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Monitoring students’ engagement and understanding their learning pace in a virtual classroom becomes challenging in the absence
of direct eye contact between the students and the instructor. Continuous monitoring of eye gaze and gaze gestures may produce
inaccurate outcomes when the students are allowed to do productive multitasking, such as taking notes or browsing relevant content.
This paper proposes Stungage – a software wrapper over existing online meeting platforms to monitor students’ engagement in
real-time by utilizing the facial video feeds from the students and the instructor coupled with a local on-device analysis of the
presentation content. The crux of Stungage is to identify a few opportunistic moments when the students should visually focus on
the presentation content if they can follow the lecture. We investigate these instances and analyze the students’ visual, contextual,
and cognitive presence to assess their engagement during the virtual classroom while not directly sharing the video captures of the
participants and their screens over the web. Our system achieves an overall F2-score of 0.88 for detecting student engagement. Besides,
we obtain 92 responses from the usability study with an average SU score of 74.18.
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1 INTRODUCTION

The pandemic has made virtual online classes a norm rather than an exception. However, the online mode of classes
has received several criticisms; one of the major criticisms being it lacks the eye-contact between the teacher (or the
instructor) and the students. In a classroom, such eye contacts significantly help the instructor gauge the students’
learning pace and understand whether the students are engaged with the topic being taught. In the era of pandemic, a
large number of studies [2, 7, 23, 24, 34, 41, 54] have highlighted this requirement. Consequently, several works have
utilized signals like video captured from the front camera [8, 21, 25] or utilized specialized devices like smart glasses,
thermal cameras, eye-trackers, etc. [1, 22, 47, 54, 56] to capture the eye dynamics of the students to analyze how they
interact with the computer during a live lecture. Intuitively, a solution involving such specialized devices can not scale
well for the masses, whereas a continuous eye monitoring-based solution poses a major limitation as follows.

Interestingly, a virtual classroom opens up the scope for multitasking [10, 12, 13, 32], where a student may perform
several other activities while still attending the classes online. These activities range from productive activities that
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support interaction with the classroom during the live lecture (like taking notes, browsing related concepts on the web,
etc.) to the activities that negatively impact the attentiveness towards the classroom (like browsing social media pages,
chatting over the phone, etc.). In both the above cases, the eyes of a student might not be focused on the computer’s
screen; a method that solely analyzes eye dynamics to infer students’ engagement may result in false positives when
the student performs productive multitasking. Understanding students’ attention in the presence of multitasking is
challenging, as a student might get involved with such activities for a significant duration during a live class [12]. Apart
from that, gazing at the screen is not an essential condition for getting involved in an online meeting [19, 20]. As shown
in several recent studies, a student might still get actively involved in a virtual classroom even if they minimally gaze at
the screen [9, 16, 18, 42]. Therefore, we argue that continuous tracking of eye gazes does not provide a reliable source
of information for marking a student inattentive in a virtual classroom.

Consequently, we ask the following question in this paper: how can we quantify a participants’ engagement while

allowing free movements and other activities that promote positive multitasking? Finding a generic solution for this
problem is challenging, and the pedagogy changes depending on multiple factors, like the level of teaching (K-12 or
University), subjects and topic, socio-cultural aspects, etc. This paper focuses on a particular case when the teacher
utilizes a presentation or slides to explain the concept. The core idea is that a presentation with textual and animated
slides often triggers intermediate cues when the meeting participants are tempted to look at the screen if they are
attentive. We call these cues the Fixation Target Events which include a figure or a diagram, animations, highlighted
texts, etc. Even with this specific setup, multiple technical challenges need to be addressed. First, the processing needs
to be in real-time on the video feed over the meeting platform. Second, it might happen that the student is browsing
his social media profile during the virtual classroom. In this case, his eye gaze on the screen will also be captured during
the fixation target events, resulting in spurious false positives. The platform needs to analyze whether the gaze is on the
presentation slide or on his social media profile. Third, a naive approach of understanding whether a student focuses
on the same content that the instructor is presenting would be to compare the screen of the student with that of the
instructor. However, processing the video frames from the instructor as well as all the students and comparing them in
real-time is challenging. Further, the instructor and the student might use different devices having different screen
sizes; therefore, a direct comparison might be difficult. It can also be noted that a meeting application should record the
minimum information about the participant’s screen such that the privacy of the participants is preserved.

1.1 Our Contributions

Owing to these challenges and limitations of the prior works, we propose Stungage – a student engagement detection
system that aims to capture both the students and the instructor’s video feed along with the lecture presentation to
infer the involvement of the students in the virtual classroom (Figure 1). Stungage works as a software wrapper on
top of an online meeting platform where both the instructor’s and the students’ video feeds are processed locally. The
computed information is shared with the instructor for generating an involvement score for each of the students. The
core contributions of this paper are as follows.
(1) Detection of fixation target events: The fundamental premise of our work is that even if a student involves in
multitasking, the attentive one fixates on the fixation target points such as animation, image, and highlighted short text
content. Accordingly, Stungage extracts the target points from the lecture video by detecting the foreground object
movement followed by a Spatio-temporal bound measure.
(2) Analyzing student’s understandability: For understanding the students learning pace, Stungage uses a cascade-
like phenomenon while responding to three questions – (1) are you inside the online class?, which detects the visual
Manuscript submitted to ACM
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presence of the students during the fixation target events, (2) are you looking at the presentation?, which detects the
contextual presence of the students by mapping the presence of the instructor and student, and (3) are you following

the presentation? , which finally detects the cognitive presence of the students by comparing the instructor and the
student’s gazing energy at the screen. We capture the visual presence by frontal face detection mechanism to segregate
the activities like watching mobile, browsing Facebook, sleeping, etc., from following the lecture presentation by
developing a novel method of extracting the spectral properties of the gazing histogram.

