 8.3 6.0 72.0 69.7 68.1 73.3

The k-anonymous dataset was used to train an activity classification model for utility.

k-anonymity introduced a loss in utility, dropping the classification accuracy of gaze windows in

the test set from 82.8% to as low as 29.1%. A large drop in classification accuracy impacts

interfaces or models that depend on recognizing the user’s activity. Reasonable classification

accuracy of 61.8% was achieved at k equals two, but quickly falls off and reaches chance rates at

k equals eight (29.1%).

The event-synth-PD mechanism guarantees that fixation positions and the generated

saccade velocity profiles are k,γ-PD. The interpretation of this guarantee is that there are k−1

other events that could have plausibly synthesized the released gaze samples. Figure 4-12 shows

the event-synth-PD mechanism and the effect of privacy parameters k and γ on the output gaze

sample positions. Synthetic horizontal and vertical gaze positions are largely unaffected for both

values k, and all values of γ .
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Figure 4-11. Real and synthetic gaze positions for the k-same-synth mechanism from Identity 1 of
EHTask performing the viewing task on stimulus 1. Left Column: Horizontal Gaze
position time series. Middle: Column: Vertical Gaze position time series. Right
Column: 2D Gaze positions in equirectangular format. Higher privacy is achieved at
larger values of k where more noise is observed in the trace of gaze positions.
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Figure 4-12. Real and synthetic gaze positions for the event-synth-PD mechanism from Identity 1
of EHTask performing the viewing task on stimulus 1. Synthetic gaze positions are
consistent across privacy parameters, suggesting that similar synthetic gaze positions
are passing the privacy test in all configurations. The generated points do not deviate
much from the original data and re-identification attacks are still possible on the
generated data (Table 4-4).
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Figure 4-13. Real and synthetic gaze positions for the kalεido mechanism from Identity 1 of
EHTask performing the viewing task on stimulus 1. Higher levels of privacy increase
spatial noise in the data and force the data to spread out away from the original gaze
positions, losing utility of the gaze data at the cost of the spatial DP guarantee.

Table 4-4 provides re-identification rates and classification accuracy for values of k equal to

two and four, and several values of γ . The lowest re-identification rate was 9.2%, which was the

strongest level of PD privacy evaluated (k=2 and γ=1.0). The produced rates were higher than

chance (1/30 = 3.3%), suggesting that event-synth-PD does not provide complete protection

against re-identification attacks at this privacy level.
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Figure 4-14. Classification rates presented a downward trend for k-same-synth across values of k
with classification rates starting near 60% and dropping to 29% with more privacy.
Classification rates of event-synth-PD presented a uniform trend near 72% for all
values of k and γ . Classification rates for kalεido ranged from 42% to 76%; with an
accuracy of 69% for parameters that achieved strong DP privacy (r = 10◦, w = 200,
and ε = 1).

The k,γ-PD dataset was used to train an activity classification model for utility. The

mechanism introduced a loss in utility, dropping the classification accuracy of gaze windows in

the test set from 82.8% to as low as 66.7%. A 16% drop in classification accuracy may have an

impact on interfaces or models that depend on recognizing the user’s activity and was similar in

scale to the utility achieved by k-same-synth at k equals 2. The utility was preserved with a small

impact on performance while reducing the risk of re-identification.

Figure 4-13 shows the kalεido DP data and the effect of mechanism parameters r, w and ε

on the output gaze positions. Visualizations show that more spatial displacements are introduced

for higher privacy achieved at larger values of r and w and smaller values of ε . Eventually,

parameter values introduce so much noise that the gaze positions deviate and form a cloud of

positions around the real data at the highest level of privacy (r = 10◦, w = 200, ε = 1). Overall,

data generated at ε equals two or less does not retain the structure of the data impacting the ability

to both re-identify users and classify activities.
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Table 4-5 provides re-identification rates and classification accuracy across parameter

values. The lowest re-identification rate was near chance (3.3%) at the highest level of privacy.

Even at lower privacy settings, the produced re-identification rates were at most 10.5%. Rates

were comparable to or lower than the re-identification rates from all other mechanisms. Kalεido

was the only mechanism that achieved chance re-identification rates.

