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ABSTRACT
As an important technology of digital construction, real 3D models can
improve the immersion and realism of virtual reality (VR) scenes. The
large amount of data for real 3D scenes requires more effective
rendering methods, but the current rendering optimization methods
have some defects and cannot render real 3D scenes in virtual reality. In
this study, the location of the viewing frustum is predicted by a Kalman
filter, and eye-tracking equipment is used to recognize the region of
interest (ROI) in the scene. Finally, the real 3D model of interest in the
predicted frustum is rendered first. The experimental results show that
the method of this study can predict the frustrum location
approximately 200 ms in advance, the prediction accuracy is
approximately 87%, the scene rendering efficiency is improved by 8.3%,
and the motion sickness is reduced by approximately 54.5%. These
studies help promote the use of real 3D models in virtual reality and
ROI recognition methods. In future work, we will further improve the
prediction accuracy of viewing frustums in virtual reality and the
application of eye tracking in virtual geographic scenes.
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1 Introduction

Real 3D models are widely used in urban planning, 3D navigation, training, scientific research and
other fields (Verhoeven 2011; Lin, Li, and Zhou 2020; Zhang et al. 2020). Real 3D models have the
characteristics of better realism, rich details and convenient data acquisition (Li et al. 2018a; Wang
et al. 2020), and they are the key technical support of three-dimensional expressions in the con-
struction of digital earth. An increasing number of 3D scenes have begun to use real 3D models
instead of other modeling methods, especially in virtual reality (VR) scenes. VR technology is
one of the tools to study virtual geographic environments (Lin, Chen, and Lu 2013; Chen et al.
2013), and with the characteristics of immersion, interaction and imagination, it can provide
users with visual, auditory and perceptual virtual experiences. Compared with traditional manual
modeling scenes, real 3D scenes can provide a more realistic environment for VR and greatly
improve visual immersion (Lin et al. 2015; Tibaldi et al. 2020; Cai et al. 2021), which is the foun-
dation and core of VR technology (Checa and Bustillo 2020).
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As unmanned aerial vehicle (UAV) oblique photography technology has progressed, the acqui-
sition of real 3D model data has become more efficient and convenient (Lingua et al. 2017), and the
model resolution and texture resolution have been greatly improved (Zhou et al. 2021; Xu et al.
2021). More sophisticated models also bring a larger amount of data (Yijing and Yuning 2018),
and the amount of real 3D data is thousands of times that of manual modeling data, which puts
forward higher requirements for binocular parallel rendering in VR (Patney et al. 2016; Konrad,
Angelopoulos, and Wetzstein 2020).

At present, to optimize real 3D scene rendering in virtual reality, more attention is given to how
to make computers draw finer or wider scenes with limited hardware resources, and the visual
characteristics of human eyes and the characteristics of the virtual reality observation mode are
not considered. In practice, when users observe a virtual scene, their eyes will preferentially search
for and locate a more general region of interest (ROI) (Purucker et al. 2013; Ho 2014; Sun et al.
2020). Especially in virtual reality, the movement of a helmet-mounted display (HMD) determines
the user’s observation region and the ROI range of their eyes. Although some studies have also tried
to use eye tracking to optimize the rendering of virtual geographic scenes, these methods are not
suitable for real 3D scenes. Therefore, how to optimize real 3D scene rendering by using special
interaction methods such as virtual reality and human visual characteristics has become an impor-
tant research topic.

To solve the above problems, this study proposes an ROI recognition method based on eye track-
ing in VR and uses a Kalman filter to predict a user’s viewing frustum. Finally, we constructed a VR
prototype system and conducted experiments to verify the method.

2 Background

Virtual reality is a kind of Extended Reality (X-Reality, XR) technology. XR technology refers to the
human–computer interaction environment that integrates the real and virtual environments
through computer hardware and wearable technology (Alizadehsalehi, Hadavi, and Huang
2020). XR includes VR, AR (Augmented reality) and MR (Mixed reality). XR technology is the
basic support and carrier of metaverses, which can provide more convenience and possibilities
in work, education, entertainment and so on. In particular, VR technology has become the most
mature and widely used technology in XR due to its lower system and technical complexity (Li
et al. 2018b). However, the binocular rendering method of virtual reality requires that scenes be
rendered from two angles at the same time (Huang, Chen, and Zhou 2020). This rendering pressure
is approximately twice that of a traditional computer screen. Furthermore, VR’s stronger sense of
immersion causes motion sickness, especially for virtual scenes that need to render a large amount
of geographic data (Billen et al. 2008). Motion sickness has become an important factor that hinders
users from exploring and interacting with virtual geographic scenes (Kim et al. 2018). Enhancing
the rendering efficiency of virtual scenes is an effective means to reduce the occurrence of motion
sickness and improve the user experience (Chang, Kim, and Yoo 2020).