Fig. 1. We propose Stungage to detect students’ engagement in the
virtual classroom using the pervasive webcam. Our method locally
analyses both the students and the instructor’s video feed along
with the lecture presentation and finally compares at instructor’s
end to infer the engagement.

(3) Analyzing teaching performance: Stungage com-
putes the instructor’s presentation score as a by-product
of the system. We count the instructor’s visual presence
during the fixation target event, and finally, upon ag-
gregation over a time window, the presentation score is
generated.
(4) Prototype deployment & evaluation:We have de-
veloped a prototype of Stungage and tested it over two
different studies – (i) a pilot study both in lab and in-
the-wild set up to investigate the system performance
over the existing systems, (ii) a usability study to test the
usability of the system. We have recruited 30 participants
belonging to the age group of 24-44 years to perform both
the pilot experiments. We achieve an overall F2-score of

0.88 for detecting student engagement. On contrary, we obtain 92 responses from the usability study with an average
SU score of 74.18.

2 RELATEDWORK

Existing literature primarily focuses on three different strategies for detecting student engagement in a classroom – (1)
questioning-based, (2) dedicated device-based, and (3) commonly off-the-shelf device-based approach.
Questioning-based approach: Similar to the physical classroom system, for understanding the students’ learning
space, the question-answering interaction-based solution [35, 40, 44, 55, 58] is one of the traditional ways in the virtual
classroom system. In [44], Shin et al. studied the instructor and the learner perceptions using the in-video prompting
questionnaire. Besides, Price et al. [40] applied a comparison mechanism for detecting the engagement of the students
where the instructor’s solution was provided, and they were prompted to compare their solution with the instructor’s
one. In separate work, Yeckehzaare et al. [58] used the concept of question generation and linking by applying a
question map for engaging the students. In these cases, the students proactively participate in the different forms of
questionnaires to establish their understanding. Apart from the questionnaire, the voice and text-based interaction [55]
also plays a significant role in improving learning in online education.
Dedicated device-based approach: To address the problem of the student involvement in the virtual classroom,
several studies [1, 3, 4, 14, 15, 22, 26–28, 31, 39, 43, 45, 47–49, 51, 56, 57] have explored the use of dedicated devices for
capturing either the behavioral or the physiological signals of the students. In one of the earliest studies, Sharma et.
al. [43] tried to capture the students’ lecture navigation pattern by displaying the instructor’s gaze. The researcher
observed that showing the gaze made the presentation easier for the students following the lecture. Afterwards, a
few works [14, 15, 27, 47] captured the eye gaze signal through the eye tracker for collaborative reading, writing,
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problem-solving, and learning. Later on, the authors in [28, 49] explored acoustic signal along with the eye gaze for
improving the remote collaborative performance. While eye gaze monitoring by eye tracker is a promising technique,
the cost and availability of the tracker to all the students is a major obstacle. To address these issues, different forms of
other sensing such as thermal imaging [1, 48], mouse & keyboard tracking [3], and PPG [56] are used to capture the
physiological signal to infer the attentiveness during the lecture session. Despite the benefits of physiological sensing,
it is commonly observed that the techniques require the continuous intervention of the attendees, which is typically
not feasible during the lecture session as students can forget to track the signal. Furthermore, the dedicated wearable
devices need special attention towards installing and demonstrating the devices, which is not a preferable resolution
for a large class.
Commonly off-the-shelf device-based approach: To suppress the shortcomings of the dedicated invasive devices
used in the virtual classroom, the pervasive webcams are considered a suitable alternative for capturing the attendees’
gaze signature. For instance, Whitehill et al. [54] studied the student engagement in the context of their facial expression.
In the same line, authors in [2, 34, 46, 50] applied various emotional attributes such as satisfied, confused, bored, and
anxiety for detecting the involvement of the students in the virtual classroom. While keeping the emotion detection in
the context of engagement is a promising way; however, the frontal screen with the lecture content is one of the mandate
criteria for processing the data. The attendee can look at different content and give similar expressions. Additionally,
in the absence of the instructor’s expression, the attendees can give different expressions irrespective of engaged or
non-engaged. To address these limitations, some studies explores the gaze-based visual attention [7, 8, 25, 29] for
finding the attentiveness of the attendees. In [8], Bace et al. quantified the visual attention by checking whether the
attendee was looking at the frontal screen. In [5, 6], the authors further extended the work by comparing the screen
object with the gaze projection on the screen. The research detected the pursuit interaction but also acknowledged that
the objects on the screen were known and the screen was large. Kar et al. [25] compared the attendee’s gaze gesture
with the instructor’s one to conclude the participants’ attentiveness. However, all of these works consider continuous
monitoring of students’ gaze, which is impractical in multitasking and thus can yield severe false positives.