The ε-DP dataset was successful at training an activity classification model. The

mechanism introduced a loss in utility, dropping the classification accuracy of gaze windows in

the test set from 82.8% to as low as 43.9%. However, the 43.9% classification rate was not

produced at the highest privacy parameter, and generally rates remained near 70%. The kalεido

mechanism repeats gaze positions at higher privacy levels as part of the testing stage as the

algorithm skips samples more frequently for lower values of the privacy budget ε . The EHTask

model also takes head movement data as input. Repeating gaze samples modifies the training

dataset to contain less information about eye movements and prioritizes optimization around the

head movement data, which remains sampled at 100Hz. The resulting EHTask model learns to

classify tasks based on noisy gaze samples at a low sampling rate and head movements relative to

them, achieving comparable utility at both ε = 10 and ε = 1. The classification rates achieved

with kalεido were less than other mechanisms; however, the small impact on utility with the

ability to lower identification rates to chance produced the best privacy-utility trade-off.

4.5.5.2 DGaze

Figure 4-16 presents utility results from each privacy mechanism. Visual results for each

mechanism applied to the DGaze prediction task can be seen in Figure 4-15. The last gaze

position of the input sequence to the model is plotted with an arrow drawn to the ground-truth

gaze position 100ms in the future. DGaze predictions from training with and without mechanisms

demonstrate how well each approach preserved utility relative to the baseline performance and the

actual gaze position.
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Table 4-6. DGaze results for the k-same-synth privacy mechanism. Identification rates are near
chance (1/43 = 2.3%) for unmodified data, and remain at chance for the mechanism.
Accuracy for gaze estimation 100ms into the future is decreased across all values of k,
introducing up to 2.2◦ of additional error on average compared to the results with no
mechanism applied.

Params RBFN identification rate % (↓) DGaze prediction error (◦) (↓)
No mechanism 2.3 4.3
k = 2 2.0 5.4
k = 4 2.3 6.0
k = 6 2.1 6.3
k = 8 1.1 6.5

Table 4-7. DGaze utility results for the event-synth-PD privacy mechanism. Identification rates
are near chance (1/43 = 2.3%) for unmodified data, and remain at chance for the
mechanism. Gaze prediction error ranged between 6.8◦ and 9.1◦, with lowest errors
produced for higher values of γ and k=2. Classification rates did vary with higher
utility at PD parameters with less privacy.

Params RBFN identification rate % (↓) DGaze prediction error (◦) (↓)
No
mechanism

2.3 4.3

k γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0 γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0
k = 2 1.2 1.3 1.9 1.5 8.4 8.9 6.8 7.0
k = 4 1.3 1.2 1.5 1.5 8.8 8.7 9.1 9.0

Table 4-8. DGaze results for the kalεido privacy mechanism. Identification rates are near
chance (1/43 = 2.3%) for unmodified data, and remain at chance for the mechanism.

Params RBFN identification rate % (↓) DGaze prediction error (◦) (↓)
No
mechanism

2.3% 4.3

ε w = 50
r = 2◦

w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

w = 50
r = 2◦

w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

ε = 10 2.3 2.3 2.3 2.8 5.0 6.6 5.5 7.4
ε = 5 2.3 2.8 2.1 3.0 5.4 7.0 6.4 8.7
ε = 2 1.5 2.1 1.9 2.3 5.6 8.9 7.9 8.4
ε = 1 2.6 2.3 4.6 2.1 7.0 10.5 7.9 9.3

Figure 4-15 shows gaze prediction from a model trained using the k-same-synth mechanism

with k equals four. The figure demonstrates that the predicted gaze position deviates from the

unmodified model’s predicted gaze. Gaze errors arise from overshooting the predicted position or

shifting away from the actual gaze. Table 4-6 provides re-identification rates and average gaze
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Figure 4-15. Illustration of DGaze gaze predictions from models trained on unmodified and
private data. Colored stars indicate gaze predictions output from DGaze trained for
each privacy mechanism and unmodified data. The blue dot indicates the gaze
position at the time of prediction, with an arrow drawn to the actual gaze position
100ms into the future (orange circle). Top Left: All predictions are inaccurate. Top
Right: k-same-synth and event-synth-PD overshoot the actual gaze position and
unmodified undershoots. Bottom Left: All predictions overshoot the actual gaze
position. Bottom Right: All predictions besides k-same-synth and Kalεido are
accurate. The kalεido mechanism introduces the most error on average.

prediction accuracy for several values of k. Without a privacy mechanism applied, the DGaze

dataset produced identification rates at chance. We hypothesized that low rates result from the

DGaze dataset providing viewers only two scenes to explore, containing sparse environments

where they were instructed to follow animals around by using teleporting to navigate. The

combination of a prescribed task with minimal individual variation and low diversity in stimuli

results in features that are not reliable for user identification. This claim is supported by prior

work that demonstrated identification rates for free viewing tasks were 60% higher than that of

guided training sessions within similar 360◦ image environments [147].
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Figure 4-16. The gaze errors from k-same-synth increase from 5.4◦ to 6.5◦ across values of k,
indicating a slight negative linear trend. Gaze errors from event-synth-PD was
uniform at 4.6◦ for all k and γ . Gaze errors for kalεido presented an increasing linear
trend within each combination of r and w as ε goes from lower privacy (10) to higher
privacy (1).

