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Fig. 1. The BEAMES user interface for multi-model steering, selection, and inspection for regression tasks. The model view (A) shows
circular glyphs representing regression models color coded by residual error. The data table (B) shows training, test, and application
data sets. The control panel (C) allows users to filter models and critical instances, and change feature weights (D).

Abstract— Interactive model steering helps people incrementally build machine learning models that are tailored to their domain
and task. Existing visual analytic tools allow people to steer a single model (e.g., assignment attribute weights used by a dimension
reduction model). However, the choice of model is critical in such situations. What if the model chosen is sub-optimal for the task,
dataset, or question being asked? What if instead of parameterizing and steering this model, a different model provides a better
fit? This paper presents a technique to allow users to inspect and steer multiple machine learning models. The technique steers
and samples models from a broader set of learning algorithms and model types. We incorporate this technique into a visual analytic
prototype, BEAMES, that allows users to perform regression tasks via multi-model steering. This paper demonstrates the effectiveness
of BEAMES via a use case, and discusses broader implications for multi-model steering.

Index Terms—Interactive machine learning, ensemble model builder, multi-model steering, information visualization

1 INTRODUCTION

Domain experts use interactive visual analytic systems to solve real
problems spanning a broad set of domains. Many such systems incor-
porate machine learning models to help analyze the data. Users interact
with such systems to explore their data by changing various parameters
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of the models, which in turn produce different results. This process,
generally referred to as model steering, is complex. Users need to un-
derstand the parameters of the models (and the general characteristics
of the models) to properly convey their intention or domain expertise
to the system, improve the models, and in turn gain insight.

Prior work has looked at this fundamental usability problem. For
example, Endert et al. proposed semantic interaction as a method to
couple model steering operations with native user interaction on the
data. Interaction such as highlighting phrases or text, performing a
search, or grouping documents steer clustering and natural language
processing algorithms [17]. Daee et al. showed with a user study
user feedback on feature relevance enhanced sparse linear regression
models in a sentiment analysis task [14]. Yang et al. studied design
implications for such system, where non-experts can interact with
complex models to solve real life problems [60]. Other similar research



Fig. 2. A conceptual diagram of our iterative technique for multi-model
steering and inspection. Users interactively inspect and steer models,
which are generated and sampled using a variety of techniques described
in Section 3. When satisfied, users can export either a model ensemble
or a single model.

explorations can be referred in these works [1, 3, 11, 44].
While the advances of these works are impactful, the complexity of

algorithmic support in visual analytic systems and machine learning
continue to increase. The act of model steering is no longer limited to
adjusting the parameters of a single algorithm. For example, systems
like Interaxis [29], Dis-Function [8], AxisSketcher [35], and others
rely on interactive updating of a loss function based on user interaction
to find optimal attribute weights of a single model that closely matches
the domain expertise of the users. These single-model steering systems
allow users to intuitively steer a model, without requiring knowledge
of the underlying model and its parameters (e.g., [8, 19, 29, 31, 57, 58]).
However, single-model steering becomes less effective when the model
chosen no longer fits the task or data characteristics. An incorrectly
chosen model is hard to steer to get acceptable results. We call this
problem multi-model steering, where interaction steers multiple models
from a set of model types, and users ultimately select a best model for
the task and domain.

Multi-model steering is a complex process requiring a considerable
amount of technical expertise. A model is defined by a learning al-
gorithm. Each algorithm relies on a set of hyperparameters. While a
model trains on a dataset, it learns an optimal set of parameters and
weights to precisely characterize the structure of the data so that it can
generalize well on an unseen dataset. Setting the correct learning algo-
rithm and the right combination of hyperparameter values is critical to
building an optimal model for a given problem type (i.e., classification,
regression, clustering, etc.). For users without formal data science
training, specifying each of these parameters may be difficult.

In this paper, we describe a technique that allows users to inspect
model outputs, give feedback, and in turn steer and select from multiple
models. (See Figure 2). In this case, multiple models refers to a set
of models formed by using different learning algorithms, where each
algorithm is defined by using a range of values for its hyperparameters
(e.g., Model 1 is LogisticRegression(alpha = 0.2), Model 2 is Logisti-
cRegression(alpha = 5), Model 3 is BayesianRegression(alpha = 40),
etc.).

The visual analytics technique presented in this paper allows domain
experts to inspect models by checking a model’s predicted output on
the data (i.e., checking critical data instances). Accurate prediction of
critical data instances can increase user’s trust in the model. Our tech-
nique also allows people to steer and inspect multiple models. Further,
our technique assists the inspection process by recommending models
(from the collection of models) which successfully make predictions on
the critical data instances with zero or relatively low error value. Show-
ing a wide spectrum of models for the given regression problem can
be beneficial to domain experts who otherwise would not be aware of
the many possibilities and permutations of models. Being able to filter
the data by instances and filter models by their performance (by simple
double range sliders and toggling switches for categorical items), users

can drill down to models which are successful and can validate them
by checking their results on critical data instances. However, since this
process is iterative, our technique provides an interactive visual inter-
face to iteratively refine the critical instances and other user input to
continue model steering and inspection. Further, our technique enables
domain experts to add knowledge to the model building process. Users
can add knowledge about which features may be more important than
others, or which data instances are more important to correctly predict.