Generally, there are two ways to improve the rendering efficiency of virtual scenes:

(1) The 3D model in the scene can be optimized to reduce the number of vertices rendered by the
computer (Asgharian and Ebrahimnezhad 2020). Delaunay triangulation is the most com-
monly used terrain data model (Sibson 1978). Early studies focused on expressing more accu-
rate terrain with fewer triangles, including the divide and conquer approach (Dwyer 1987),
iterative method (Lee and Schachter 1980), sweep line algorithm (Fortune 1987), minimum-
weight triangulation method (Lingas 1986), and bagging-based algorithm (Su and Drysdale
1997). These methods are very mature and widely used. However, with the development of
3D visualization technology, 3D data models have become the main expression of terrain
and geographic features. Researchers have begun studying the optimization method of 3D geo-
graphic data models. Examples include the hierarchical shape analysis and iterative edge
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algorithm (Van, Shi, and Zhang 2004), the white optimization algorithm (Liang, He, and Zeng
2020), the evolutionary multi-objective algorithm (Campomanes-Álvarez, Cordon, and Damas
2013), and parallel computing to quickly simplify the model (Cabiddu and Attene 2015; Kon-
rad, Angelopoulos, and Wetzstein 2020). These algorithms simplify the 3D model by preser-
ving visual features and finally improve the efficiency of geographic scene rendering.
However, simplifying the 3D model inevitably leads to a decline in the visual effect, which is
a trade-off between the visual effect and rendering performance.

(2) The rendering strategy of the 3D geographic scene can be optimized to maximize the rendering
efficiency of the computer. For example, the rendering strategy is changed according to the
characteristics of computer hardware. Zhang used the hybrid rendering method of servers and
clients to improve the rendering efficiency of large-scale building scenes (Zhang et al. 2014).
Hu used small tile data to improve the rendering effect of flood scenes according to the charac-
teristics of mobile virtual reality (Hu et al. 2018). Dang and Zhang use graphics processing units
(GPUs) to render large-scale terrain and disaster scenes (Zhang et al. 2019; Zhang et al. 2021;
Dang et al. 2021). This kind of method improves the scene rendering effect by further improving
the use efficiency of computer hardware, but the performance of computer hardware is limited,
which leads to the limited improvement of the final scene rendering effect. In addition, according
to the virtual scene rendering strategy of human eye characteristics, Duchowski used a foveated
continuous gaze approach to optimize the scene rendering effect (Duchowski and Çöltekin
2007), and Fu reduced the rendering effect of non-concerned flood regions through tunnel vision
(Fu et al. 2021). This kind of method began to consider the visual characteristics of human eyes
and achieved a certain optimization effect. However, their optimization area is static, and the
human eye attention area is not read in real time, which leads to the difference between the actual
human eye attention area and their optimization area. Although the efficiency of scene rendering
has been improved, the actual visual quality of users has not been improved.

Using eye tracking to render virtual scenes in real time is a more reasonable method. The
response of eye-tracking equipment has a delay of 15–52 ms (Stein et al. 2021), and Albert believes
that the rendering delay of eye movement and attention should be kept within 50–70 ms, which is
acceptable to users (Albert et al. 2017). In ordinary virtual scenes, the rendering delay of the ROI is
acceptable (Lee et al. 2020; Meng, Du, and Varshney 2020), and good optimization results are
achieved. However, in a real 3D virtual scene, due to the large amount of fine data, rendering
the real 3D models directly according to an eye-tracking device will make users uncomfortable
and reduce the user experience. Therefore, how to apply the eye-tracking method to render real
3D scenes in virtual reality has become a problem to be studied.

3 Methodology

3.1 Research framework overview

First, we obtain a user’s observation region of a scene through a VR eye-tracking device and calcu-
late the user’s interest value in each region. These values of interest are classified using cluster analy-
sis and cumulative recorded in the corresponding real 3D models. During observation, a Kalman
filter is used to predict the rotation of the user’s VR helmet, and the viewing frustum of the user
at the next time is obtained. Finally, the real 3D model in the predictive viewing frustum is loaded
into memory in advance and rendered in turn according to the interest value (Figure 1).

