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Abstract: This paper aims to solve the task of coloring a sketch image given a ready-colored exemplar
image. Conventional exemplar-based colorization methods tend to transfer styles from reference
images to grayscale images by employing image analogy techniques or establishing semantic corre-
spondences. However, their practical capabilities are limited when semantic correspondences are
elusive. This is the case with coloring for sketches (where semantic correspondences are challenging
to find) since it contains only edge information of the object and usually contains much noise. To
address this, we present a framework for exemplar-based sketch colorization tasks that synthesizes
colored images from sketch input and reference input in a distinct domain. Generally, we jointly pro-
posed our domain alignment network, where the dense semantic correspondence can be established,
with a simple but valuable adversarial strategy, that we term the structural and colorific conditions.
Furthermore, we proposed to utilize a self-attention mechanism for style transfer from exemplar to
sketch. It facilitates the establishment of dense semantic correspondence, which we term the spatially
corresponding semantic transfer module. We demonstrate the effectiveness of our proposed method
in several sketch-related translation tasks via quantitative and qualitative evaluation.

Keywords: sketch colorization; image synthesis; reference-based colorization

MSC: 68T01

1. Introduction

Sketch roughly describes the attributes and appearances of an object or a scene by
a series of lines, and sketch colorization, which assigns colors to binary line images to
improve their visual quality while preserving the original semantic information. Nowadays,
neural style translation has succeeded in image translation, which renders the image and
changes its color and texture while keeping its content characteristics unchanged [1–6].
The previous neural translation methods perform well in grayscale images, but not in the
conversion of sketch manuscript images. Therefore, the translation task on sketches has
attracted a great deal of attention in both the content industry and computer vision. In
contrast to the coloring task of sketch images, the grayscale coloring task is mainly based
on the assumption that neighboring pixels with similar intensities in grayscale should
have similar colors. Sketch images are information-scarce, making their colorization tasks
naturally challenging. We consider that the previous method may fail to learn a more
challenging mapping from sketches with intricate edges to colored images. Two types of
methods of sketch colorization tasks have been explored: hint-based (e.g., strokes, palette,
and text) approach and reference-based approach.

It comes up with an intuitive way to colorize a sketch with a small amount of auxiliary
information given by users, such as stroke hint [7–10], color palette [11,12], and text
label [13–15]. Although these hint-based colorization methods show impressive results,
they still suffer from the requirement of unambiguous color information and precise spatial
user inputs for every step. Therefore, a more convenient coloring mode appears, utilizing
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exemplar images for sketch colorization. In the practice of exemplar colorization, a critical
point is the preparation of a sufficiently large number of semantic training image pairs
and the ground truth that reflects the color results of a given exemplar. One attempt [16]
used geometric distortion and color perturbation to synthesize a pseudo ground truth.
However, it suffers from the problems that failed to handle cross-domain samples well
and easy to mode collapse. Therefore, some research is aimed at cross-domain learning
and has been successfully employed in image translation. Early methods [17–22] focus on
utilizing the low-level features to compose colorization. Although the above early methods
broaden the thinking of style transfer, there are still many limitations: (1) The source image
and target image are required to have a certain similarity in form and shape; (2) there are
some deficiencies in the display of the global semantic features of the image; and (3) the
style of the generated image is monotonous, and the texture diversity is not rich enough.
To surmount such problems, recent studies [23–30] have explored the establishment of
cross-domain correspondence between the exemplar and source input. An extension of
Image Analogies [28] and Deep Analogy [29] tries to establish the dense semantically-
meaningful correspondence of an input pair using pre-trained VGG layers. We deem that
such methods may fail to handle sketch colorization. In order to consider the sketch (or
mask, edge) format in the task of image translation, some studies [24,31,32] explicitly divide
the exemplars into semantic regions and learn to synthesize different regions separately.
Some research [23,27,30] utilizes the deep network for composing semantically close source-
reference pairs or takes advantage of histograms [30] to exploit sketches in their training.
In this manner, it managed to produce high-quality results. However, these methods
are domain-specific and are unsuitable for sketch colorization with only complex edges
composition. Additionally, the style only marries the global context style, regardless of
spatially relevant information and partial local style.