Similar to the state-of-the-art, our work also uses pervasive webcams to monitor visual, contextual, and cognitive
attention but explores all the attentional behavior simultaneously along with the consideration of discrete monitoring.
Our research goal is to identify the different characteristics of the various attentional behavior and develop a system
that shows the students’ engagement in a real-time virtual classroom while allowing the student to multitask.

3 THE DESIGN OF STUNGAGE: CORE IDEA AND BROAD SYSTEM OVERVIEW

Stungage infers the student involvement and teaching performance from the Spatio-temporal analysis of the student
and the instructor video feeds and the lecture content. The system runs on the students’ device that captures and
processes the students’ video feed at their end to produce the meta-data. The meta-data are compared at the instructor’s
device to detect the involvement of the students in the online lecture session. We start with a preparatory study that
helps us understand the requirements for developing such as system.

3.1 Preparatory Study

For establishing the requirement of detection of student engagement during online teaching, we have conducted an
online anonymous survey1 over 466 teachers and students from different locations across the globe. The participants
are from different designations, including undergrad students (51.5%), masters students (12.7%), research scholar (18.8%),
1 https://lnkd.in/e3T9F_d
Manuscript submitted to ACM
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faculty (10.3%), and so on. We found that most of our studied population (87.4%) admit that online classes lose the
charm of the physical classroom. Presentation slide-based teaching is one of the popular teaching modes in the virtual
classroom, where animation, image, and highlighted text are the preferable presentation content. Thereby, the attentive
students fixate on those contents. Asking about the video-sharing reveals that the participants (65.6%) are comfortable
sharing their videos when the audience size is small (within 20). This motivates us to work with video extracted
information sharing. We observe that 65.3% of the participants strongly believe that multitasking is a common tendency
during the online session, which introduces the need for the discrete interval local processing of video extracted
information-sharing schemes2. This discrete computation involves the opportunistic events where the student fixates
on the presentation. We process these ideas to develop our student engagement detection system.

3.2 Design Idea

The overall idea of the system is to identify the opportunistic events where the attentive student must fixate on the
screen and analyze the lecture context and gaze movement during those opportunistic events. We call these events
the fixation target events. Figure 2 shows the overall framework of the student engagement detection system, which
is primarily composed of two modules – (a) Fixation Target Extraction, and (b) Student Engagement Detection. The
first module analyses the presentation video content from the lecture presentation to extract the fixation targets. The
final module studies the presenter and the students’ video feed during the fixation target events to detect the student
engagement during the online presentation-based teaching. Additionally, the final outcome includes the presenter score
as a by-product of the system for characterizing the instructor’s performance in the session.

Fig. 2. Student engagement detection framework modules – Fixation Target
Extraction and Student Engagement Detection. 𝐺𝐼 ,𝐺𝑆1,𝐺𝑆2: gazing energy of
instructor, student 1 & student 2, respectively.

3.2.1 Fixation Target Extraction. Thismod-
ule runs at both the instructor and the stu-
dents’ end and excerpts the fixation target
points from the presentation video. This in-
volves two steps.
(a) Foreground Video Extraction: Stun-
gage first identifies the object movements
within the presentation slide. Without loss
of generality, we assume that each presenta-
tion is made of a single template. Thus, the
template represents the background of the
entire presentation video feed and the vari-
able content on top of the template appears
as the foreground of the presentation video.

Therefore, for filtering out the invariant component from the presentation video, Stungage applies the existing Gaussian
mixture model-based background subtraction mechanism [60]. However, due to the imprecise learning of the Gaussian
parameters, the extracted foreground pixels incorporate scattered spots. Stungage relies on the median filtering on the
foreground video for erasing the salt pepper-like scatter spots.
(b) Fixation Target Detection: This module considers the filtered foreground pixels to precisely detect the opportunis-
tic events, called fixation target events. The key idea is to identify the portions of the lecture content where the attentive
2 Due to the interest of space, we exclude the complete human study. However, the readers can check the details of this study through this link –
https://github.com/Stungage/PreparatoryStudy.
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student fixates. Among the different presentation lecture video content, our study shows that animation, image, and
short highlighted text give additional attention to the audience. Furthermore, along with the specified presentation
content, the pointer movement creates attention towards the audience. Stungage detects these events by applying a
Spatio-temporal threshold mechanism. The spatial threshold is applied to eliminate the text-heavy presentation content
whereas the temporal threshold removes the short non-resistant presentation content. Specifically, an event is marked
as a fixation target event when the foreground frame pixel count is within the spacial thresholds 𝛿𝑠1 and 𝛿𝑠2 and that
spacial constraint persists at least for 𝛿𝑡 number of frames where 𝛿𝑡 is the temporal threshold. Any violation of the
Spatio-temporal threshold marks the foreground selection as the non-fixation target event.

3.2.2 Student Engagement Detection. Partially, this module executes on both the instructor and the students’ sides,
and the rest runs on the instructor side to generate the student engagement scores during the fixation target events. This
module works in a cascade-like phenomenon while responding to three questions – (1) Are you inside the online class?,
detecting the visual presence of the students during the fixation target events, (2) Are you looking at the presentation?,
detecting the contextual existence of the students by mapping the presence of the instructor and student, and (3) Are
you following the presentation?, detecting the cognitive existence of the students by comparing the instructor and the
student’s gazing energy (detail in Section 4) at the screen. The next section discussed these three steps in detail.