3.2 ROI recognition in real 3D scenes based on eye tracking

Humans have a variety of perceptual modalities, among which visual perception accounts for
approximately 70% of overall perception, so vision is decisive for immersion in VR (Stein et al.
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1996; Vignais et al. 2015). The horizontal visual field extent of both eyes in humans is approximately
220°, the vertical visual field is approximately 135°, and the coincident visual field is approximately
124° in both eyes (Atchison and Thibos 2016). Information can be correctly identified within
approximately 15° of the effective viewing region of the human eye, so the effective viewing region
of the human eye can be regarded as the ROI (Clay, König, and Koenig 2019). As the viewing dis-
tance grows, the ROI gradually becomes larger, as shown in Figure 2.

When viewing a real 3D scene in VR, different viewing distances and viewing times will lead to
different cognitive effects, meaning different levels of interest. With increasing viewing distance, the
viewing range will increase, while the cognitive effects of the objects in the range will decrease. With
increasing viewing time, the cognitive effects will improve, although the improvement is limited.

Figure 1. Overview of the research framework.

Figure 2. Human visual characteristics.
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This means that at a distance, where the observer’s eye is looking is not necessarily an ROI. When
the eyes locate an ROI, they will observe these regions discretely, which is called saccade (Deubel
and Schneider 1996; Findlay 1997), Saccade is often irregular and difficult to predict because the
average time of saccade is 20–40 ms and the speed can reach 600°/s (Baloh et al. 1975; Wooding
2002). Therefore, this study predicts the viewing frustum instead of the ROI and then uses the
ROI of the previous observer as the priority rendering region of the observer this time.

To measure whether a region in a real 3D scene is an ROI, a VR eye-tracking device can be used
to measure whether the human eye is interested in a region through Formula 1.

∂ = Dt(Maxd −Mind)
D d(Maxt −Mint)

(1)

where ∂ represents the degree of interest, Dt represents the time to observe a region, and Dd rep-
resents the distance when the region is observed. Maxd and Mind indicate the maximum and mini-
mum distances between the observer and the real 3D model, respectively, during the entire
observation period. Maxt and Mint indicate the longest and shortest times, respectively, for the
observer to observe a certain region during the observation period. Formula 1 can only reflect
the ratio of time to distance. However, under the condition of a certain model resolution, obser-
vation distances that are too close or too far will cause deviations when using Formula 1, which
will affect the division of the ROI. In this situation, this study combines the human visual charac-
teristics and the imaging principle of VR equipment and corrects it using Formula 2.

Dd .
waR

2Fov · tan a

2

( ) , ∂ = 0

Dd ,
R

2 tan
a

2

( ) , ∂ = 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2)

where w is the resolution of the VR device, a is the effective observation angle of the human eye,
generally taken as 15°, R is the spatial resolution of the real 3D model of the observation region, and
Fov is the maximum field of view of the VR device. When the distance is too far and the region of
each pixel in the observer’s best view is smaller than the real 3D model resolution, the observation is
considered invalid. When the distance is too close, the region of all pixel points in the observer’s
view is equal to the terrain resolution, so the observation is considered invalid and the ∂ value is
guaranteed to be within a certain and reasonable range using Formula 2.

Real 3D model data are often irregular. To better detect the eye movement observation region
and divide the ROI, this study uses a 3D grid with an edge length of L to divide the real 3D
scene. Each 3D grid has ε, and the initial value is 0. The value of L is determined by the spatial res-
olution and empirical value of the real 3D model. The value of L can be larger when the model is
rough and smaller when the resolution is higher. A smaller L means that the scene is divided more
finely, requires more memory, and is less efficient to retrieve. Therefore, the minimum value of L
should be greater than or equal to the minimum outer enclosure side length of the real 3D model in
the scene. Too small an L value is meaningless for scene partitioning and will only increase the per-
formance overhead (Figure 3).

When the focus range of the observer’s eyes intersects with the 3D grid, the time and observation
distance when the focus region overlaps with the 3D grid are recorded. After the observation, the ∂
value is calculated according to Formulas 1 and 2 and ∂ accumulates to the corresponding ε.

The model rendering order of the current scene is calculated using the cumulative value of inter-
est of all previous users. Different users may have the same interest in a region, but different users
have different ∂ values in the region. If the ∂ value is directly accumulated to ε, ε cannot correctly
reflect the degree of interest. Therefore, it is necessary to standardize the value of interest of each
user in each region. To standardize the interest values of different users, this study uses the Jenks
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natural breaks clustering method to divide each user’s interest values in different regions into K
categories.