Our concern is how to establish the dense correspondence between sketch and exem-
plar in a more efficient manner. Our motivations are mainly on two issues: Firstly, how
to model and extract local and non-local styles from exemplar images more efficiently?
Secondly, how to learn the mapping with desired style information extracted from ex-
emplars while preserving the semantically-meaningful sketch composition. For the first
issue, we proposed a cross-domain alignment module that transforms distinct domain
inputs into a shared, embedded space to ulteriorly learn the dense correspondence in both
local and non-local style manners. For the second case, we propose a module that explic-
itly transfers the canonical contextual representation to the spatial location of the sketch
input through a self-attentive pixelated feature transfer mechanism, which we term the
cross-domain spatially feature transfer module (CSFT). Finally, a set of spatially-invariant
de-normalization blocks with a Moment Shortcut (MS) connection [33] are employed to
synthesize the output progressively; then, a specific adversarial framework for colorization
tasks, dual multiscale discriminators with the capability of distinguishing structural com-
position and style coloration, respectively, has been introduced in this paper to facilitate the
joint training of alignment module and guide the reconstruction of stylized output. This
indirect supervision departs from the requirement of manually-annotated samples with
visual correspondence between source-exemplar pairs. It encourages the network can be
fully optimized in an end-to-end manner.

Qualitative and quantitative experimental results show that our method outperforms
previous methods and exhibits state-of-the-art performance. These promising results
extensively demonstrate its great potential for practical applications in various fields. The
main contributions of this paper can be summarized as follows:

• The cross-domain alignment module is proposed for imposing the distinct domain
to a shared, embedded space for progressively aligning and outputting the warped
image in a coarse-to-fine manner.

• To facilitate the establishment of dense correspondence, we proposed an explicit style
transfer module utilizing self attention-based pixel-wise feature transfer mechanism,
which we term the cross-domain spatially feature transfer module (CSFT).
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• We proposed a specific adversarial strategy for exemplar-based sketch colorization to
facilitate the imaging quality and stabilize the adversarial training.

2. Related Work
2.1. Image-to-Image Translation

Image-to-image translation is the problem of converting a possible representation
of one scene into another, such as mapping a semantical mask to an RGB image or vice
versa. Most previous prominent approaches show their ability on translation tasks with a
generative adversarial network [34] that leverages either paired data [6,35,36] or unpaired
data [37–39]. The previous generative models solve the image-to-image translation with
different domains. However, they can only learn the latent representation between two
specific different domains at a time, which makes it hard to deal with the transformation
between multiple domains. Therefore, Liu et al. [40] designed the UNIT network based on
GAN and VAE, and they realized the conversion from unsupervised image to image by
learning a shared latent space. Then, Choi et al. [41] proposed starGAN, which is trained
on multiple cross-domain datasets to realize multi-domain transformation. However,
none of these methods concern the geometric gap between source content and style target.
Additionally, previous methods ignore the capability of delicate control of the final output
because the latent space representation is rather complex and implicit in correspondence of
the exemplar style. In contrast, our cross-domain alignment module supports customization
of final colorization results by a given user-guided exemplar in a coarse-to-fine manner of
warping and refining, allowing users to control their designed effect flexibly.

2.2. Sketch-Based Tasks

A sketch is a rough visual representation of a scene or object by a set of lines and edges.
It has been utilized in several computer vision tasks such as image retrieval [42,43], sketch
generation [44,45], and sketch recognition [46]. Unlike other image-to-image translation
methods, sketch colorization plays a unique role in content creation. Frans [47] used a
user-defined color scheme colorization model based on GANs, but it hardly generated
agreeable results. Ci et al. [7] explored the line art colorization in the field of animation
by introducing ResNeXt and a pre-trained model to alleviate the problem of overfitting.
Hati et al. [9] is based on Ci’s model, introducing a double generator to improve visual
fidelity but greatly increase the number of parameters. Style2Paints [8] was published as a
famous project on Github with 14k stars, and the newest version is Style2Paints V4.5 beta.
The V4.5 version can generate visually pleasing line art colorization results by splitting
line art images into different parts and colorize them respectively. Zhang et al. [48] used
U-Net residual architecture and an auxiliary classifier to preliminarily realize the animation
style colorization tasks of sketches. Although these methods show impressive results
for sketch-based coloring, they inevitably require precise color information and a certain
amount of geometric cueing information that the user needs to provide at each step.