The technique presented in this paper has three primary components:
i) interactive weighting of critical data instances, ii) interactive fea-
ture selection with weights, and iii) interactive model selection and iv)
building model ensembles. Users can steer multiple models simulta-
neously by increasing the weights on critical data instances (using the
on-demand sliders shown in Figure 3), indicating that accuracy on these
data items is more important. In addition, they can select features (by
toggling checkbox type buttons) and specify their weights (by dragging
sliders) to specify their relative importance. Users can also perform
interactive model selection by “liking” one or more models, from which
BEAMES generates a new set of similar models to inspect. Finally,
they can select a export a model that best fits their task, or generate an
ensemble of models to use.

To summarize, our technique searches the model space for models
that more closely adhere to data items and attributes the user is inter-
ested in. The set of models is refined at each step, where more models
are generated and less relevant models are pruned. This human-in-the-
loop process allows domain experts to explore a myriad of models for
their regression task, and add domain expertise into the model build-
ing to produce models which adhere to both subjective and objective
preference of the users. The main contribution of this paper are:

1. An interactive technique for domain experts to select an opti-
mal model using multi-model steering aided by - (1) interactive
weighting of data instances; (2) interactive feature selection and
weighting; and (3) building model ensembles.

2. A visual analytic system called BEAMES, which instantiates our
technique to help people select a regression model using multi-
model steering.

3. A usage scenario demonstrating the intended usage and interac-
tion with the system.

2 RELATED WORK

2.1 Single Model Steering Systems
Interaction based single model driven visual analytic systems has been
around for a while, helping non technical users build and change model
parameters by control panels or UI elements which enables them in-
teractively demonstrate feedback. The spectrum of problem types
these systems solve is adequately wide. It includes ranking [57], met-
ric learning [8], decision trees [55], dimensional reduction [19, 29, 35],
feature selection [25], weight space exploration [38] and many more.
For instance, Podium [57], is driven by a single linear SVM model
with the goal to compute attribute weights based on users subjective
preference of multi attribute data items. Further demonstration-based
interaction using a single model steering approach include systems
such as [8, 16, 18, 19, 36].

In all of these examples the model infers parameters based on users
demonstration by direct manipulation of graphical widgets. A rele-
vant system is the work of Kim et al., InterAxis [29], which showed
how users can drag data objects to the high and low locations on both
axes of a scatterplot to help them interpret, define, and change axes
with respect to a linear dimension reduction technique. Mühlbacher et
al. [37] explains increased user involvement in black box algorithms,
using parameter refinement to change the underlying models. Pez-
zotti et al. [41] have shown a single user steerable model to provide
feedback to tSNE models for dimensionality reduction. Similarly, in
an interactive recommender system, a user can provide continuous
feedback, such as by recording additional choices, or by explicitly
scoring (liking/disliking) individual items [24]. Many other exam-
ples of direct manipulation of visual glyphs to provide user feedback



exist [5, 18, 28, 45, 48, 51, 52, 58]. Our work is distinct from these as
we are enabling the user to steer (by interaction based user feedback)
multiple machine learning models as opposed to single models. Also,
our technique allows users to inspect multiple models simultaneously,
leveraging them to evaluate and select an optimal model.

Liere et al. have defined computational steering as a process to
enable users to change parameters of simulations on the fly [56]. Their
paper emphasizes the concept that simulations run over many iterations,
where users may need to update parameters before completion. In this
paper, we ground our concept of model steering in this prior work, and
refer to it as a process in which a model’s parameters are changed to it-
eratively produce updated results, and multi-model steering as a process
in which a model’s hyperparameters and parameters are changed. It is
similar to computational steering in that multiple iterative cycles are
computed, and user input can change parameters or hyperparameters at
any iteration. This also aligns well with how model steering has been
implemented in visual analytic systems discussed above. Additionally,
BEAMES also supports interactive model selection by allowed users to
select a subset of models and generate a new set of similar models.