4 STUDENT ENGAGEMENT DETECTION

Fig. 3. Schematic depiction of Student
Engagement Detection mechanism flow

The student engagement module works on top of the fixation target extraction
module to determine the students’ involvement in the online class as well as
the instructor’s presentation performance during the online session. As we men-
tioned earlier, while detecting student engagement, this module responds to three
questions in a cascade-line phenomenon (Figure 3), where each question module
is sequentially attached. The initial module eliminates a significant number of
non-engaged students based on the visual absence. Subsequent modules succes-
sively eliminate the non-engaged students with a contextual and cognitive value
different from the instructor.

4.1 Visual Presence: Are you inside the online class?

For detecting the visual presence of the student in the online classroom, Stungage first checks whether the student’s
frontal face is detected during the fixation target events. Stungage detects the frontal face from the video feed3 of
the instructor and students using an existing approach [52] based on cascaded classifiers with Haar-like features
and AdaBoost. This analysis is done one the respective devices of the students and the instructor and no data is
communicated over the Internet.

4.2 Contextual Presence: Are you looking at the lecture?

To detect the contextual presence of the student in the class, we consider that the student visually present in the class
must fixate at the presentation screen during the fixation events. This module compares the contexts of the instructor and
the students in terms of the screen content. Although the student may perform different tasks during the non-fixation
periods, the attentive one switches to the instructor’s context during the starting of a fixation event. Therefore, for each
3 We acknowledge that capturing local video feeds may cause additional stress to the participants.
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fixation target event, the first 𝑛 frames from the screen capture4 are chosen for making the comparison of the context.
The selection of only a few initial frames from the fixation event reduces the number of comparison operations; thus, it
reduces the system complexity. Considering a screen capture frame as an image, a pixel-based histogram is derived for
both instructor and student-sided screens. For the student-sided presentation video, the nearby fixation target event
of the instructor’s presentation video is chosen. In the absence of such an event in the student-sided presentation
video, the instructor’s fixation target event is used. Even if both-sided presentation videos are the same, we do not
observe an exact match due to the device differences. Therefore, the system scales down the histogram size to assign
the nearby pixels in a single bin. Then, the system compares the histograms using the chi-square metric and selects the
minimum distance among the 𝑛 comparisons. Finally, the student’s presence in the lecture is determined depending on
the distance value lying within the threshold 𝛿ℎ .

4.3 Cognitive Presence: Are you following the lecture?

Fig. 4. 68 facial landmarks, candidate
points for 3D points estimation (red)

In this module, the system detects the cognitive presence of the students by
checking whether the instructor and the student are following the presentation
lecture in a similar way. For this purpose, Stungage first detects the facial land-
marks from the detected faces of the video frames following the hourglass model
[17]. From the facial region of interest, 68 facial landmarks (shown in Figure 4)
are generated as an outcome of the hourglass model. We next detect the gazing
projection based on these facial landmarks, as follows.

4.3.1 Gazing Projection Estimation. This submodule estimates the position
where the student gaze is projecting towards the front screen. However, due to
the binocular vision problem, completely relying on the gaze for the projection

is not legitimate. In the line, the eye corners move towards the direction of the eyeball. Therefore, Stungage uses facial
landmarks for estimating the fixate position on the screen. In this approach, first, the 3D points in the world coordinate
system for the 2D facial landmarks are determined by following an existing state-of-art mechanism [53]. Stungage
selects six landmarks (2 eye corners – 37, 46; 2 lip corners – 49, 55; 1 nose end – 31; and 1 thin end – 9; red points in
Figure 4) points out of 68 facial landmarks as the candidate points for 3D points estimation. Further, the system follows
Zhang et al. [59] for calibrating the camera parameters. Next, the pose of the calibrated camera is predicted from the
current detected 2D landmarks, and the model populated 3D points in the world coordinate system by applying a direct
linear transform solution followed by Levenberg Marquardt optimization. Without loss of generality, Stungage considers
the center of the face (nose endpoint), the candidate point for the gazing projection. Finally, the system determines the
projection of the nose end to the 2D screen using the current pose of the camera following the Pinhole camera model. It
can be noted this this computation is done on individual devices.

4.3.2 Gazing Energy Similarity. From the projection point, our final task is to identify the students who are following
the presentation. Towards this goal, the student’s estimated projected points on the screen are compared with those of
the instructor. For this purpose, the gazing energy of the students is shared with the instructor, and the computation is
done over instructor’s device. While attending the lecture in the online mode, the gaze movement is highly dominated by
the horizontal movement [30]. Therefore, Stungage excludes the vertical axis data for the next processing. Furthermore,
4 A screen capture records the device’s (computer or laptop) screen. It can be noted that because of the privacy concern, we do not share the screen
capture of one participant with another; instead, we convert it into pixel histograms which are then compared between the instructor and the students.
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as the projection value depends on various parameters like the camera calibration, and 3D-2D mapping model, the
individual projection value can be erroneous. For eliminating the impact of the error, the system populates per second
projection strength by computing the projection value-based gazing energy over the window of one second. The gazing
energy is calculated by taking the sum of the square of the horizontal projection value over a window of one second.
For engaged students, both the instructor and the student look at a similar object in the presentation. Therefore, the
gazing energy must be similar for both of them. Hence, the system compares the set of gazing energy within a single
fixation target event for both the instructor and the student using the Student t-test to interpret whether both the
samples have a similar mean value. Our null hypothesis is that the mean of the gazing energy of the student and the
instructor are the same. The system reports non-engagement of the student depending on the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < .001.