An alternative approach, which utilizes an already colored image as an exemplar to
colorize sketches, has been introduced to surmount these inconveniences. Lee et al. [16]
explored geometric augmented-self reference in the training process to generate forged
sample pairs. Sun et al. [30] composed the semantically-related reference-pairs by color
histogram. Lian et al. [49] explored an anime sketch colorization net without encoder
using Spatially-Adaptive Normalization. However, these pair composition methods tend
to be sensitive to domains, limiting their capability in a specific dataset. In contrast, our
cross-domain model can be better applied to cross-domain learning and different types
of datasets. At the same time, we have designed a novel adversarial strategy for sketch
colorization to facilitate the final imaging quality.

2.3. Exemplar-Based Image Synthesis

More recently, researchers [25,50,51] have proposed to synthesize images from the
semantic layout of the input under the guidance of exemplars. Zhang et al. [27] designs a
novel end-to-end dual branch network architecture. When reliable reference pictures are
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not available, it learns reasonable local coloring to generate meaningful reference pictures
and makes a reasonable color prediction. Huang et al. [51] and Ma et al. [24] propose to
employ Adaptive Instance Normalization [52] to transfer the style latent from the exemplar
image. Park et al. [25] proposed a novel normalization layer for image synthesis and solved
the problem of vanishment of semantic map of sparse input on synthesis in the previous
image synthesis task. In contrast to the above approach of passing only global styles, our
approach is to pass fine-grained local styles from the semantic counterpart region of the
exemplar through the proposed self-attention mechanism.

Our work is inspired by recent examples-based image coloring, but we address a
more subtle problem: exemplar-based coloring of sparse semantic and informationally
complex sketches. At the same time, we present a novel training scheme to learn visual
cross-domain correspondence and a sound adversarial strategy designed for sketch-based
tasks aiming to improve the final imaging quality.

3. Proposed Method

In this section, we will describe the details of the proposed methods as shown in
Figure 1. We first introduce a learnable domain alignment network in which dense semantic
correspondences can be established, where the CSFT module is used to find spatial-level
correspondences between the inputs. Then, we apply a coarse-to-fine generator to refine
the coarse images gradually. Finally, we describe the structure and color strategy of the
proposed discriminator.

Reference

Sketch

CSFT (HWC)T

(HWC)T

Real

Fake

Structure  

Discriminator

Discriminator Network 

Color

  Discriminator
Fake

Real

Fake

Real

Dec

Er

Es

Labels

Generator Network 

Domain Alignment Network 

 Moment Shortcut

Resblocks

Reshape



Vr

Vs

Coarse Image

Coarse Image

Corresponding Matrix 

Fake Image

Similar Image

(HW HW) (HWC)

P
red

ictio
n

 sco
res

Figure 1. The illustration of the proposed framework. It contains three parts: Domain Alignment
Network, Generator Network with Moment Shortcut strategy, and Discriminator Network with the
structural and colorific conditions. Given the sketch input xs ∈ RH×W×1 and the exemplar input
ye ∈ RH×W×3, the Domain Alignment Network adapts them into a common domain c, where the
dense corresponding is established, to get the coarse outputs. Then, the generator refines the coarse
images and outputs the refined images.
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3.1. Domain Alignment Network

Image analogy [28,29,53] is a typical style migration method that uses a pre-trained
VGG network to propose high-level abstract semantic information and find a suitable match
on the target image (e.g., a realistic photo converted to a painting under the same semantic
target). However, this approach does not apply to the migration task of sketches since
sketches contain only a limited binary structure. The traditional VGG layer cannot extract
suitable features for matching. Therefore, we propose a domain alignment network to
establish correspondence between sketches and examples. However, conventional domain
alignment is problematic in obtaining common domains in different semantics and different
styles, so we propose a cross-domain spatially feature transfer (CSFT) module to help solve
this problem.