2.2 Multi Model Interaction and Model Ensembles

Work of Bradel et al. [6] lies in the multi model steering space. Using
semantic interaction they allow users to steer multiple text analytic
models. While effective, their system is scoped to text analytics and
handling text corpora at multiple levels of scale. Shneider et al. showed
visual integration of data and model space, by allowing users identify
effective component models on data items from a classification model
ensemble [49]. Patel et al. showed an example technique to work with
multiple model systems helping users understand relationship between
data, models and features [40]. Piringer et al. showed an interactive vi-
sual analytic system helping multiple regression model comparison and
validation in an interactive fashion [42]. Their technique specifically
uses comparison of multiple model outputs to help users select the best
model. Similarly, Cutura et al. prototyped an interactive multi-model
selection tool focused on the comparison of multiple dimensionality
reduction models [46]. Kwon et al. [34] showed a tool to visually iden-
tify and select an appropriate cluster model from multiple clustering
algorithms and parameter combinations. However, their work targeted
data scientists as the user, while we are aiming to build techniques for
domain experts without formal data science training.

In the literature, there is ample contribution in model space and
parameter space analysis to traverse the model space. For example, to
characterize user’s role in interactive machine learning space, Amershi
et al. [2] proposed a set of high-level paradigms. Sedlmair et al. [50]
defined visual parameter analysis as variation of model parameters,
generating a diverse range of model outputs for each such combination
of parameters. Their work investigated the relationship between the
input and the output within the described parameter space. The work
presented in this paper specifically focuses on tabular data model build-
ing for a regression task by non expert users. More importantly, we are
using multiple models to enable users find an optimal model from a
broader set of model types.

The topic of model ensembles is related to our work, as one of the
interactions provided to the user is to build ensemble models from
a set of models they like. Model ensembles increases model perfor-
mance by fusing multiple model’s strength. Different strategies yield
different kinds of model ensemble [26, 27]. For example, Potter et
al. [43] showed an interactive ensemble model to allow focus and
discovery of simulation outcomes. Datta et al. built a system Commu-
nityDiff, showing a mechanism to visualize ensemble space by using
weighted combination of various algorithms to aid identifying patterns,
commonalities and differences in the space of community detection
problem type [15]. Talbot et al. [53] built an interactive ensemble
matrix system visualizing confusion matrices to allow insight gain on
various component classifiers. Model ensembles can be built by train-
ing the component models on different subset of data [7, 21], or by
using different algorithms [33, 59] for each model type (e.g., by using
bagging [7]). In our case, we allow users to select models they like
and combine them to build a model ensemble via bagging.

Table 1. Model samples and hyperparameters used by the learning
algorithm.

Model Learning
Algorithm Hyperparameters

M1 Linear
Regression

fitIntercept = ’true’, normalize =
’false’

M2 Linear
Regression

fitIntercept = ’false’, normalize =
’false’

M3 Linear
Regression

fitIntercept = ’true’, normalize =
’true’

M4 Logistic
Regression

fitIntercept = ’true’, penalty = ’l1’,
dual = ’true’, tol = ’10.55’, C =
’1.854’, maxIter = ’10’

M5 Logistic
Regression

fitIntercept = ’false’, penalty = ’l2’,
dual = ’true’, tol = ’0.12’, C =
’100.854’, maxIter = ’20’

M6 Logistic
Regression

fitIntercept = ’true’, penalty = ’l2’,
dual = ’false’, tol = ’-5.32’, C =
’55.4’, maxIter = ’50’

M7 Bayesian
Regression

fitIntercept = ’true’, normalize =
’false’, alpha1 = ’0.85’, alpha2 = ’-
5.32’, lamba1 = ’55.4’, lambda2 =
’50.524’, computeScore = ’true’

M8 Bayesian
Regression

fitIntercept = ’false’, normalize =
’true’, alpha1 = ’20.85’, alpha2
= ’-51.112’, lamba1 = ’155.422’,
lambda2 = ’-30.24’, computeScore
= ’false’

M9 Bayesian
Regression

fitIntercept = ’true’, normalize =
’true’, alpha1 = ’8.65’, alpha2 =
’1.102’, lamba1 = ’-5.45’, lambda2
= ’50.24’, computeScore = ’true’

M9 Ensemble
Regressor

compModels = ’[’m1’, ’m3’, ’m4’]’,
maxFeatures = ’10’, maxSamples =
’200’, randomState = ’45’, numIter
= ’30’

M10 Ensemble
Regressor

compModels = ’[’m4’, ’m2’, ’m8’,
’m3’]’, maxFeatures = ’500’,
maxSamples = ’100’, randomState
= ’45’, numIter = ’100’

2.3 Automated Model Selection

Model building is a non-trivial task for non expert users, as it involves
complexity including selecting a good combination of learning algo-
rithms and hyperparameters. One solution is to use existing automated
model selection tools such as AutoWeka [32, 54], SigOpt [39], Hyper-
Opt [4, 30], or AUTO-SKLEARN [20]. These tools follow numerous
optimization procedures internally to find the right combination of
algorithms and hyperparameters for an optimal model suited to the
given dataset and task. One drawback is that these processes rely on
quantifiable or objective features in the data. Subjective nuances or
extra knowledge from the users is not incorporated in typical automatic
model selection pipelines. Instead, our technique does not follow an
auto-optimization based process to select an optimal model, as is the
case in many of these auto machine learning (auto-ML) workflows.
Sacha et al. present a comprehensive framework for a human-centered
machine learning workflow [47]. They describe the interaction and
relationship between automated algorithms and information visualiza-
tion [47]. BEAMES leverages user feedback on model outputs to
incrementally steer and select models, which can be mapped to this
comprehensive model.