The k-anonymous dataset introduced a loss in utility, increasing the prediction accuracy

from 4.3◦ up to 6.5◦. An increase in prediction error on the scale of 2.2◦ introduces a small

impact on gaze prediction applications, such as foveated rendering. However, it can be

compensated for with a larger foveal region parameter. For example, perceptual experiments by

Guenter et al. [99] on traditional displays have found an optimal size for the foveal region

between three to four visual degrees. Increasing the foveal region within this range by 2.2◦ to

accommodate additional error would reduce the rendering speedup from a factor of ten to four.

The privacy mechanism introduces a loss in rendering savings but still offers practical

improvement by reducing rendering cost to a fourth of the time needed for a non-foveated system.

Figure 4-15 shows gaze prediction error from a model trained using the event-synth-PD

mechanism with k = 2 and γ = 2.0. Table 4-7 provides re-identification rates and average gaze

prediction accuracy that demonstrated a uniform trend for several values of k and γ . The k,γ-PD

dataset introduced a moderate loss in utility, increasing the prediction accuracy from 4.3◦ up to
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9.1◦ across parameters. The introduced error is almost double that of the unmodified data,

introducing more errors than k-same-synth.

Figure 4-15 shows the prediction from DGaze trained on kalεido DP data with parameters

r = 2.0, w = 50 and ε = 1. Visualizations show high spatial displacement from the actual gaze

position for the kalεido predictions. Table 4-8 provides re-identification rates and average gaze

prediction accuracy. Kalεido introduced the most error of all mechanisms at high DP privacy but

introduced reasonable errors of 5.6◦ or less for the smallest values of r and w. Figure 4-16

demonstrates a linear trend for increased prediction error within each set of DP parameters as ε

decreases and stronger privacy is achieved.

4.6 Discussion

To explore RQ4.1 and RQ4.2, we presented feature data mechanisms that offer alternatives to

DP in the form of k-anonymity and plausible deniability. Our alternatives protect both feature and

sample datasets against re-identification attacks by considering the risk of re-identification

probabilities instead of a DP privacy guarantee. The k-same-select sequence mechanism produced

identification rates at chance while preserving model accuracy of 72% for document type

classification using the MPIIDPEye dataset. We recommend using k-same-select sequence to

protect feature datasets against re-identification in a computationally efficient manner. When the

feature set of the attacker is explicitly known, the method directly bounds the probability of

re-identification and provides a strong defense against attacks.

To explore RQ4.3 and RQ4.4, we presented sample data mechanisms that achieve alternative

privacy guarantees to DP. For sample data, the achieved k-anonymity, and plausible deniability

guarantees are applied at the event level before features are extracted. The presented mechanisms

reduce the risk of re-identification, though not all mechanisms reduce identification rate to

chance. We validated RQ4.3 by observing that re-identification rates on the EHTask dataset were

lower than unmodified data; however, it was difficult to achieve chance identification rates for the

EHTask dataset, as only kalεido lowered rates to 3%.

For utility evaluations, the EHTask dataset was used to train a deep model that classified
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task types based on input eye and head movement sequences. The DGaze dataset trained a model

for gaze prediction 100ms into the future for input gaze, head, and saliency data. The computed

results answered RQ4.4 for task classification by revealing a practical trade-off between privacy

and utility for kalεido at r = 10◦, w = 200 samples, and ε = 1.0.

For the gaze prediction task, which predicts a continuous gaze direction instead of a

categorical task type, both the k-same-synth and kalεido mechanisms introduced a negative linear

trend between their privacy parameters and the impact on utility. The mechanism for plausible

deniability had a moderate impact on gaze prediction utility, suggesting that k-same-synth and

kalεido with small r and w parameters are the best choice for this task.