3.1.1. Domain Alignment

To be specific, we let user inputs xs ∈ RH×W×1, and ye ∈ RH×W×3, s denote the
domain of sketch, e denotes the domain of exemplar, and H, W denote the height and
width, respectively. Additionally, we construct exemplar training pairs by using paired
data {xs, xe} that are semantically aligned but differ in domains. Similarly, exemplar
training pairs {ye, ys} are constructed in the same way as shown in Figure 2. Firstly, we
project the given inputs xs and ye into a common domain c where the representation
is able to represent the semantics for both distinct input domains. Let F (xs),F (ye) be
the corresponding features of xs, ye, where F (·) ∈ RH×W×L, L denotes the producing
L activation maps ( f 1, f 2, . . . , f L), and H,W are feature spatial size. Then, we let Fs→c
and Fe→c be representations of the feature embedding, where the embedding space is the
common domain c. So, the presentation can be formulated as:

xc = Fs→c(xs; θF ,s→c) (1)

yc = Fe→c(ye; θF ,e→c) (2)

where θ denotes the learnable parameter of feature layers. The representations xc and yc
contain the semantic and stylistic features of the inputs. In practice, domain alignment is
crucial for correspondence establishment because xc and yc can be further matched with
specific similarity measures in the same domain. Therefore, how to draw the representations
of xc and yc more closely is a critical issue.

Same semantics
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etch

 d
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Same semantics Training Inputs Training Inputs

E
x
em
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o
m

ain

(a) (b)
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Figure 2. The illustration of training pairs. We construct pairs data {xs, xe} (a,c), {ye, ys} (b,d). In
the training phase, we will shuffle the data as the training pair inputs (e.g., e–h). Subscript e means
exemplar domain, and Subscript s means sketch domain.
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3.1.2. Dense Correspondence

This subsection will describe how to close the distance between the features xc, yc
obtained in the previous section. We use the cosine distance proposed by Zhang [27],
which has the advantage of closing the intra-class distance and distancing the inter-class
differences. Now, our goal is to build a learnable module to find the correlation matrix
M ∈ RHW×HW , which can record the spatial correspondence between the representations.
Let i ∈ {(H, W)}, j{(H, W)} denote spatial positions of channel-wise centralized feature
x̂c ∈ RC and ŷc ∈ RC. Therefore, the formula can be written as:

M =
x̂c(i)T · ŷc(j)
‖x̂c‖ · ‖ŷc‖2

(3)

where x̂c(i) = xc(i)− mean(xc(i)) and ŷc(j) = yc(j)− mean(yc(j)). The matrixM indi-
cates a dense pixel-by-pixel spatial correspondence.

To establish an efficient spatially dense correspondence, we also need an efficient
feature transfer module intending to map different local features of the input to valid
regions. We do not apply direct supervised learning to the domain alignment network,
but indirect joint training through a proposed Dynamic Moment Shortcut method, which
allows the entire architecture to preserve end-to-end optimization capabilities. In this
way, the transformation network may find that high-quality coloring images can only be
produced by correct domain mapping of the exemplar input, which explicitly compels
the network to learn the accurate dense correspondence. In light of this, we let wy→x
by matching and computing the most relevant pixels in ye and matrixM in the shared
domain c.

wy→x(i) =
HW

∑
j

so f tmax(αM(i, j) · y′e) (4)

where α denotes a coefficient to control the degree of soft smoothing, default is 100.
y′e ∈ RHW is the deformed vector of ye.

3.1.3. Cross-Domain Spatially Feature Transfer

Under the guidance of Equation (4), we, therefore, propose the Cross-domain Spatially
Feature Transfer module, which can effectively facilitate the establishment of spatially
dense correspondence to the global statistical relationship between input features as shown
in Figure 3.

Wv

Wk

Wq

Vr

Vs

reshape

reshape

reshape

 

reshape

Vs
*

Vr
*

Figure 3. The illustration of the cross-domain spatially feature transfer (CSFT) module. CSFT
establishes the dense correspondence mapping through the self-attention mechanism. The output
results will be used for the next step of conversion, that is, to calculate the correspondence matrixM.

To be begin with, each of the two feature pyramid networks Er and Es consists of
L convolutional layers, producing L activation maps ( f 1, f 2, . . . , f L). Then, we apply
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downsampling to each response layer f i so that it scales to a consistent spatial size of f L,
and concatenate them along the channel dimensions, obtaining the organized activation
feature map V, i.e.,

V = [φ( f 1), φ( f 2), . . . , φ( f L−1), f L] (5)

where φ denotes the spatial downsampling method of each feature map, in this manner,
we simultaneously obtained semantic information from high to low inputs.