The Jenks natural breaks method calculates the sum of variances for each class, compares the
classifications with the sum of variances, and the minimum value of the sum of variances is the opti-
mal result. The K value needs to be determined before classification. If the K value is too large, it will
enhance an individual’s impact on the whole. If the K value is too small, the difference of interest
values in different regions will be too small. Both of these situations will affect the accuracy of ε.
Therefore, the goodness of variance fit (GVF) method is used to determine the K value. The calcu-
lation formula is as follows:

SDCM =
∑k
i= 1

1
Ni

∑Ni

i= 1

(zij − �zj)
2

SDAM = 1
N

∑N
i= 1

(zi − �z)2 (3)

GVF = 1− SDCM
SDAM

The sum of squared deviations from the array mean (SDAM) is the variance of the original data.
The sum of squared deviations about class mean (SDCM) is the sum of the variances of each class.
When the GVF value is closer to 1, the classification effect is better. By plotting the relationship
between K and the GVF, it can be found that when K = 5, there will be a better classification
effect, so ∂ is divided into five categories, as shown in Figure 4.

After all values are classified into five categories, these categories are ranked from high to low
according to the average value, and each category corresponds to values of 5, 4, 3, 2 or 1. Finally,

Figure 3. ROI recognition of a real 3D scene.
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these values are added to the corresponding ε. As the number of scene observations increases, ε will
more accurately reflect the interest values of different real 3D models in the scene. When the scene
needs to load the model of a region, the program first retrieves the 3D grid intersecting with the
viewing frustum in the scene and then renders the real 3D models where these 3D grids are located
according to the distance.

3.3 Viewing the frustum prediction method of virtual reality based on the Kalman filter

When the human eye observes a scene in VR, the observation region is determined by head move-
ment and eye attention. Eye movement is discrete and jumping, which leads to difficulty and inac-
curacy in eye prediction (Buettner et al. 2018). Through the method in Section 3.2, the eye
observation region can be filtered, and the region with a high interest value can be loaded first.
However, this loading needs to be based on the premise of predicting the user’s viewing frustum
in advance. It only takes approximately 200 ms for the human eye to scan the display range of a
VR helmet, but it takes longer to load and draw the entire real 3D model (Albert et al. 2017).

The helmet rotation is a continuous process, so, the prediction of helmet rotation is possible and
has good accuracy. This study predicts the position of the viewing frustum at the next time through
the rotation data of the VR helmet in the previous period. Using the predicted viewing frustum to
determine which real 3D models need to be rendered, the ROI value of these models determines the
rendering order.

The continuous and relatively slow-moving speed of the head means that the next rotation of the
VR helmet can be predicted. The movement of the VR helmet is determined by the position (x, y, z)
and the angle (α, β, γ) in the virtual scene, where α is the angle of rotation around the x-axis, β is the
angle of rotation around the y-axis, and g is the angle of rotation around the z-axis, and the position
of the visual frustum is determined from these three angles, as shown in Figure 5.

The problem of predicting the VR viewing frustum can be simplified to predict the state of the
next time according to the past state through extrapolation. Extrapolation methods mainly include
Lagrange interpolation, the Hermite interpolation method, and a Kalman filter. The Lagrange
method is a polynomial-based method, which has less computation and is suitable for smooth
motion trajectory prediction. However, when the interpolation times are high, the Runge

Figure 4. Relationship between K and the GVF.
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phenomenon will appear, resulting in a large deviation of the interpolation results. Hermite interp-
olation is an optimization of the Lagrange interpolation method, but it requires the same derivative
value at the viewpoint and has great restrictions on use, so it is not suitable for viewing frustum
prediction. A Kalman filter is a linear optimal filtering algorithm (Meinhold and Singpurwalla
1983) that uses the mean square error and the criterion of the minimum mean square error to pre-
dict the rotation of the VR helmet. It has high accuracy and no requirements for the movement of
the viewing frustum (Gómez and Maravall 1994). In VR, to prevent the occurrence of dizziness,
teleportation movement mode is mostly used. This movement mode is discontinuous and cannot
realize position prediction through extrapolation. Therefore, it is more reasonable to extrapolate
and predict the rotation of the VR helmet using a Kalman filter (Zhang and Zhang 2010).