The DGaze dataset provided a low risk of re-identification due to using only two 3D

rendered stimuli with a prescribed search and follow task. Identification rates were already near

chance for the unmodified DGaze dataset. However, other gaze prediction datasets could produce

a higher risk if 360◦ images or videos were used with a free viewing task. Our utility results

answered RQ4.4 by indicating a linear negative impact on utility for the k-anonymous and ε-DP

mechanisms, with moderate impact across all k,γ-PD parameters. For datasets outside of DGaze

with a higher risk of re-identification, the kalεido mechanism is recommended, as it has a large

impact on identification rates, despite a systematic negative impact on utility.

Table 4-9 summarizes the privacy guarantees achieved for eye-tracking datasets and the

mechanisms that achieved practical privacy-utility trade-offs. For feature datasets used for

classification tasks, we recommended the k-same sequence mechanism as it retains between class

differences while averaging away individual differences. For sample datasets used on

classification models, practical trade-offs were achieved by both event-synth-PD and kalεido.

However, the parameters for kalεido that achieved the best trade-off resulted in a highly sparse

sampling of the gaze data positions. The EHTask model we evaluated also takes head movements

as input and retained utility by relying less on gaze data. The gaze positions produced by

event-synth-PD resembled real data much more closely (Figures 4-12 and 4-13), and would

generalize better to utilities that only rely on gaze data. For sample datasets used in gaze
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prediction, a practical trade-off was only achieved for the k-same-synth mechanism that limits the

introduced gaze prediction error.

Table 4-9. Summary of privacy-utility trade-offs for across privacy mechanisms and data
applications. Check marks indicate a practical trade-off of applying a privacy
mechanism for that application.

Mechanism Guarantee Data type Utility Practical trade-off
k-same-select sequence k-anonymity Features Classification ✓
Marginals k,γ-PD Features Classification ×
Exponential-DP ε-DP Features Classification ×
k-same-synth k-anonymity Samples Classification ×
event-synth-PD k,γ-PD Samples Classification ✓
Kalεido DP ε-DP Samples Classification ✓
k-same-synth k-anonymity Samples Prediction ✓
event-synth-PD k,γ-PD Samples Prediction ×
Kalεido DP ε-DP Samples Prediction ×

4.7 Limitations

Our identification results were limited to an RBF network, although prior work explored

random forest [222], SVM [170], k-NNs [41] and deep network [171, 155] models. The

identification model impacts our empirical results, but it does not impact the achieved theoretical

guarantees and the fundamental differences between k-anonymity, plausible deniability, and

differential privacy. For feature mechanisms, we explored the seminal DP approach [232], and did

not evaluate the DCFPA mechanism of Bozikir et al. [41]. While this method’s DP privacy

parameter ε has the same meaning, the achieved utility and specific privacy result may vary from

that of the Exponential mechanism.

Our utility results depend on the application and metric applied, i.e., gaze prediction

evaluated by angular error 100 ms into the future, and the model trained and tested on the data.

Each utility model has multiple hyper-parameters in defining its architecture and training process.

Our analysis was limited to the parameters reported to be optimal by the authors of their

respective papers. While this provides a benchmark on the change in performance relative to

unmodified data, de-identified data with tweaked model parameters could result in higher utility.

It would be interesting to explore trends in utility performance for privacy mechanisms across

different model parameters to observe if similar trends are produced compared to unmodified data.
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A fundamental limitation of privacy mechanisms with the parameter k is the assumption

that each stimulus or task has data from at least k individuals. For datasets with a small number of

individuals, or cases where all individuals do not view every stimulus, there is an upper bound on

the value of k. Thus, the desirable level of privacy or identification rates may not be achieved for

the privacy mechanisms. In contrast, DP allows the data owner to increase privacy until the

desired level is reached.

High utility results for classification tasks depend on the difficulty of the task and the model

being used. Our results considered document type recognition (MPIIDPEye) and activity

recognition (EHTask) datasets that included three and four utility classes, respectively. Datasets

with a larger number of classes would be more difficult to perform accurately and may impact the

generalization of our comparison of privacy mechanisms with respect to utility.
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CHAPTER 5
CONCLUSIONS

An increasing amount of XR applications and datasets collect eye-tracking data that

introduces privacy concerns based on what can be inferred from data, including identity. To

address concerns of eye trackers collecting identifying data we have developed mechanisms to

enhance privacy for eye images [122, 120, 123], designed frameworks to protect privacy while

streaming eye-tracking data to third-party applications [62], and provided mechanisms that

achieve formal privacy guarantees against re-identification attacks on datasets [60].