Then, we reshape V in to V̂ = [v1, v2, . . . , vhw] ∈ Rdv×HW , where vi ∈ Rdv means the
spatial flatten representation of the i-th vector in V and dv = ∑l=1

L channle(l). Then we can
get vi

s in V̂s and vj
r in V̂r, as indicated below:

V̂s = [v1
s , v2

s , . . . , vhw
s ], vi

s ∈ dv (6)

V̂r = [v1
r , v2

r , . . . , vhw
r ], vi

s ∈ dv (7)

After that, given the vi
s and vj

r, we can obtain the self-attention matrix A ∈ hw× hw,
and following [54], we can get the scaled dot product result of αij:

αij = so f tmax

(
Wqvi

s ·Wkvj
r√

dv

)
(8)

where Wq, Wk ∈ Rdv×dv represents multilayer perceptron, and
√

dv denotes the scaling
factor. α can be used as the calculated attention weight of how much information vi

s should
bring from vj

r. Now, we can obtain the context vector V∗ of region i of the exemplar image.

V∗ = ∑
j

αijWvvj
r ∈ Rdv×hw (9)

Then, the dimension of V∗ is adjusted by operations such as 1 × 1 convolution to
obtain the xc, yc.

3.2. Coarse-to-Fine Generator

We employ a coarse-to-fine generative architecture to jointly train the domain align-
ment network, providing end-to-end training capability for the model. To avoid the
failure of coarse image generation, we incorporate a Dynamic Moment Shortcut (DMS)
structure in the generator, which has been shown to facilitate the generation of coarse
deformation images.

Dynamic Moment Shortcut

Inspired by Dynamic Layer Normalization [55,56] and Position Normalization [33],
and we employ Dynamic Moment Shortcut (DMS) in our generator. In generative mod-
els, although the conventional regularization layer may promote model convergence, it
eliminates important semantic information about the images, which may cause generation
failures, making it necessary for decoder structures with huge parameters to relearn the
feature maps.

Instead, the introduction of DMS injects the positional moments extracted from earlier
layers into the later layer of the network, enabling joint training of domain alignment
networks with a low parametric number of decoders.

3.3. Structural and Colorific Strategy

In order to improve the color quality of the sketches, we propose the colorific and
structural strategy, which effectively contributes to excellent and aesthetic coloring results.
Here next, we describe in detail the structural and colorific strategy.
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3.3.1. Structural Condition

The structural conditions are a brief overview and representation of the objects. We
represent them using a series of binary black and white images, also the sketches we refer
to. Concretely, we apply xDoG [57] in the training phase to generate simulation sketches,
which can constitute our structural conditions.

We train the discriminator by composing the structural information of the exemplar
and the generated samples, respectively, letting the discriminator focus on comparing the
structural reasonableness of the generated images and maintaining consistency with the
sketches. The ablation experiments show that the structural discriminator can reduce the
occurrence of color diffusion.

3.3.2. Colorific Condition

The color condition indicates whether the image’s color matches the example image,
and it is the key to generating reasonable colors. Our model strives to generate a reasonable
coloring result given a sketch image and a reference image. We apply the multi-scale
discriminators in the discriminator network and use image processing techniques to extract
sketches and color styles from these RGB images automatically.

In the following way, we compute a 3D lab color histogram (8 × 8 × 8) for each RGB
image [30] and then measure their similarity by k-means clustering if their colors are close
to each other to merge the exemplar images. As shown in Figure 4, we get an image with
similar color similarity to the reference input as our color conditional input. In this way,
the discriminator improves its sensitivity to the color correlation of the generated images
and exemplar.

...

...

...

...

Exemplar Inputs

K-means

Colorific condition

Color

  Discriminator

Color

  Discriminator

...

Figure 4. We cluster the images with similar hues by the K-means method. Then, we can obtain
colorific conditions and use them in the discriminator in favor of K-means. Ablation experiments
show that color conditions can effectively improve the quality of generated images.

3.3.3. Structural and Colorific Discriminators

As shown in Figure 5, we use pairwise discriminators with structural and colorific
conditions to jointly train the generator part. Specifically, the structural discriminator is
responsible for determining whether the generated images are structurally plausible and
maintain structural consistency with the sketch input. We carefully designed positive
and negative sample pairs to compel them to be sensitive only to the resulting structure.
The colorific discriminator is responsible for identifying whether the resulting colors are
reasonable. We perform positive and negative samples on images with different structures
but similar colors, which forces the color discriminator to be more sensitive to changes in
color patterns and promotes the generation of images that retain more of the style from the
exemplar input. The structure discriminator prefers the spatial scale, while the coloring
discriminator focuses on the style domain.
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Early Layers
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Intermediate Layers Later Layers
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σ
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β 

Convolution layers

Figure 5. (Left) injecting the extracted mean and standard deviation as β and γ. (Right) one may
employ learnable convolution layers to predict modulated β and γ dynamically based on µ and σ.