Fig. 3. (A) The data table view showing the toggle switches (green, white
and red) for features. The sliders allow users to add weights to the data
samples and attributes.(B) Similar toggle switches and sliders for data
samples. (C) From left : Column 1 is the predicted output, Column 2 is
the residual error, Column 3 is the ground truth value to predict, in this
case sale price of a house.

3 SYSTEM DESCRIPTION: BEAMES
This section describes BEAMES, a visual analytic system for multi-
model steering to solve a regression task. BEAMES enables users
to inspect outputs of multiple models, specify critical data instances,
steer multiple models to increase or refine their performance, and fi-
nally select one model (or an ensemble of models) when satisfied.
It assists the user to select an optimal regression model from a col-
lection of models constructed by various combination of regression
algorithms and their hyperparameters. Some example algorithms tested
includes Bayesian Regression, Linear Regression, and Logistic Re-
gression (shown in Table 1). In Section 3.1, we describe the main
components of the BEAMES user interface. Section 3.2 discusses the
underlying techniques implemented to translate user interactions into
appropriate model responses.

3.1 User Interface
The user interface (shown in Figure 1) consists of four primary views:
a data table, a model view, a control panel, and a model detail view.

3.1.1 Data Table
Users can see the loaded dataset with every attribute in the data ta-
ble view (Figure 1-B). By default the view shows the training data
but users can toggle to view test and application data set (test data
required to validate models). We define application data set as the
final data set without labels/output values. The view uses a standard
spreadsheet metaphor, representing data items as rows and attributes as
columns. Users can add, update or delete training data (both rows and
columns). The columns (attributes) of the loaded data shows three state
toggle switches allowing users to emphasize, de-emphasize, or discard
an attribute using a slider to adjust the weights (shown in Figure 3).
Likewise, users can discard a data instance or increase the relative im-
portance of critical instances. Increased weighting tells the model that
it should learn more from this instance than others, and emphasize the
accuracy of these instances more. Users can also add domain expertise
to the data via new attributes if wanted. Hovering over any row on
the table triggers the system to recommend models from the model
view to the user to inspect (i.e., models that correctly predicted the data
instance). Recommended models are shown with a border stroke on the
circular glyphs (representing a model) in the model view (Figure 5).

3.1.2 Model View
The model view shows each model as a circular glyph as shown in
Figure 1-A. They are color coded by residual errors on the data loaded
on the data table for the given regression problem. Yellow represents
lower residual error, while dark blue represents higher residual error.
The text on the glyphs describe the residual error value.

These circular glyphs are interactive. Hovering shows the model
output details like the number of instances correctly predicted, the

Fig. 4. Shows the model view in detail. (A) Recommended models with
strong border stroke. (B) Saved models (C) Picked models for model
ensembles (D) Liked models.

model’s learning algorithm, etc. Users can inspect a model by click-
ing a visual glyph which adds a column to the data table, showing
the predicted value (e.g., housing price on a housing data set). The
prediction column is next to the ground truth column, allowing users
to compare how close the model’s prediction is to the ground truth for
each data instance. Inspecting a model also opens the model detail view
(explained below). Furthermore, users can select multiple models to
build model ensembles, or save a single model, to preserve the model
across iterations. Users can also like a model, specifying that the next
iteration should sample models similar to the one’s the user liked (See
Figure 4).

3.1.3 Model Detail View

The model detail view shows up when the user inspects a model by
clicking on it. It draws a line chart showing the predicted model
output and ground truth data (shown as dots, shown in Figure 6-A).
Visually it tells users how accurately the model fits the data. In the
same view, users can see a residual bar chart, depicting the amount of
error in prediction by the inspected model on both training and test
set (See Figure 7). The third view (bottom-left) shows correlation
between two selected attributes from the data to the user. It helps users
understand relationships between attributes in order to know which
ones to emphasize, de-emphasize, or discard.

3.1.4 Control Panel

The control panel (see Figure 1-C) contains frequently-used operations,
such as filtering data instances and attributes. Data instances can
be filtered by quantitative attributes using the double-range sliders.
Categorical attributes can be filtered by toggling rectangular glyphs.
Similarly, models can be filtered by dragging the sliders which specify
a threshold range of model accuracy, residual scores, or desired number
of correctly predicted instances.

3.2 Technique

In this section, we will describe the underlying techniques applied to
enable multi model inspection and steering.