In the process of user use, the current state of the camera is recorded at a certain frame interval
finr . Assuming that the rotation angle of the camera about the x-axe, y-axe, and z-axe at time t is
(at , bt , gt), the angular velocity in the three directions is (vxt , vyt , vzt), and the state of the camera
is

xt = at bt gt vxt vyt vzt
[ ]T (4)

The motion formula of the VR helmet is

at+1 = at + vxtfinr

bt+1 = bt + vytfinr (5)

gt+1 = gt + vztfinr

The process noise is regarded as white noise, the value is 0, and the Kalman filter state transition
matrix is

A(K|K − 1) = 1 finr
0 1

[ ]
(6)

To modify the VR helmet rotation state parameters, the following equation is constructed using the

Figure 5. Virtual reality viewing frustum.
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helmet rotation angle in the virtual scene:

at = 1 0
[ ] at

vxt

[ ]
+ Uk

bt = 1 0
[ ] bt

vyt

[ ]
+ Uk (7)

gt = 1 0
[ ] gt

vzt

[ ]
+ Uk

Uk is the observation noise, since the observation value is obtained by reading the real-time par-
ameters of the helmet in the scene, Uk = 0. When t = t0, the initial angle and covariance initial
value of the helmet in the scene are set; when t = tk, the state prediction formula of the system is

x̂(k|k− 1) = A(k|k− 1)x̂(k|k− 1) (8)

The covariance prediction formula is

P(k|k− 1) = A(k|k− 1)x̂(k− 1|k− 1)+ Qt (9)

The filter gain coefficient matrix Kk is

Kk = P(k|k− 1)HT
K(HkP(k|k− 1)HT

k + Rk)
−1 (10)

Optimal estimation of state vector

x̂(k|k) = x̂(k|k− 1)+ Kk(Zk − Hk)x̂(k− 1|k− 1) (11)

The covariance updating formula of state vector is

P(k|k) = (I − KkHk)p(k|k− 1) (12)

The angle of the helmet after the current frame interval is predicted according to the state predic-
tion formula of the system, and the angle variation range of the camera is set to 0° to 360°. When the
predicted angle of the helmet is obtained, the range of the viewing frustum is calculated according
to the predicted angle and other parameters of the helmet, and the real 3D model outside the view-
ing frustum is culled. Since the size of the real 3D model is not constant, the model that intersects
with the visual frustum is taken as the model to be rendered. After the model to be rendered is
obtained, the model to be rendered preferentially is determined according to the ε value of the
ROI within the visual frustum. For data calls of different levels of detail, the method of selecting
calls according to distance is adopted, as shown in Formula 13.

Lod1, 0 , d ≤ D1

Lod2, D1 , d ≤ D2

. . .

Lodn, Dn−1 , d ≤ Dn

⎧⎪⎪⎨
⎪⎪⎩

(13)

where Lodn is the nth level of the model, d is the distance from the camera to the center point of the
model at this time, and Dn is the distance range.

4 Experiment and analysis

4.1 Experimental design and case region

This study selected a case region for the experiment and evaluated the correctness of the research
method from the perspectives of scene rendering efficiency and user experience. 46 testers were invited
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to participate in the experiment, ranging in age from 22 to 31, including undergraduate, graduate and
doctoral studentswithGIS professional backgrounds. The participantswere randomlydivided into two
groups, an experimental group and a control group, with 23 people in each group. The experimental
group used the method proposed in this study to collect their ROIs and predict the rotation of the
VR helmet, while the control group used the normal scene rendering method. Before the experiment,
training was conducted on the use of the VR equipment to avoid deviation caused by different profi-
ciency in the use of the equipment. The experiment lasted approximately 151 s, and a virtual avatar
of the tester moved along a preset route with a speed of 10m/s in the scene, with a distance of approxi-
mately 1500 m.Toavoiddizziness causedby fastmoving speed, theheight of the virtual avatarwas set to
10–20 m from the ground, and participants could freely rotate their heads during the process. During
the test, the ROIs of the experimental group were collected through VR eye-tracking equipment.

An area of 4.2 km2 of UAV oblique photographic data in Luding County, Sichuan Province,
China was selected as the topographic experimental area. The total size of the real 3D model
data is 233.9 GB (Gigabyte), and each real 3D model has five levels of detail, including buildings,
rivers, hills and other elements in the area. The data size of the mountainous area is approximately
108.4 GB, and the data size of the building area is approximately 125.5 GB These data are stored in
folders in the form of files, but their index data are stored in the MySQL database (Figure 6). The
proportion of levels of detail (LODs) is shown in Table 1.

The equipment used in the experiment is shown in Table 2.
Using the above data and equipment, we developed a prototype system for testing, as shown in

Figure 7.

Figure 6. Experimental region.
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4.2 Experimental results and analysis

4.2.1 Scene rendering efficiency results and analysis
Scene rendering efficiency can be measured by the rendering frame rate and the user ROI
accuracy rate. The rendering frame rate directly determines the experience of users in a VR
scene. When a user browses a scene, the system records the current VR scene rendering
frame rate and the number of triangles rendered in the scene per second and then calculates
the average frame rate of all people at each moment. The experimental result is shown in
Figure 8.