5 SYSTEM LAYOUT DESIGN

Stungage renders the online classroom involvement status in two phases. In the first phase, it computes the involvement
score for both the instructor and the students. The final phase takes charge of the score generation time detection. The
details of the proposed visualizer system are discussed as follows.

5.1 Involvement Score Computation

The visualizer shows two types of involvement score – (i) a current score, and (ii) an aggregate score. The current
score is computed based on the individual involved in the current segment of the presentation whereas the aggregated
score shows the overall involvement in the segment of the presentation. Moreover, the system displays the overall
involvement in all the prior segments. (1) Student Engagement Score: Our system preserves a positive fixation
target event count F𝑠 for each student 𝑠 to count the fixation events where the students are engaged. The fixation
target event count, F𝑠 is incremented by one if the cognitive presence of the student is detected in that fixation event.
Therefore, for a segment of 𝑡 unit of time, if there exists 𝑓 fixation target events, then our system computes the current
student engagement score as C𝑠 = (F𝑠/𝑓 ) × 100%. While counting the fixation target events, the system only considers
the events where the instructor is contextually present. The aggregative score is calculated by taking the average of
the current score, C𝑠 of all the students present in the online class. (2) Presentation Score: Similar to the student
engagement score, Stungage computes the instructor’s presentation score as a by-product of the system. Analogous
to the student, for the instructor, the system maintains a positive fixation target event count F𝑖 to count the fixation
events where the instructor is involved. But, the fixation target event count, F𝑖 is incremented by one if the contextual
presence of the instructor is detected in that fixation event. Therefore, for 𝑡 unit time segment, if there presents 𝑓
fixation target events, the instructor’s current presentation score is calculated as C𝑖 = (F𝑖/𝑓 ) × 100%.

5.2 Involvement Score Generation Time Detection

The visualizer plays a significant role in the involvement score generation time detection. It provides two alternatives
to the instructor – (i) automatic selection: slide-transition based time segment selection, and (ii) manual selection: fixed
time-slice based time segment selection. The details follow.

5.2.1 Slide Transition-based Time Segment Selection. For automatically selecting the involvement score generation
interval, our system depends on the slide transition in the presentation video. This selection process not only detects
the slide transition but also eliminate the insignificant slide contents such as starting slide, ending slide, and title slide.
Typically, the slide numbers are present in all the presentation slides except for the insignificant ones. Therefore, the
Manuscript submitted to ACM
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system first locates the slide number position in the slide from the usual slide number positions – upper right corner,
lower right corner, and middle bottom of the slide. During the slide transition, the pixel values of either of the three
portions reasonably change and the rest two remain the same. For detecting the slide transition, the system applies a
30 × 50 pixels grid on the three pre-defined positions of each frame of the video for cropping the portion containing
the slide number. The starting slide commonly with no slide number is treated as the initial template for matching
the subsequent slides. Once retrieved the cropped frame portions, the system converts that into a gray-scale image
and compares the cropped image with the respective cropped image of the subsequent frame using the mean squared
error metric. During the slide transition, only the comparison of the cropped images with slide numbers produces a
high difference value whereas the rest of the portion comparison in transition or non-transition comparison generates
almost zero difference value. Hence, by applying a simple threshold value, 𝛿 the system slices the presentation video.
Once a slide transition is detected, the system further compares the frame with the initial template with no slide number
using the mean square error metric. If the error value is close to zero, the system marks it as an insignificant slide and
eliminates the slide portions for further processing. Otherwise, the video segment belonging to a significant slide is
chosen for a segment of involvement score calculation.

5.2.2 Time Slice-based Time Segment Selection. The presence of the slide number in the presentation is not mandatory
for an academic presentation. This leads us to open up a manual solution for selecting the involvement score generation
interval. In the manual process, the system slices the presentation video based on a fixed time interval (3, 5, or 15
minutes) and computes the involvement score for that time segment.

6 LAB-SCALE EVALUATION

For understanding the effectiveness of Stungage, we first conducted a lab-scale study. The detail follows.

6.1 Evaluation Methodology

Analogous to a typical classroom, the participants of the experiments are selected from a similar academic background.
Each time, one participant performs the instructor’s role, whereas the rest play the students’ role. The instructors
voluntarily choose the presentation topics. We instruct them to present content with animation, image, and highlighted
text. They are open to using any presentation template. The experiments are conducted using the Google Meet platform
where, both the instructor and the students use a dedicated desktop computer with a Logitech webcam c270 mounted
on top of the monitor. The participants can sit at 40-60cm from the monitor under normal lighting conditions.