3.2.1 Data

We define our full data set as C (contains N +K +B instances) which
is then split in training, test and application data set. Users train models
on the training set D containing N samples, then validate on test set T
containing K samples. When they find an acceptable model they export
it or use it on application data set H containing B samples. For notation
description please refer Table 2.



Table 2. Notation and definitions used to define our technique.
Notation Description

C = D∪T ∪H Full Data set, comprising of train-
ing, test and application data set

D = d1,d2, ....dN Training data set of size N

T = t1, t2, ....tK Test data set of size K

H = h1,h2, ....hB Application data set of size B

A = a1,a2, ....aP Set of attributes in the data

P Cardinality of data attributes

W = w1,w2, ....wN Set of attribute weights

Ω = ω1,ω2, ....ωP Set of training data weights

M = m1,m2, ....mS Set of models of size S

L = l1, l2, ....lJ Set of J learning algorithms

P = p1, p2, ....pJ
Probability distribution to pick J
learning algorithm

Λk = λk,1,λk,2, ....
Set of hyperparameters for model
k

3.2.2 Model Sampling
We define a model, Mi as a function f : X 7→ Y , mapping from the
input space X to the prediction space Y . Here, the prediction space
is R and each model mi is a regression model. For the modeling al-
gorithms we used Scikit Learn’s machine learning package [9]. Each
model is sampled by combining a learning algorithm lk from a set of
J algorithms (hand picked by us for the regression task). Tested algo-
rithms include Linear Regression, Logistic Regression, and Bayesian
Regression. Each learning algorithm comes with their own set of hy-
perparameters λm. Examples of sampled models can be found in table
1. A sampled model is defined as below :

mi 7→Model(lk, [λk1,λk2,λk3....])

The system initiates with randomly sampled S models. We’d like the
sampling distribution to be uniform across algorithms such that users
can inspect a wide spectrum of model outputs for the given regression
problem. For that reason, we initialize probability pk to sample a
learning algorithm lk (for a model mi) from J possible models as 1/J.

3.2.3 Updating training data
Users can load training data D on the data table. Every data sample
is initially set to an equal weight of ωi = 0.5. However, users can
interactively set weights on the samples between 0 and 1. 0 meaning to
discard the data sample in training, while 1 is to place highest strength
to the learning from the sample.

ai j =

{
x user added value to the subset data instances
0 initialized value for the rest of the data set

(1)

where, ai j represents data at i th column and j th row.

3.2.4 User driven feature engineering
Similar to weighting of data instances, users can emphasize, discard or
weight quantitative features. Using the UI toggle buttons (See Figure 3-
A), users can specify if they want to emphasize or discard a feature
for model training. Discarding a feature removes it from the set A.
Emphasizing a feature reveals a weight slider, which the user can
toggle between -1 and 1. Setting a weight of -1 enforces the model to
place higher emphasis on lower values of the attribute than others. As
with instance weighting, all attributes default to have user weights of
0.5 before any interaction takes place.

The instance and attribute weights assigned by the user directly
affect the computation of the y dependent variable similar to the work
by Cleveland [12]. Loss for the models is a weighted least squares loss.
Thus, the different regression models solve the following regression
problem.

min
N

∑
i=0

ωi ∗ (ŷi− yi)
2

where,

ŷi = b0 +
M

∑
i=0

bi ∗ xi ∗wi

ωi is the user defined weights for data instance i, b0 is the intercept,
bi is the coefficients of the attributes learned by the model, and wi are
the user’s attribute weights.

3.2.5 User Interactions

User interactions in BEAMES are designed to update the underlying
models via both interactive model steering and selection. This section
describes these interactions, and details how the models interpret and
update accordingly.

Save Models: If the user saves a model Mi, the system saves its learning
algorithm Li and the set of hyperparameter combination represented as
[λ1,λ2,λ3...λm]. At each iteration of model sampling, BEAMES keeps
saved models in the set of models shown to the user.

Like Models: If the user toggles the Like button in the interface on
model md , then the probability pd of the learning algorithm that pro-
duced that model is increased by a factor r f . We randomly set the value
of r f by using a threshold ε . With trial and error, we found ε = 0.1
showed promising results. Likewise, the hyperparameters λi of that
algorithm are sampled from within a threshold region of the hyperpa-
rameters used in the liked model. This ensures that a large share of the
new sampled models are from the neighboring regions of the models
users liked. However, the technique still ensures randomly sampling a
smaller share of other models in the collection such that the user can
still get an overview of model output from a wide array of choices. The
process of liking models to regenerate a new set of models that are
similar helps users perform interactive model selection.

Adjust Data Instance or Attribute Weight: Users can adjust the
weights of data instances and attributes by adjusting the respective
sliders. As a result, all the available M models are retrained using N
training instances with user specified features Ak where Ak ⊂ A and
user specified feature and data instance weights, W and Ω respectively.