3.4. Loss for Exemplar-Based Sketch Colorization

We jointly train the domain alignment network and generator network along with the
following loss functions.

3.4.1. Loss for Exemplar Translation

As shown in previous work [58], perceptual loss penalizes the model to decrease the
semantic gap in the generated output, which means the multi-scale spatial differences of
intermediate activation feature maps between the generated output and ground truth from
the pre-trained VGG network.

Lperc = ‖φ(G(xs, ye))− φ(xe)‖1 (10)

where φ denotes the activation feature maps of l-th layer extracted at the relu5_2 from the
pre-trained VGG19 network.

Sajjadi et al. [59] have shown that reducing the style loss of the difference between the
covariances of the activation maps helps to resolve the checkerboard effect. Therefore, we
applied style loss to facilitate style transfer from the exemplars as follows:

Lstyle = E[‖G(φ(G(xs, ye)))− G(φ(ye))‖1] (11)

where G denotes the gram matrix.
Meanwhile, we employ the contextual loss the same as [60] to let the output adopt the

style from the semantically corresponding patches from ye.

Lcontext = ∑
l

ωl

[
−log(

1
nl

∑
i

max
j

Al(φl
i (G(xs, ye), φl

j(ye))))

]
(12)

where i and j indexes the feature map of layer φl , which contains the nl feature maps
and wl restrains relative importance of different layers. In contrast to style loss, which
primarily utilizes high-level features, context loss uses relu2_2 through relu5_2 layers
because low-level features capture richer style information (e.g., color or texture) used to
convey exemplar appearance.

3.4.2. Loss for Pseudo Reference Pairs

We construct training exemplar pairs {xs, xe} that are semantically aligned but domain
separated. Concretely, we apply random geometric distortion such as TPS transforma-
tion s(·), a non-linear spatial transformation operator to xe, and get the distorted image
x′e = s(xe). This keeps our model from lazily bringing the color in the same spatial position
from xe. The interpretation of xs should be its counterpart xe when considering xe as an
exemplar. We proposed to penalize the pixel-wise difference between the output and the
ground truth xe as below:

Lpseudo = E
[
‖G(xs, ye)− x′e‖1

]
(13)
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3.4.3. Loss for Domain Alignment

We need to ensure that the representations xc and yc are in the same domain to make
the domain alignment meaningful. To achieve this, we use the pseudo exemplar pair
{xs, xe} and {ys, ye} to establish a shared domain c by penalizing the L1 distance between
the representations.

Lalign = ‖Fs→c(xs)−Fe→c(xe)‖1 + ‖Fs→c(ys)−Fe→c(ye)‖1 (14)

In this way, the model can gradually learn the mapping of different domains to a
common domain.

3.4.4. Loss for Adversarial Network

We proposed to train a conditional discriminator [34] with the structural and colorific
conditions to discriminate the translation output and the ground truth sample from distinct
domains. We construct the discriminator input as in Section 3.3.

Ladv = E[logDs(ys, xs) + logDr(Isimilar, xe)]

+E[log(1− Ds(G(xs, xe), xs))

+log(1− Dr(G(xs, xe), xr))]

(15)

where Isimilar denotes the sample that is similar to exemplar inputxe in color.

4. Experiments

This section demonstrates the superiority of our approach on a range of domain
datasets, including real photos and anime (comics).

4.1. Implementation

We implement our model with the size of input images fixed in 256 × 256 resolu-
tion on every dataset. For training, we adopt the Adam solver for optimization with
β1 = 0.5, β2 = 0.999, and the learning rates are both initially set to 0.0001 for generator
and discriminator, respectively, following TTUR [61]. We conduct the experiments using
NVIDIA GeForce RTX 3090 with batch size set as 8, and it probably takes three days to
train 100 epochs on the Animepair dataset.