6.1.1 User Details. 13 different participants volunteered in the lab-scaled experiment for a duration of 15 minutes
each. During the experiment, the students are instructed to perform four different attentive and non-attentive behaviors
– (a) completely following the presentation, (b) reading an article on a different tab, (c) watching a video on a different
tab, and (d) looking at the mobile. Except for the presentation, there was no restriction on the article or video content
selection. Before conducting the experiments, a self-reported communication competence form is shared among
the participants. The form computes the self-reported communication competence score as per the Self-Perceived
Communication Competence Scale (SPCCS) [33] for understanding the self-reported competence over a variety of
communication contexts. The instructors are chosen depending on either completely confident or fairly confident one.

6.1.2 Baselines. For estimating the efficacy of Stungage, we compare it using metric-based system performance
analysis under lab-scale experiments. Bace et al. [8] developed a visual attention detection mechanism for the mobile
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interaction. In this approach, the attention or the engagement is detected depending on whether the user is continuously
looking at the front screen. For marking a participant as attentive, we check whether the user is looking at the screen
for more than 50% of the time of the class.

6.1.3 Ground Truth Generation. Engagement is a subjective measure. Therefore, generating the ground truth
information for evaluating the system is a difficult task. For ground truth annotation, we have asked both the instructor
and the students to capture the facial and the presentation videos using the OBS5 platform. We mark the participant as
engaged if the presentation video is opened and the participant is looking at the screen. Otherwise, the participant is
marked as non-engaged. We continue the annotation for each of the time segments of the videos. In case of a mixed
behavior, we mark the participant depending on the majority behavior during that time segment.

6.1.4 Evaluation Mechanism. We select F𝛽 -score for computing the efficacy of the system with unbalanced set of
engaged and non-engaged pair. Furthermore, detecting a non-engaged student is important for student’s understandability.
Therefore, we have calculated specificity and negative predictive value for prioritizing the non-engaged detection.
Specificity indicates the detected non-engaged participants by the system out of all non-engaged participants in the
collected sample. In contrast, a negative predictive value indicates the detected non-engaged participants out of all
detected non-engaged participants. Finally, we compute the F𝛽 -score as the weighted harmonic mean of the specificity

and the negative predictive value, where 𝛽 = 2. Thus, 𝐹𝛽 = (1 + 𝛽2) negative predictive value×specificity
𝛽2×negative predictive value+specificity .

6.2 Results and Evaluation

The lab-scale study gives an overall analysis of Stungage in comparison with the state-of-the-art. It further provides
insight into the participants’ specific performance.

6.2.1 Baseline Comparison: Stungage detects student engagement depending on the statistically significant proba-
bility value. For analyzing the system’s efficacy in detail, we compare Stungage with the continuous monitoring-based
scheme described in [8]. Figure 5a shows a comparison between Stungage and the baseline. From a teacher’s perspective,
identifying non-attentive students is more relevant. Therefore, we use three metrics – specificity, negative predictive
value, and F2-score for assessing the system performances. We observe that the F2-score of Stungage is better than the
baseline scheme under the lab-scale condition (Figure 5a). Although the negative predictive value is closer for both the
methods, the specificity is much improved for Stungage. Even though the baseline captures the non-attentive cases
(resulting in high negative predictive value), it also results in high false-positive detection (low specificity). The high
false-positive cases mainly occur when the participant performs other activities on a different tab, keeping the face in
front of the screen.

6.2.2 User-wise Performance. For analyzing the system performance at the participants’ level, we study the individ-
ual’s performance in four different attentive and non-attentive behaviors. Figure 5b shows the F2-score for individual
participants while performing all four different behaviors using Stungage and baseline method. The figure illustrates
that except for the participants 𝑢04, 𝑢06, 𝑢09, and 𝑢10, the individual F2-score of Stungage is at least 0.9, whereas that of
baseline method is 0.38. Although the non-attentive behaviors like video watching and mobile searching are captured
accurately for the participants 𝑢04, 𝑢06, 𝑢09, and 𝑢10, our system gets confused when a student reads some article on
the computer screen. Indeed, such behavior is expected as the system does not explicitly differentiate between reading
articles relevant to the class versus reading irrelevant articles (like a newspaper) on the computer screen.
5 https://obsproject.com/
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(a) (b) (c) (d)

Fig. 5. (a) System performance in lab-scale, (b) Participant wise system performance (pink line represents the difference in F2-score
between Stungage and baseline), (c) Impact of the Fixation Target Extraction, (d) Different task-wise system performance

6.3 Ablation Study

We perform an ablation study where we continuously compute the students’ engagement by suppressing the fixation
target extraction module. Figure 5c shows the system performance under both the schemes – Stungage and continuous
tracking without fixation target extraction. Irrespective of the metric value measure, the continuous tracking scheme
fails to reach the performance of the complete model. The failure occurs mainly during the attentive instances when
the participant takes note while attending the virtual class. Therefore, this ablation study confirms the importance of
the fixation target extraction module.

6.4 Impact of Different Tasks and Design Setup

The types of co-tasks during multitasking play a significant role in the engagement computation as the characteristics
of the student’s presence in an online class highly depend on the co-task. Figure 5d shows the impact of different
performing co-tasks – (a) reading articles, (b) watching a video, and (c) looking at a mobile, during the class, on the
system performance. Except for the first one, the rests are pretty different from attending a lecture. Therefore, the
last two tasks get majorly excluded using the contextual and visual presence module, respectively, resulting in a high
F2-score of the system. On the other side, the detection of the student’s engagement while reading an article is merely
symmetrical with attending the class, as both involve looking at a particular location of the screen for a significant
duration. Even though the gazing projection-based cognitive computation for excluding the first task causes to generate
the false positive instances, we obtain the median F2-score of 0.54.