5.1 Protecting Iris Biometrics

Most XR eye trackers rely on infrared images of the eye to perform gaze estimation. Eye

images also capture the iris pattern, a gold standard biometric, introducing the risk of leaking the

user’s identity in the data stream. Our proposed solution applies blur to images post-capture in

software when the platform is trusted or pre-capture by the user using optical defocus. Blur filters

away the high-frequency iris patterns and reduces the risk of using eye-tracking images to spoof

the user’s identity. The trade-off from introducing blur impacts the quality of gaze estimation,

measured in data-level accuracy and downstream impact on different applications. We employed

gaze estimation software and perceptual studies with virtual avatars to understand how much error

is introduced in the data signal and model the impact of introduced errors on the perception of an

avatar. We were the first to identify the risk of leaking identity through iris patterns in

eye-tracking images. Our approach provides a user-controlled pre-capture mechanism to protect

identity while enabling eye-tracking applications.

User-controlled privacy lets users determine what applications they trust. Users make

similar decisions when they choose not to connect to public wireless networks or rely on hardware

hacks such as placing tape over a laptop webcam to protect their privacy. Future XR ecosystems

will collect data at home, work, and in public. For example, VR arcade machines can be outfitted

with blurring optics that enable gaze estimation without collecting identifiable information about

the user’s eye. Our approach provides a template for identifying risks from XR sensors, in this

case leaking iris biometric data, and providing a defense mechanism in a user-controlled manner.
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5.2 Privacy for Streaming Eye-Tracking Data

Eye-tracking applications of saliency, redirected walking, and gaze prediction contributes to

the future of user modeling and interaction in XR. Applications take raw gaze samples from the

eye-tracking platform and apply pre-processing to extract relevant metrics for the corresponding

utility. Sharing raw gaze samples introduces the risk of identifying users from eye movement

biometrics. Features extracted from raw samples identify users performing common tasks. Tasks

such as free viewing produce identification rates with high accuracy [62] and could be used to

recognize users across applications. Our Gatekeeper model is an API that processes gaze sample

data within the XR platform. The API serves the processed data metrics directly to the application

instead of sharing raw samples.

By implementing the appropriate data metrics on the platform, the API has no impact on

application utility. For applications such as gaze prediction requiring sample data, our privacy

mechanisms add noise or downsample data to modify the data stream in real-time and reduce the

identification rate. Real-time implementations are required for time-sensitive eye-tracking

applications and limit the complexity of privacy mechanisms that can be deployed in practice. A

benefit of the Gatekeeper model is that it can easily be extended to restrict permissions at different

data pipeline components. If a user wants to eliminate eye-tracking risks, they can turn off

foveated rendering or other core functionalities implemented by the XR platform. The exact

details on how core platform components process data are known by the operating system and

could be controlled by the user in their device settings. However, privacy is not always a binary

setting when data leaves the platform to a third party. Once data leaves the platform, how it is

saved or processed is unknown. In the scope of our evaluation, multiple variables impact

identification rates, including the volume of data collected, the task being performed, the quality

of data, and the selected privacy mechanism. It is not easy to extrapolate results and declare a data

stream as private or not when users do not know or have control over the other variables in

re-identification. Evaluations on more scenarios can provide additional insight into risk severity

beyond the datasets we explored.
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In security and privacy research, it is critical to be proactive instead of reactive. Current XR

risks are becoming a topic of discussion among companies [39], researchers [103, 189, 212], and

professional standards organizations [164]. However, no XR attacks have been heavily publicized

to this point. Thus, now is the time to get ahead of risks and learn from pitfalls in the past within

mobile devices. A specific example is evaluating whether mobile apps directed at children are

compliant with existing privacy laws [204]. Alomar and Egelman pointed out that child privacy

legislation has existed for over 25 years, but most Android apps that target children were not in

compliance [14]. Through surveys and interviews with child app developers, they found that a

major source of non-compliance was the third-party SDKs they integrated, including advertising

services, and a lack of resources to evaluate whether their app was compliant. Larger game

studios can outsource privacy audits to external services, but smaller groups assumed that their

app was compliant if it was not rejected by the app store when published. While app store

compliance checking can identify privacy violations, developers pointed out that the rejection

notifications took up to a week for processing and did not provide sufficient details to identify and

fix the offending SDK or feature. Based on these findings, we remark that the XR platforms of the

future should provide app stores and useable tools that allow developers, who are not privacy

experts, to evaluate apps before they reach production. Happa et al. have previously discussed the

requirements of a privacy certification framework specific to XR, including the need for a

common vocabulary for XR-specific threats, a multi-disciplinary standards group to exhaust the

type of threats to consider, and forensics tools that can identify threats related to the societal

harms introduced by XR [104]. Establishing privacy in this manner places the onus on the XR

platform to implement and maintain privacy and does not require the users or developers to

become privacy experts.