Export Model: Once users are satisfied with a model, they can simply
export the single model. Additionally, model ensembles can be created
and exported. For instance, users can select (by the pick interaction)
G models to build a model ensemble. The system uses each compo-
nent model m j to build a model ensemble E. We are following the
model ensemble technique described by Caruana et al. [10], where
they used a stepwise selection process to select component models to
build ensemble which increases ensemble accuracy. Our technique
differs from theirs in that BEAMES provides users the flexibility to
select component models to build an ensemble.

BEAMES uses a bagging technique [7] to sample from training data
(sampling with replacement). However, data instances di which the
users have increased the weights ωi get higher probability to be sampled
than other instances. This is to make sure models learn from these
samples as users have intended, and the ensemble model emphasizes
accuracy on the critical data instances di. Given the regression problem,
the system finds the final predicted output by averaging the output
received from component models. However, if any of the component
models mi are saved or liked by the user, then the output computed is
weighted, and the weights of the saved or liked models are higher than
unsaved models. The final ensemble model E’s output is the weighted
average of the predictions of the models in the ensemble.



Fig. 5. View showing Amy loads BEAMES to find 64 regression models.
(A) Recommended Models (B) Amy hovers over a critical data instance.
(C) Amy clicks model 29 and saves it. (D) Amy clicks on model 45 and
inspects the output.

4 USAGE SCENARIO

We describe our tool BEAMES with a usage scenario, where a domain
expert uses the system to perform data exploration and predict future
housing prices. Amy is a real estate agent who reviews existing and
new properties to analyze their market prices and potential change in
the future due to changing conditions in the city. Amy has years of
experience in her field including field knowledge of the city’s various
neighborhoods, upcoming city projects, infrastructure changes, and
other city planning activities. She has a good grasp of the changing
demographics of the city and the rising demand for housing. She
usually explores data using tools like MS Excel,to decide on which
properties to buy, sell. However, not being a data scientist she is not
conversant with complex modeling techniques, which can help her
accurately predict property prices, property demands, or ratings in
future.

Amy begins by importing two datasets into BEAMES ( the dataset
is available here [23]). The first dataset is for the properties she knows
the prices of at the current state of the market (called input data), and
the second has properties she wants to predict future prices of (called
the application data set). BEAMES splits the input data into training
and test sets for model training and validation. The training data have
over 750 samples with 36 attributes comprised of both categorical and
quantitative types. It has a target attribute namely SalePrice, containing
the property price of each house. Every row in the data is a property(a
house) described by attributes such as property size, fireplaces, year
built, number of bedrooms, etc. The application data set has over 800
unlabeled samples.

After importing the data, BEAMES builds 64 regression models,
each randomly sampled using a combination of learning algorithms
(linear, logistic, ridge, and bayesian regression) and hyperparameter
values (alpha, lambda, tol etc.). The list of sample models with hyper-
parameter values is shown in Table 1. As Amy is not formally trained
in the specifics of the models, she begins her exploration by how well
specific models predict property sale prices. In the model view (Fig-
ure 5), she sees the collection of models as circular glyphs color coded
by their residual error scores. Yellow represents better models with
lower residual error, while blue glyphs are models with high residual
errors. On the bottom in the data table, Amy sees the training data in a
tabular format. Browsing the colors of the circular glyphs (representing
models), Amy decides to start inspecting a few further as they have
lower error values.

Clicking the circle, Amy sees that the training data has a new column
representing predicted price. She sees that the predictions are quite
close to some of the actual prices in the data. She clicks on model
45 (see Figure 5-D), as it has accurately predicted over 300 entries on
her training data and has some errors on the rest of the entries from

Fig. 6. (A) Shows the model detail view. (B) Amy emphasizes features
using the slider.

the training data. She sees that the residual error of the current model
is over 500. Next, she notices few models with residual error score
close to 100 (colored yellow). She clicks one of the lower scored
models (model id 29, as seen in Figure 5-C) and finds most of the
data instances are predicted accurately. However, to double-check if
some of the known data instances were correctly predicted, she uses
the filter panel on the left. She sees the currently selected model (with
a low residual error of 105.7) did not correctly predict most of the these
critical data instances.

By hovering over these critical data instances, (see Figure 5-B) the
system shows models that Amy should inspect, as they made correct pre-
dictions on those instances (See Figure 5-A). Amy reviews a few of the
suggested models. She finds that the recommended models performed
better for the critical instances, though they had higher overall residual
errors. Next, Amy toggles the three state toggle button on these data
instances to emphasize them using the slider (shown in Figure 6-B). In
addition, Amy thinks the property price should be most strongly defined
by the numbero f bedrooms, garageArea, 2nd f loorarea attributes. She
again uses the slider to increase their weight, while reducing the weight
on f rontPorchSize and DrivewayQuality. Next she presses the build
new model button for BEAMES to recompute all the models.