The average frame rate of the experimental group during the whole test was 83.16 frames per
second (FPS) and that of the control group was 76.82 FPS. Compared with that of the control
group, the rendering efficiency of the experimental group increased by approximately 8.2%. We
used Mann–Whitney U test to compare whether there were differences between the two
groups (a = 0.05). The difference of frame rate between the experimental group and the con-
trol group was statistically significant (p = 0.00**). In addition, the standard deviation of the
experimental group was 5.43 and that of the control group was 7.59, showing that the
frame rate stability of the experimental group was better than that of the control group. The
view prediction allows the computer to spend less time retrieving and loading data, thus achiev-
ing an increase in frame rate. When the viewing frustum moves to the predicted position, the
real 3D model that has been loaded into main memory and video memory can be quickly
rendered.

Different from the mountain data in the early part of the experiment, the latter part of the data
was mainly buildings, which had more vertices and triangles in the same region, resulting in a
decrease in rendering frame rate for both the experimental and control groups after 70 s. However,
this downward trend was more moderate in the experimental group because the rendering method
of the experimental group makes the utilization of the CPU and GPU more balanced. According to
the Pearson correlation coefficient calculation method, the correlation coefficient R2 between the
frame rate and the number of triangles in the experimental group was −0.89 (p < 0.01) and that
in the control group was −0.91 (p < 0.01), which shows that the rendering frame rate is negatively
correlated with the number of triangles, and the GPU of the experimental group can work more
efficiently.

To show the ROI recognition accuracy of the experimental group, the interest value 1n of each
real 3D model was recorded before the test, and the interest degree 1

′
n of each real 3D model was

recorded during the experiment according to the method in Section 2.2, where n represents the nth

Table 1. Data size and distribution.

LOD0 LOD1 LOD2 LOD3 LOD4 Total

Building area 3.9% 10.1% 18.8% 27.3% 39.8% 100% (125.5GB)
Mountain area 4.1% 11.8% 18.4% 26.3% 39.4% 100% (108.4GB)

Table 2. System development environment configuration.

Equipment and software Environment configuration Detailed information

Hardware Central processing unit(CPU) Intel i7-10870
Memory 32 GB
GPU NVIDIA RTX 3080
Video memory 16 GB
VR equipment HTC VIVE
Eye tracking accessory Droolon F1

Software System Windows 10
Software Unity 3D 2020.3.8

Steam VR
Visual Studio 2019
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real 3D model. After the test, Formula 14 was used to calculate the sum r of the difference in the
interest between an individual and the group for each real 3D model.

r = ∑n
1

1n∑1
n
− 1′n∑1′

n

∣∣∣∣∣
∣∣∣∣∣ (14)

Although the observation path of different testers was the same, and they were not allowed to move
freely, the observation preference of different testers may lead to a situation where some regions are

Figure 7. Main interface of the prototype system.

Figure 8. Average rendered frame rate and number of triangles in the scene.
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not observed, which will lead to the incomparability of r values. In view of this situation, this study
selected a real 3D model observed by all the testers for analysis and comparison. The experimental
group results are shown in Figure 9.

The results show that as the number of testers increases, the accuracy of the ROI gradually
increases. When ρ is equal to approximately 0.145, the increase in the number of testers no
longer improves the accuracy significantly, which means that the ROIs of the testers in the
scene are mostly the same. Therefore, it is feasible to improve the visual experience of testers
by prioritizing the rendering of ROIs. The accuracy of the viewing frustum prediction based
on the Kalman filter remains at approximately 87%. By analyzing user behavior data in the
virtual scene, it can be found that the reason for this phenomenon is users’ sudden turn of
the helmet, which is difficult to predict. This sudden turn is random, and it is difficult to predict
and avoid. With the increase in frame rate and the decrease in Kalman filter calculation interval,
the prediction accuracy can be further improved. In addition, we compared the speed of eye
tracking while directly rendering the real 3D model with that of frustum preloading.
The initial position and angle of the HMD in the virtual scene of the two groups remain the
same. The most detailed model is rendered in the ROI, and the rendering methods of other
regions are based on Formula 13. There were 26 participants in the experiment, 13 in each
group. Due to the randomness of users’ observation habits, we added graphical symbols to
guide users to observe the specified area. The data size of the test area is approximately 381
MB (MByte) (Figure 10).