In the scenario where XR platforms are trustworthy in handling data, the solutions that vet

third-party services can protect privacy from the sensor to the application. Our Gatekeeper fits

this privacy model and provides an efficient means for privacy-by-design specific to typical

applications of eye-tracking data. When the Gatekeeper does not enable a specific application,
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privacy-enhanced gaze samples can be streamed using noise mechanisms implemented by the

platform. Data-level privacy mechanisms introduce another issue for developers in understanding

the impact of privacy mechanisms on their specific applications. A solution for developers must

be context specific to understand what mechanism should be applied and the range of parameters

that retain practical utility.

In a perfect world, the most private XR platform would know exactly what data sensors an

application needs and what it intends to do with the data. Contextual integrity is a theoretical

privacy framework applicable to such a scenario, as it relies on data flows that respect societal

norms for data sharing [184, 26]. However, apps cannot always be trusted to be honest about data

use. In response, contextual integrity was implemented within internet-of-things devices by

detecting malicious activity using a context-aware permissions system [119]. By analyzing app

behavior, the system triggers additional permissions requests when actions are performed in a

new context, such as a smart device requesting to open a window of the user’s house for

temperature control in the middle of the night instead of during the daytime as previously

permitted by the user. By asking the user before opening the window, an intrusion resulting from

malicious commands sent to the device can be prevented. Additional work in platform design and

technical understanding of identifying data misuse is needed to achieve privacy when streaming

data with future XR devices.

5.3 Privacy for Eye-Tracking Datasets

Eye-tracking datasets risk privacy by enabling re-identification attacks on eye movement

biometrics. Public datasets of eye-tracking data from common XR tasks enable re-identification

at reasonable success rates, demonstrating the need to de-identify data. Our privacy mechanisms

tap into established privacy definitions of k-anonymity and plausible deniability. Our mechanisms

enable favorable privacy-utility trade-offs when applying k-anonymity to classification models

trained on eye-tracking features and gaze prediction models from eye-tracking samples. Our

mechanisms and analysis inform data owners about the impact of de-identifying eye-tracking

datasets before release.
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Our findings suggest that there was no one-size-fits-all privacy solution for de-identifying

the eye-tracking datasets included in our evaluation. While kalεido-DP for gaze samples lowered

identification rates to chance, it did not produce practical utility for training gaze prediction

models. A DP guarantee did not retain utility for classification tasks on feature datasets. However,

it retained utility for sample datasets on the same task due to differences in how data is processed

to achieve the guarantee and the inclusion of head tracking data in the sample dataset. Within

applications of gaze prediction, we recommend k-anonymity for sample data achieved by

k-same-synth guarantee but do not recommend k-same-synth for classification tasks with sample

data. Based on these results, our recommendation is that the data owner must consider their

application and what is an acceptable loss in utility to determine which mechanism and

parameters to apply.

While formal guarantees against re-identification are future-proofed against attacks within

the bounds of our threat model, new attacks in the future can still introduce an unexpected risk to

privacy. For example, in the area of systems security, there was an attack known as Spectre that

affected a vast majority of processors in 2017 [7]. The attack targeted the functionality of

speculative execution, which was released approximately a decade before the attack came to

fruition. An analogy in the context of XR datasets is determining that the head movement data

released within the dataset also leaked identity through speech reconstruction [225], rendering a

formal guarantee applied to gaze data alone ineffective. Such a risk is not known at the time of

dataset release and is difficult to anticipate. Unanticipated risks are a fundamental flaw of the

assumptions in threat modeling. While a robust threat model defines a clear attack surface and

data inputs to evaluate defense mechanisms, there is a natural trade-off between what researchers

can anticipate with existing knowledge and the threats most likely to occur at the time.