4.2. Dataset
4.2.1. Anime-Sketch-Colorization-Pair Dataset

We use Kaggle’s anime-sketch-colorization-pair [62] dataset to train our model to
validate the model’s performance on hand-drawn data. It contains 14,224 training samples
and 3545 test samples, including paired hand-crafted sketch images and corresponding
color images.

4.2.2. Animal Face Dataset

The Animal Face Dataset [63] includes 16,130 high-quality animal face data containing
several distinct domains of animal species, namely cats, dogs, and wild animals, with wild
animals including lions, tigers, foxes, and other animals. We use this dataset to validate the
model’s performance in cross-domain image translation, and it turns out that our model
can work well.

4.2.3. Edge2Shoe Dataset

Edge2Shot [64,65] contains paired sketch color shoe images that have been widely
used for image-to-image conversion tasks. With this dataset, we can effectively evalu-
ate the performance of our method and existing methods on unpaired image-to-image
transformation tasks.
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4.3. Comparisons to Baselines

We select different state-of-the-art image translation methods for visual comparison.
(1) CycleGAN, a leading unsupervised image translation method. (2) MUINT, a multi-
modal unsupervised image translation framework. (3) SPADE, an advanced framework
for semantic image translation. (4) Sun et al.’s method, a recent reference-based sketch
coloring method with good results on an icon dataset. (5) Cocos Net, an exemplar-based
cross-domain image translation method for domain alignment using the learned shared
embedding space.

4.4. Quantitative Evaluation

The quantitative model performance on different datasets is shown in Table 1. We
evaluate our proposed method from five aspects:

• Firstly, we use Fréchet Inception Distance (FID) [61] to measure the distance be-
tween the synthetic image and the natural image distribution. FID calculated the
Wasserstein-2 distance between the two Gaussian distributions in line with the fea-
tures representation of a pre-trained convolution network InceptionV3 [66]. As Table 2
shows, compared with other excellent models, our proposed model has the best score
in FID.

• Peak Signal to Noise Ratio (PSNR) is an engineering term representing the ratio
between a signal’s maximum power and the destructive noise power that affects its
fidelity. We also evaluate the PSNR index of the models on different datasets, as shown
in Table 3, and our model has achieved good performance.

• Structural Similarity (SSIM) [67] is also an image quality evaluation index, which
measures the similarity of two images from three aspects: brightness, contrast, and
structure. The larger the value, the better, and the maximum is 1. The quantitative
results are shown in Table 4.

• NDB [68] and JSD [69]. To measure the similarity of the distribution between the real
and generated images, we used two bin-based metrics, NDB (Number of Statistically-
Different Bins) and JSD (Jensen-Shannon Divergence). These metrics evaluate the
degree of pattern missing in the generated model. Our model has achieved good
performance, as shown in Table 5.

Table 1. Model performance on FID, PSNR, SSIM, NDB, and JSD metrics. The arrow direction
represents the better numerical direction of the metric (e.g., smaller FID, better performance).

Dataset FID ↓ PSNR ↑ SSIM ↑ NDB ↓ JSD ↓

Animal Faces
Cat 25.64 11.90 0.53 2.21 0.018
Dog 26.65 12.77 0.62 2.54 0.021
Wild 27.41 11.96 0.64 3.12 0.028

Comics Anime-pair 19.14 16.44 0.83 2.00 0.016

Hand-drawn Edge2shoe 15.69 16.72 0.83 2.01 0.015
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Table 2. Model performance on metric of FID. sc means the structural condition, and cc means the
colorific condition. Bold means best performance.

Animal Face Comics Hand-Drawn

Methods Cat Dog Wild Anime-Pair edge2shoe

SPADE 42.52 37.39 47.41 58.62 32.55
MUINT 33.48 32.45 42.54 37.45 29.47
CycleGAN 70.44 80.54 88.19 106.45 70.96
Sun et al. 48.45 45.45 55.69 67.65 38.46
Cocos Net 29.47 30.11 27.56 24.93 19.64

Ours(w/o cc) 28.12 26.42 29.13 28.13 18.77
Ours(w/o sc) 30.34 30.58 33.65 24.95 22.98
Ours(w/o CSFT) 33.54 36.21 34.21 30.96 24.16
Ours( f ull) 25.64 26.65 27.41 19.14 15.69

Table 3. Model performance on metric of PSNR. Bold means best performance.