The initial angle of the HMD in the x–z plane is approximately −17.41°, and the test region can
be observed only after rotating approximately 120°, which takes approximately 3–5 s. In the exper-
imental group, when the tester moves the HMD, the time it takes from the intersection of the pre-
dicted frustum and the test region to the completion of the real 3D model rendering of the test
region (Group A) was recorded, as well as the time it takes from the intersection of the tester’s
eye attention region and the test region to the completion of model rendering (Group B). In the
control group, the time it takes from the intersection of the eye focus region of the tester with
the test region to the completion of the rendering of the real 3D model was recorded (Group C).
We used the Kolmogorov–Smirnov test to test the normality of these groups, and the results are
shown in Table 3.

Figure 9. Relationship between the number of testers and the ρ value.
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The time consumption of Group A was 338.92 ± 15.06 ms, and that of Group C was 339.77 ±
15.17 ms. There was no significant difference between the two groups (P > 0.05). This occurred
because no matter which method was adopted, the computer took the same time to load the
data. There is a significant difference (p = 0.00**) between Group B (113.23 ± 13.27 ms) and
Group C. Compared with Group C, Group B takes 67% less time, which means that this method
can predict the user frustum location approximately 200 ms before Group C. Note that times of
Group B and Group C are the actual waiting times of users in virtual reality, so the two groups
of data are comparable.

4.2.2 User experience results and analysis
The users filled out a questionnaire immediately after the test. For the experience in VR scenes, the
commonly used evaluation indicators include the effectiveness, efficiency and satisfaction (Fu et al.
2021). Effectiveness refers to whether the adopted visualization methods will bring differences in
visual perception. Therefore, to verify the effectiveness of the method proposed in this study com-
bined with the characteristics of real 3D scenes, this study designed three questions to evaluate user
experience during browsing. The questionnaire as shown in Table 4, then the reliability and validity
of the questionnaire are tested (Li et al. 2021).

As shown in the Table 4, five options were set for each question, representing 1–5 points. The
total score of the three scoring items was the total score of each tester. The lower the overall score is,
the better the experience effect is, and the higher the score is, the worse the experience effect is.

Whether it is to improve the rendering frame rate or to predict the ROI more accurately, the
ultimate purpose is to provide VR users with a better visual experience, so users’ feelings can

Figure 10. Direction guide symbol and test region.

Table 3. Tests of normality.

Kolmogorov–Smirnov test

Statistic df Sig.

Group A 0.172 13 .200*
Group B 0.093 13 .200*
Group C 0.143 13 .200*
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directly reflect whether the method in this study is effective. Both the experimental group and the
control group received questionnaires after the test, and a total of 46 valid data points were received,
23 for each group. After verification, there were 23 valid questionnaires in the experimental group
and 22 valid questionnaires in the control group. The invalid questionnaire was due to conflicting
scores for different questions. The valid questionnaire results are shown in Table 5 and Table 6.

The distribution of the questionnaire results is shown in Figure 11.
Overall, the average scores of the three questions in the experimental group were lower than

those in the control group. The Q1, Q2, and Q3 scores decreased by approximately 25.2%,
31.5% and 23.8%, respectively. In particular, the testers’ feelings of switching between different
LOD of real 3D models decreased.

As seen from the Q1 results, the incidence probability of motion sickness in the experimental
group is significantly lower than that in the control group, and dizziness has lower likelihood of
occurrence when the VR scene has a higher frame rate. Sometimes motion sickness still occurs
when the average frame rate is high. This is because in VR, especially in scenes with high triangular
density, the computer cannot render the moving images quickly due to the sudden movement or
turning of the user, resulting in frames becoming stuck or tearing, which is called frame loss. In
this study, the turns of the testers in the experimental group were predicted, which made the ren-
dering region and rendering order deterministic and reduced the computational pressure on the
GPU and CPU caused by the turning of the helmet. This also enabled the images to be rendered
more quickly after turning, thereby avoiding the dizziness caused by frame loss and improving
the experience of the VR users. In this experiment, it can be observed that the increase in frame
rate is 8.2%, and the probability of motion sickness is obviously reduced by 54.5% in the experimen-
tal group (Q2 Score > 2), which further verifies that the frame loss reduction is helpful to improve
the experience of VR users.

For Q2, the result of the experimental group was significantly better than that of the control
group (p = 0.0013) due to the prediction of the tester’s viewing frustum and the rendering of the
real 3D model of interest within the viewing frustum in advance. Meanwhile, we also
observed that when the change in the tester’s view field was small, the tester had a strong feeling

Table 4. Questions on the questionnaire.

No. Scoring items Score

Q1 Did you feel motion sickness during the experiment? 1. No 2. Mildly 3. Moderately
4. Strongly 5. Intensely

Q2 Do you feel stuck or delayed when switching real 3D models with different level of
details?