BEAMES updates the model view with newly computed models.
Amy sees the color encoding changed for the collection of models, as
new models have different residual error output. Amy quickly looks
over the collection to find many models have scores close to 0, meaning
they have high performance on training data. However, still being
interested in her critical data instances, she hovers over the rows to see
recommended models from the model view. She clicks on few of the
recommended models and finds two of them perform quite well, as it
correctly predicted 7 out of the 8 critical instances. Clicking on these
models, Amy finds the prediction on the the test data is bit off. For
example, property id 104 shows a predicted price of 141,345, while the
true price is 99,322.

Confused to find relatively poor performance on the test set, Amy
uses the control panel to see the importance of the features in the
horizontal bar chart. She sees the relatively strong weight on the
numbero f bedrooms attribute (as she intended previously). She adds
few other relevant attributes and ups the weight factor for those, i.e,
overallPropertyRating, numberO f Floors, distanceToTransit. Next,
she discards a few training data samples thinking those properties are
not relevant anymore. She saves two models that she found have good
potential and likes a few others based on their performance. In addition
she picks a few models to create an ensemble from these component
models, and generates more models.

Amy browses the newly computed models. She sees brown colored
circular glyphs (See Figure 1-c), representing an ensemble model build
from the models she picked. She clicks on it and finds that it shows a
very accurate prediction on the training data. Amy confirms the same
on the model detail view, as the line fits the set of points (representing
actual ground truth values), as shown in Figure 7. Similarly, she sees



Fig. 7. Amy exploring the model detail view showing low residual error
for most of the instances.

Fig. 8. Amy loads the application data set to apply the saved models and
see predicted output. (A) Horizontal panel storing models saved by Amy.
(B) Predicted output (“sale price”) when a model is selected.

almost 0 residual error from the bar chart shown in Figure 7.
At this point, she also uploads the test dataset in the data table. She

hovers over the rows, to see system recommended models (visually
represented with an outer stroke line). She is happy to see that the
models recommended include the ensemble model and the one she
saved. She clicks on the recommended models and finds that the results
improved. The predictions were very close and in some instances were
almost the same as the ground truth. At this point, Amy is happy with
the models and saves a few (including the model ensemble). She loads
the application data set. The interface changes to show a full-screen
spreadsheet, with a horizontal scrollable panel on top listing the saved
models (Figure 8-A). She clicks on the saved model glyphs to see
predictions on the application dataset. As she clicks, BEAMES adds a
prediction column to the application data set (Figure 8-B).

At this point, Amy has models to help her predict house prices, each
emphasizing different characteristics of the data. As she continues her
work throughout the coming months, she can use these models to give
her a sense of how housing prices may change.

5 DISCUSSION

Spectrum of automatic, semiautomatic, and manual model selec-
tion. This work in this paper is a semi-automatic technique for
exploring multiple models and their respective parameterizations. This
technique takes a different approach from automatic hyperparameter
tuning model selection, as adopted by some of the existing systems
like AutoWeka and Hyperopt. Our technique also differs from manual
model-building techniques where users are required to specify most (if
not all) of the model parameters. Within this model selection spectrum,
we explore how to bring domain experts in the loop of model building
by performing model validation and selection based on not only on
objective metrics (i.e., residual errors) but also data instance valida-

tion (i.e “I like model A because it predicts instances 1,5,10 correctly,
though it has relatively higher residual error.”). We call this approach
semi-automatic, because some parts of model sampling and model
building are still automatic.

Model Output Inspection and Model Interpretability. Model in-
terpretability and comprehensibility is discussed in the work of Gle-
icher [22]. Gleicher discusses model interpretability as a means to
understand the learning of the model. Craven [13] defined model com-
prehensibility to be if a model’s learning algorithm can be encoded in
such a way that it is legible by a human being. However, in our work,
we are aiming to help users understand a model by inspecting its output
and steering it towards their own sense of the importance of familiar
and critical data instances. Our visual technique helps users understand
the model output against ground truth, without having to interpret the
internal complexities of the models. While our work begins to explore
this space, there is more work to understand how users understand,
interpret, and trust models by observing outputs.

Incorporating Domain Knowledge. In our technique we aim for
a framework which allows domain experts to add knowledge to the
model learning process. In BEAMES, there are many ways to do so
(i.e., adding a new attribute to a subset of data, discarding data sam-
ples, emphasizing weights on critical data instances, adding feature
weights, etc.) These interactions directly update every model’s under-
lying weights and parameters to incorporate the user feedback. The
output of the updated models can be inspected to understand how they
changed. However, there is an opportunity to explore other techniques
to inform users how their feedback was incorporated by models, beyond
what was explored in this paper.