Besides analyzing the module-centric impact, we further study the system performance from the design layout
perspective in terms of score computation and score generation time. We observe that although the predicted score
varies marginally across the participants (Figure 6a), the predicted score of 67% participants differs from the actual at
most by 12.5(%), whereas the exact match in terms of the score is found for 25% of the participants. The rest of 33%
participants get a score to differ by 25(%) due to the false positive instances caused for the article reading. For analyzing
the system behavior with a varying score generation time, both automatic (slide-transition based time segment selection)
and manual (5 minutes time-slice based time segment selection) time selection schemes perform almost equally (Figure
6b). Moreover, as the engagement is detected based on the statistically significant test, the overall engagement score
is not the aggregation of the individual instances. However, we find that the system performance of the individual
instances for both automatic (blue line) and manual (red line) are close to the overall one (green line). Similar to the
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(a) (b)
(c)

(d)

Fig. 6. System performance: (a) participant wise (pink line represents the difference in engagement score between Stungage and
baseline), (b) lecture time wise, (c) computational cost, (d) in-the-wild

student’s engagement score, Stungage generates the instructor’s presentation score with a detection error margin of
2(%).

6.5 Running Time

For analyzing the computational cost during the system execution, we have arranged a short lecture session of 116
seconds duration with a single instructor and student. The presentation contains three fixation target events. Figure 6c
shows the memory consumption with time for different modules of the system. The overall system takes 63 seconds with
a maximum memory usage of 1520MB to calculate the student engagement. Specifically, the fixation target extraction

and the cognitive presence modules execute in 38 and 18 seconds with a maximum memory usage of 1520 and 671 MB,
respectively. The computational cost is justifiable as the fixation target extraction module executes the complete set of
frames to find out the fixation events. In this arrangement, on average Stungage takes 0.018 second to process each
video frame with a per-second frame rate of 30.

7 IN-THE-WILD EVALUATION

This section analyzes Stungage over an in-the-wild setup. Like the lab-scale setup, we performed in-the-wild experiments
where the participants could use their personal devices to join the virtual classroom. We obtained the institutes’ ethical
committee approval for involving the students (voluntarily) in the data collection procedure for these experiments.
The data have been collected over regular online classes in a university set up during the pandemic period, where the
students and the instructors volunteered in the data collection procedure. We do not impose any restrictions on the
sitting pattern, lighting condition, etc., to the participants during the class. 7 instructors are chosen from 23 participants6

depending on either completely confident or reasonably confident one following SPCCS [33]. The experiments are
conducted under 12 different virtual classrooms with a total of 13 hours (minimum duration: 30 minutes, maximum
duration: 2 hours). On average, 8 students from the classes have participated in these experiments. We have compared
Stungage using the survey-based system design analysis to estimate the design efficacy. Three different layouts are
designed based on the existing online classroom platform. (i) Students’ static image view: This is the default layout,
where the instructor can see the lecture video along with the static images of the limited set of students. This layout
allows us to compare our system in no video and no feedback scenarios. (ii) Limited set student’ video view: This is

6 The participants have similar face color. Analysing the system with different face colored is a good future direction of the work.
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Table 1. Mean and standard deviation for in-the-wild study survey (numbers in the brackets denote standard deviation)

Survey Question with endpoints: "Not at all" (1) and "Very Much" (7)
Lecture with limited
set of student’s view

Lecture with students’
static image view Our Design

system
evaluation

How much do you feel that the system would help you to take the class? 4.38(1.33) 4.15(1.96) 5.31(1.9)
How distracting is the system for taking the class? 4.23(1.42) 1.77(1.19) 4.62(1.55)
How satisfying is the system for taking the class? 4.46(1.34) 3.92(1.9) 5.23(1.72)

How much would you like to take future class with the system? 4.69(1.2) 4.08(1.94) 5.38(2.27)
How much students’ privacy is maintained in the system? 2.62(1.39) 6.77(0.42) 5.23(1.25)

student
understandability

How much of a personal connection do you feel with the student? 4.77(2.12) 1.85(1.03) 4.08(1.82)
How do you feel easy to see the student understandability? 4.08(1.27) 1.92(1.33) 5.54(1.87)

How do you feel easy to respond the student? 5.23(0.97) 3.15(1.23) 5.38(0.84)
How aware are you of your presentation performance? 4.92(1.21) 2.23(0.89) 6.23(0.7)

another default layout in online meeting platforms, where the instructor can see the lecture video along with a few
randomly chosen students’ video feeds. Note that the complete student view is not present. This layout permits us to
compare our system in a limited set of student videos. (iii) All students’ engagement view (Stungage): In this layout,
the instructor sees the lecture video and all the students’ engagement statistics. The engagement stats view is initially
empty and shown after the fixation target encounter. The ground truth is generated in a similar way as that of the
controlled setup (Section 6.1.3). Besides the metric-based analysis, these experiments were evaluated using a set of
surveys consisting of system evaluation and student understandability. Once the class is over, three different layouts are
shared with the instructor, and for each layout, they were asked to fill up (1) system evaluation survey [36, 37] that
captures the instructor’s assessment on the system, and (2) student understandability survey [36, 38] that captures
instructor’s experience with the view. We perform Paired Wilcoxon signed-rank tests with correction on all the survey
questions to understand the differences in the survey responses across the different layouts.