A takeaway from our work is considering the level of data utility needed when dealing with

sensitive eye-tracking datasets and considering the appropriate definition of privacy to account for

future threats. Researchers concerned with re-identification can rely on k-anonymity to defend

their eye-tracking features against attacks. At the same time, an XR web browser can deploy
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differential privacy with kalεido to protect user gaze data against a broader range of attacks that

consider where a user is looking. Notably, the current standard today is releasing or capturing raw

data. Instead, we recommend that data owners preemptively defend against attacks by releasing

de-identified data with formal privacy mechanisms. Datasets for machine-learning tasks can

report model performance on unmodified and de-identified data to establish the privacy-utility

trade-off and release the de-identified data publicly. Researchers can use the public data for

developing new models that are later submitted for evaluation on a withheld test dataset of

unmodified data, a standard process for dataset challenges.1 In cases where unmodified datasets

must be shared, such as XR companies sharing large-scale user data with contractors for data

analysis or model development, privacy agreements between trusted parties can protect user

privacy from unknown adversaries. Our mechanisms contribute to the set of privacy tools for data

owners to protect eye-tracking data. Our analysis informs the need to protect XR data

preemptively before such attacks are publicized and generate harms that impact real users.

5.4 Future Directions

A next step in developing better privacy mechanisms in the short term is to explore further

generative models that achieve the definition of PD for datasets. The Marginals model for

generating synthetic eye-tracking features is a baseline method for discrete datasets [34], with the

assumption that all feature columns in the dataset are independent of each other. The assumption

of independence influences the probability distributions sampled to generate new data, resulting

in output distributions that are not similar to the real data and impact data utility. Linking novel

generative models for continuous features and sample data to PD will provide the opportunity to

achieve better trade-offs between privacy and utility for synthetic data.

The threat models we had considered relate to identifying the user from their data stream.

Attention data paired with content has the potential to violate privacy expectations concerning

personalized ads, revealing biases, and identifying sexual orientation [168]. Inferences of this

nature are known as biometric pyschography, referring to data that can indicate the emotional

1https://salient360.ls2n.fr/
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state or intention of a user [109]. A recent report from Common Sense Media discussed the

implications of privacy specific to children in the Metaverse highlighting that typical users do not

know what is being shared when they enable XR data streams [202]. Children are at risk of

over-sharing and are more susceptible to targeted advertising. Even de-identified data could leak

mental health conditions [18] or neurological diseases like Autism [37, 48]. While current privacy

solutions have only explored the additional threat of gender classification with DP

methods [232, 41, 84], there is still a gap between the large body of work on using eye

movements for individual classifications like medical conditions or emotional state in ideal lab

conditions [20, 105, 229] and how frequently the scenarios that produce these risks would arise in

everyday use of XR. Eliminating a privacy risk completely is difficult considering eye-tracking

data are produced from different types of sensors with variations in data quality resulting from

calibration, and a large diversity in demographics of users and environments. Future work must

expand the understanding of which contexts introduce potential harms when sharing gaze data

and prioritize privacy while developing the next generation of mixed-reality technologies.

Beyond eye-tracking data, future devices introduce risks to privacy from other biometric

sensors, such as heart rate that can reveal emotion or brain-sensing EEG signals. Extending data

processing methods to additional data streams is essential, as XR interfaces and platforms will

integrate multi-modal sensor fusion [31]. Data risks grow when more data sources are introduced

and can be cross-analyzed. Researchers have already demonstrated that VR devices share these

data streams with third-party apps while violating privacy policies [241]. Privacy mechanisms or

formal guarantees only applied to one sensor may not achieve satisfactory levels of privacy.

Enforcing standalone privacy mechanisms for each sensor and extending a more comprehensive

Gatekeeper interface for sharing data after sensor fusion could allow developers to develop novel

interactions and experiences while limiting the impact on user privacy.
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APPENDIX A
PROOF OF SUFFICIENT CONDITION FOR PD

A.1 Theorem

For real γ ≥ 1, if

γ
−i−1 < Pr{y = M(di)} ≤ γ

−i and γ
−i−1 < Pr{y = M(d j)} ≤ γ

−i

are true for the only integer i > 0, then

γ
−1 ≤ Pr{y = M(di)}

Pr{y = M(d j)}
< γ ,

which satisfies (k,γ)-PD.

A.2 Proof

Assume that

γ
−i−1 < Pr{y = M(di)} ≤ γ

−i and γ
−i−1 < Pr{y = M(d j)} ≤ γ

−i

for the only integer i > 0. Starting with

γ
−i−1 < Pr{y = M(di)} ≤ γ

−i,

divide all terms by Pr{y = M(d j)} to get

γ−i−1

Pr{y = M(d j)}
<

Pr{y = M(di)}
Pr{y = M(d j)}

≤ γ−i

Pr{y = M(d j)}
.

Because Pr{y = M(d j)} ≤ γ−i, we have that

γ−i−1

Pr{y = M(d j)}
≥ γ−i−1

γ−i = γ
−1.