6 LIMITATION AND FUTURE WORK

Model Space Sampling. The number of models that can be sampled
for a given problem/task and dataset is large (potentially infinitely so).
Given the plethora of options for learning algorithms, each with a
distinct group of hyperparameters, which can take values within a set
domain range, the size of the model candidate space grows rapidly. Any
multi-model optimization technique searching from such a large model
space can result in many model to choose from. In BEAMES, we set
an upper limit on the number of model options the system randomly
samples to initiate the loop of model inspection and steering. Another
feature assisting the user is the technique to recommend models to
inspect. The recommendations are driven by how well the models
perform on data instances the user care about. However, given the
iterative nature of the technique, it might lead to a substantial amount
of user interaction until they find an acceptable model, leading to fatigue
or frustration. In the future, we are interested in exploring additional
forms of guidance for multi-model steering.

Beyond Model Export. At the current state, the technique and the
interface allow domain experts to find an optimal model and use it to
work with a application data set. It can also export the saved models
as a locally saved file (JSON format). However, there are many op-
portunities beyond model export that can be considered. Can users
save models and use them across entirely different datasets but similar
problem types? Alternatively, can multiple domain experts work on pre-
viously saved models and extend them further, based on the changing
nature of the domain?

Model Overfitting. Externalizing a domain experts knowledge to train
a model can often lead to the problem of overfitting. Though BEAMES
has a provision of using a test data set to train model, we understand that
the overuse of the testing data might lead to an overfitted model. The
current interface of BEAMES does not have explicit functionality to
avoid model overfitting. In future work, we look forward to overcoming
model overfitting while still using expert knowledge in the model
training process.

Model Comparison. BEAMES in its current state can help users
compare models by inspecting their outputs. Though helpful, there are
open research questions about how best to compare multiple models



directly. However, these are not fully addressed in the current design.

7 CONCLUSION

In this paper, we described a technique for interactive multi-model
steering and inspection. The technique emphasizes the importance of
moving beyond existing, single-model steering techniques where the
initial model choice greatly impacts the quality of the results. Instead,
our technique steers and samples from multiple model types, learn-
ing algorithms, and hyperparameters. Our visual analytics prototype,
BEAMES, allows people to specify interest in models, data instances,
and attributes to iteratively build, combine, and select models to per-
form prediction tasks. We describe our technique and demonstrate the
use of BEAMES through a use case scenario, highlighting the model
steering and inspection process resulting from user interactions. Finally,
we discuss broader challenges in the area of multi-model steering and
illuminate valuables areas for future work.
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[37] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Opening
the black box: Strategies for increased user involvement in existing algo-
rithm implementations. IEEE Transactions on Visualization & Computer
Graphics, 20(12):1643–1652, Dec 2014.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data/
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data/


[38] S. Pajer, M. Streit, T. Torsney-Weir, F. Spechtenhauser, T. Mller, and
H. Piringer. Weightlifter: Visual weight space exploration for multi-
criteria decision making. IEEE Transactions on Visualization & Computer
Graphics, 23(1):611–620, Jan 2017.

[39] S. Paparizos, J. M. Patel, and H. V. Jagadish. SIGOPT: using schema
to optimize XML query processing. In ICDE, pages 1456–1460. IEEE
Computer Society, 2007.

[40] K. Patel, S. Drucker, J. Fogarty, A. Kapoor, and D. Tan. Using multiple
models to understand data. pages 1723–1728. AAAI Press, July 2011.

[41] N. Pezzotti, B. P. F. Lelieveldt, L. van der Maaten, T. Hllt, E. Eisemann,
and A. Vilanova. Approximated and user steerable tsne for progressive
visual analytics. CoRR, abs/1512.01655, 2015.

[42] H. Piringer, W. Berger, and J. Krasser. Hypermoval: Interactive visual
validation of regression models for real-time simulation. Comput. Graph.
Forum, 29:983–992, 2010.

[43] K. Potter, A. Wilson, P. T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. R. Johnson. Ensemble-vis: A framework for the statistical visual-
ization of ensemble data. In 2009 IEEE International Conference on Data
Mining Workshops, pages 233–240, Dec 2009.

[44] D. Ren, S. Amershi, B. Lee, J. Suh, and J. Williams. Squares: Supporting
interactive performance analysis for multiclass classifiers. IEEE, August
2016.

[45] D. Ren, T. Hllerer, and X. Yuan. ivisdesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2092–2101, Dec 2014.

[46] M. A. Rene Cutura1, Stefan Holzer and M. Sedlmair.
[47] D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, J. Peltonen, D. Weiskopf, S. C.

North, and D. A. Keim. What you see is what you can change: Human-
centered machine learning by interactive visualization. Neurocomputing,
268:164–175, 2017.

[48] B. Saket, H. Kim, E. T. Brown, and A. Endert. Visualization by demon-
stration: An interaction paradigm for visual data exploration. IEEE Trans-
actions on Visualization & Computer Graphics, 23(1):331–340, Jan 2017.
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