1. No 2. Feel a little 3. Occasionally
feel
4. Feel distinctly 5. Strongly

Q3 Did you feel smooth browsing in the VR 3D scene? 1. Very smooth 2. Smooth 3. Neutral
4. Rough 5. Very rough

Table 5. Reliability and validity test results.

Bartlett’s test

Cronbach’s a value KMO value Approx. chi-square df Sig.

0.969 0.871 168.803 15 0.000**

Table 6. Questionnaire results.

Question Group Mean P

Q1 Experimental group 1.87 ± 0.76 0.0457
Control group 2.50 ± 1.01

Q2 Experimental group 1.96 ± 0.71 0.0013
Control group 2.86 ± 1.04

Q3 Experimental group 1.73 ± 0.69 0.0343
Control group 2. 27 ± 0.94
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of LOD switching. This is because when the change of view field is small, the predicted result is
the same as that of the previous time, which cannot bring the preload effect to the tester and
inevitably brings the feeling of LOD switching. For Q3, the fluency felt by the experimental
group was better than that of the control group, and the difference was statistically significant
(p = 0.0343). The improvement of the frame rate and stability together bring about the improve-
ment in fluency, thus comprehensively improving the experience of the testers.

5. Discussion

5.1 General discussion

Real 3D model is an important technology in building digital earth. At the same time, using real 3D
scene in virtual reality is an effective method to effectively improve the immersion and realism of
virtual reality. Especially with the development of UAV technology, the data volume and precision
of real three-dimensional model are gradually improved. The existing scene optimization methods
can not render and use these data efficiently in virtual reality. Because these methods pay more
attention to how to optimize the computer hardware, and do not take into account the special inter-
action methods of virtual reality and the characteristics of human eyes when observing the scene.
Moreover, the response speed of the existing eye tracking rendering methods can not satisfy the
efficient rendering of the real 3D model in virtual reality, resulting in the reduction of VR user
experience and limiting the reference of the real 3D model in virtual reality. Our method obtains
the ROI of each user through eye tracking equipment, and gives rendering priority to each real
3D model. Then, the rotation angle of HMD is predicted by Kalman filter to obtain viewing frus-
tum, which is preloaded and rendered according to the priority of the real three-dimensional model
in viewing frustum. Finally, we verify our method by constructing a prototype system. Kalman filter
can predict the visual cone with an accuracy of about 87%, and the frame rate of real 3D scene in
virtual reality can be improved by 8.3%.

Figure 11. Distribution of testers’ scores.
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5.2 Practical implication

In recent years, great progress has been made in the acquisition and processing technology of real
3D models (Liénard et al. 2016; Ji and Luo 2019), but their application is more difficult due to the
large amount of data and complex data structure of real 3D models. Especially in virtual reality,
researchers rarely build virtual geographic scenes through real three-dimensional models, and
they use DEM data instead (Fu et al. 2021). The key problem is that virtual reality has higher
requirements for scene rendering, and there is a trade-off between performance and visual quality.
Our research aims to improve this problem through eye-tracking equipment because people’s
regions of interest in the same scene are often similar (Cheng, Chu, and Wu 2005). Through the
enhancement in the rendering of the area observed by human eyes, we can effectively reduce the
dependence on hardware and make the use of hardware resources more reasonable. With the
same computing performance, virtual reality scenes can provide users with a better visual experi-
ence, greatly reduce the occurrence of motion sickness, expand the application scope and platform
of real three-dimensional models, and have positive significance for the construction of digital
earth.

6 Conclusion and future work

This research adopts the method of combining ROI recognition and viewing frustum prediction to
optimize the rendering of real 3D scene in virtual reality, and analyzes the effectiveness of this
method through experiments. According to our results, the rendering order of the real 3D
model determined according to the ROI is helpful to improve the user experience. Under the
same computer performance, the user’s visual fluency of the virtual scene is improved. Kalman
filtering can predict the motion trajectory of virtual reality HMD, which is very important for pre-
loading the real three-dimensional model contained in viewing frustum at the next time. Led to VR
scenes rarely exhibit picture stutter and tear, and greatly reduced the user’s motion sickness.
Although the above research has made some progress, there are still some shortcomings. For
example, in our research, the rendering order of the real 3D model is based on the previous
user’s regions of interest. The premise of this method is that the user has similar regions of interest.
In future work, we may try to use the current user’s behavior data to amend the regions of interest in
real time. Moreover, Kalman filtering is not good at predicting the sudden turn of an HMD. In fact,
the current algorithm has difficulty identifying this behavior because this behavior is accidental, and
there are great differences between individuals. Perhaps the use of neural networks and a large num-
ber of training samples can improve this situation.
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