Because Pr{y = M(d j)}> γ−i−1, we have that

γ−i

Pr{y = M(d j)}
<

γ−i

γ−i−1 = γ

therefore,
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γ
−1 ≤ γ−i−1

Pr{y = M(d j)}
<

Pr{y = M(di)}
Pr{y = M(d j)}

<
γ−i

Pr{y = M(d j)}
< γ

which satisfies

γ
−1 ≤ Pr{y = M(di)}

Pr{y = M(d j)}
< γ .

126



APPENDIX B
SECTION 4.3.2 THREAT SCENARIO K-ANONYMITY DETAILS

Age and gender demographics are generalized by grouping values into ranges to achieve

k-anonymity. The number of data rows for each unique combination of age and gender ranges

must be k or greater to maintain the privacy guarantee. The combined dataset of ET-DK2 and

360_em consists of 24 individuals with age and gender values listed in Table B-1.

Table B-1. Age and Gender demographics for ET-DK2 and 360_em datasets. Note that Subject
ID 1 from both datasets were excluded from analysis due to data loss and subject
sickness during data collection, respectively.

Dataset Subject ID Age Gender
ET-DK2 2 M 43
ET-DK2 3 F 27
ET-DK2 4 M 29
ET-DK2 5 M 32
ET-DK2 6 F 28
ET-DK2 8 M 26
ET-DK2 9 F 23
ET-DK2 10 M 30
ET-DK2 11 F 28
ET-DK2 12 M 26
ET-DK2 13 M 52
ET-DK2 14 M 26
ET-DK2 15 M 35
ET-DK2 16 M 50
ET-DK2 17 M 33
ET-DK2 18 M 31
ET-DK2 19 M 32
ET-DK2 20 M 36
360_em 2 M 38
360_em 3 M 29
360_em 4 F 23
360_em 5 F 31
360_em 6 M 27
360_em 7 M 31
360_em 8 F 23
360_em 9 M 24
360_em 10 M 23
360_em 11 M 27
360_em 12 M 23
360_em 13 M 23
360_em 14 M 32
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Ranges were selected for each value of k that maximized the total number of groups while

ensuring each group had at least k rows matching the ranges of age and gender. The ranges of age

and gender used to establish k-anonymity are listed in Table B-2.

Table B-2. Gender and age ranges used to generalize the ET-DK2 and 360_em demographics for
k-anonymity. For each value of k the data rows are mapped into the listed ranges based
on actual values. For example, (Male, 23-31) would be assigned to all Males between
the age of 23 and 31. Male/Female refers to the data rows not specifying either value
for Gender.

k Gender & Age Generalization
4 (Female, 23-31), (Male, 23-27), (Male, 29-31), (Male, 32-33), (Male, 35-52)
6 (Female, 23-31), (Male, 23-27), (Male, 29-33), (Male, 35-52)
8 (Male/Female, 23-27), (Male/Female, 28-31), (Male/Female, 32-52)
15 (Male/Female, 23-28), (Male/Female, 29-52)
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APPENDIX C
C-VAE MODEL TRAINING PROCEDURE

The C-VAE model for generating synthetic saccade profiles (Sec. 4.5.2.3) was trained using

tensorflow version 1.13.1. Models were trained independently for each dataset using data from all

individuals and stimuli. Training was performed using 75% of the available data with the

remaining 25% used as a validation set. An experiment to optimize model hyper-parameters is

described in Appendix D.

All models were trained with an ADAM optimizer [138] using tensorflow’s Model compile

and fit functions. The loss function was defined as

L(x,D(z)) = ||x−D(z)||2−KL(N(µ,σ),N(0,1)),

where the first term is Mean Squared Error for the reconstructed synthetic profile and the second

terms employs KL Divergence to enforce latent space sampling that follows a normal distribution

with zero mean.
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APPENDIX D
C-VAE MODEL HYPER-PARAMETER OPTIMIZATION

Hyper-parameters were tuned using the EHTask dataset as it contained a longer duration of

data compared to the DGaze dataset. Grid search optimization was performed over the following

sets of values, with optimal parameters in bold:

• Learning Rate: 0.001, 0.01

• Batch Size: 20, 60, 100

• Number of Epochs: 10, 20, 30

• Encoder Hidden Layer with ReLU activation function: 32, 64, 96 Nodes

• Latent Space Dimension: 32, 64, 96

• Decoder Hidden Layer with linear activation function: 32, 64, 96 Nodes

The optimal parameters produced an average loss of 0.33 on the validation set.
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