Here, besides the metric-based evaluation, we focus on the system behavior study under the in-the-wild setup
condition and analyze the impact of student understandability. Figure 6d shows that similar to the controlled setup
study, the F2-score of our system is better than the baseline approach. While the baseline method detects the non-
attentive cases (resulting in high negative predictive value), it also has high false-positive detection (low specificity).
On the other side, Table 1 shows the average responses for the questions focuses on the evaluation of the platform
and the understandability of the student by the instructor as well as well-accustomed participants7, respectively.
Except for the students’ privacy, Stungage layout is rated significantly higher than both the state-of-the-art systems
(Lecture with limited set of student’s view and Lecture with students’ static image view) while studying the platform
evaluation. A detailed analysis using Paired Wilcoxon signed-rank test reveals that in terms of students’ privacy, our
system is rated higher than Lecture with a limited set of student’s view (𝑤 = 5.5, 𝑝 = .009). Although no significant
differences are observed in terms of system help, satisfaction, and future usability during system evaluation study,
our system is rated higher than the other two layouts (Limited set of student’s view and Students’ static image view)
in terms of student understandability (𝑤 = 3.0, 𝑝 = .005;𝑤 = 0.0, 𝑝 = .002) and presentation performance awareness
(𝑤 = 3.0, 𝑝 = .004;𝑤 = 0.0, 𝑝 = .001). In terms of personal connection and students’ response chances, Stungage is also
rated higher than the Lecture with students’ static image view (𝑤 = 0.0, 𝑝 = .009;𝑤 = 0.0, 𝑝 = .004), respectively.

8 USABILITY STUDY

For the usability study, we have created a detailed demo8 of Stungage containing the system running steps and then made
it publicly available along with the platform. The users were free to check the system and provide their feedback through
a Google form. The feedback form consists of 10 questions from the System Usability Scale [11] where the participants

7 Including 7 instructors, altogether 13 participants participated in these surveys. 8 https://youtu.be/2eUVEoKKEpU
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need to rate the system on a scale of 1 (strongly disagree) to 5 (strongly agree). The details of this questionnaire are
available at [11]. Out of the 10 questions, the odd and the even questions yield strong agreement and disagreement,
respectively, for the high usability of a system. Each question’s score contribution is a map to the range between 0 and
4. The overall value of system usability is calculated as,
𝑆𝑈 = ((𝑄1− 1) + (5−𝑄2) + (𝑄3− 1) + (5−𝑄4) + (𝑄5− 1) + (5−𝑄6) + (𝑄7− 1) + (5−𝑄8) + (𝑄9− 1) + (5−𝑄10)) × 2.5.
We obtain 92 responses with the majority of the participants (57%) having the age group of 25-35. Besides teachers and
professors, we also get responses from high school students, undergrad students, and IT professionals. The participants
confirmed that they use such meeting platforms regularly for attending classroom lectures or public tutorials.

For establishing the usefulness of our system, we check the SUS score distribution from the public feedback. Figure 7a
shows the individual question-wise SUS score which confirms that the participants provide their feedback by properly
reading the instruction, concluding that they are valid users. On the other side, Figure 7b reveals that 49% of the
participants have given the SUS score of more than 80 whereas the average SUS score is 74.18. This indicates that
the participants in the survey consider Stungage as a useful system for understanding the students’ engagement.

(a) (b)

Fig. 7. Statistical analysis of SUS: (a) question-wise, (b)
participant-wise

Besides the usability questions, we keep an optional open-
ended suggestion field in the feedback form. This results
in receiving a few inspiring words along with appreciation
from the participants. One of the participants mentioned “It
looks like an interesting application to me. But the efficiency

of the facial recognition code needs to be tested properly.”
Truly, as our system uses various existing computer vision
tools for processing facial as well as presentation videos,
the system performance utterly depends on the efficacy
of those tools. We receive justifiable system performance
under state-of-the-art tools. Further improvement of those
tools will promote our system. Another valuable suggestion

is – “Real-time interactions like pop up questions and random opinion taking may be incorporated in the student interface

alongside the instructor video and content presentation.” Here, the system only captures the current students’ involvement
status during the online class without involving them. Adding a recommender for improving the current students’
involvement status will be interesting future work.

9 CONCLUSION

To the best of our knowledge, Stungage is the first of its kind that identifies the discrete fixation target events followed
by the visual, contextual, and cognitive presence detection for measuring the students’ engagement in the virtual
classroom. While quantifying the students’ engagement score, we also compute the presentation score of the instructor
for self-assessment. The thorough evaluation from both lab-scale and in-the-wild analysis states that Stungage performs
well for the majority of the cases with good usability feedback. However, Stungage still relies on video processing,
which is always a heavy task; therefore, it would be interesting to optimize the system further to make it more suitable
for handheld devices.
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