Animal Face Comics Hand-Drawn

Methods Cat Dog Wild Anime-Pair edge2shoe

SPADE 9.89 7.68 9.54 11.57 10.15
MUINT 10.32 10.45 9.59 12.96 12.11
CycleGAN 8.47 8.21 7.68 10.11 10.01
Sun et al. 9.36 10.45 10.42 12.41 13.34
Cocos Net 11.21 11.44 11.69 14.65 16.73

Ours 11.90 12.77 11.96 16.44 16.72

Table 4. Model performance on metric of SSIM. Bold means best performance.

Animal Face Comics Hand-Drawn

Methods Cat Dog Wild Anime-Pair edge2shoe

SPADE 0.42 0.44 0.42 0.40 0.40
MUINT 0.62 0.60 0.66 0.71 0.70
CycleGAN 0.51 0.51 0.52 0.50 0.50
Sun et al. 0.52 0.61 0.59 0.70 0.71
Cocos Net 0.53 0.62 0.63 0.81 0.82

Ours 0.53 0.62 0.64 0.83 0.83

Table 5. Model performance on metric of NDB and JSD. Bold means best performance.

Animal Face Comics Hand-Drawn

Methods Cat Dog Wild Anime-Pair edge2shoe
NDB JSD NDB JSD NDB JSD NDB JSD NDB JSD

SPADE 4.14 0.035 3.14 0.030 3.68 0.032 4.34 0.041 4.00 0.033
MUINT 2.25 0.020 3.01 0.029 3.01 0.029 3.51 0.029 2.54 0.019
CycleGAN 4.45 0.041 4.56 0.041 4.51 0.040 5.12 0.048 4.87 0.047
Sun et al. 4.41 0.040 4.11 0.039 3.47 0.035 3.41 0.030 3.28 0.020
Cocos Net 2.20 0.018 2.59 0.022 3.01 0.024 2.36 0.018 2.01 0.015

Ours 2.21 0.018 2.54 0.021 3.12 0.028 2.00 0.016 2.01 0.015

4.5. Qualitative Comparison

Figure 6 provides a qualitative comparisons of different approach. It shows that our
proposed model exhibits the most visually appealing quality while preserving the style
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of the examples better while retaining as much semantic information in the sketches as
possible, compared to prior coloring approaches. This also correlates with the quantitative
results, where we show the visual performance of our model under different datasets in
Figures 7–9.

MUINT CocosNetCycleGAN Sun et.al Ground truthSketchSketch ExemplarExemplar OursOursSPADE

Figure 6. Qualitative results with existed colorization methods on anime datasets. All results are
generated from the unseen dataset with sketch input and exemplar image under random selection
within the validation set.

Sketch

Exemplar

Coarse 

output

Output

Ground 

truth

Figure 7. Qualitative results of our method on the edge2shoe dataset. Each row has the same semantic
content, while each column has the same reference style.
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Figure 8. Qualitative results of our method on the anime dataset. Each row has the same semantic
content, while each column has the same reference style. Please note that all the above results are
generated from unseen images because the goal of our task is not to reconstruct the original image.

Sketch

Exemplar

Coarse 

output

Output

Ground 

truth

Figure 9. Qualitative results of our method on the animal-face dataset. Each row has the same
semantic content, while each column has the same reference style.
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4.6. Ablation Study

In order to verify the effectiveness of each part, we organized tailored ablation experi-
ments. As Table 6 shows, domain alignment loss Lalign plays a crucial role in cross-domain
image translation, which not only effectively facilitates training, but also generates satisfy-
ing images. We also ablate the contextual loss Lcontext. In our experiments, we found that
although the network produced the final output, the feature correspondence may have a
large mismatch, and using Lcontext loss enabled the correspondence to be well established.

Table 6. FID scores according to the ablation of loss function terms described in Section 3.4. Bold
means best performance.

Animal Face Comics Hand-Drawn

Loss Function Cat Dog Wild Anime-Pair edge2shoe

w/o Lcontext 40.68 52.65 50.52 33.51 32.69
w/o Lpseudo 25.87 26.85 28.65 19.14 15.77
w/o Lalign 40.74 37.37 46.49 51.62 42.55
w/o Ladv 42.51 38.39 47.44 58.68 44.55

f ull 25.64 26.65 27.41 19.14 15.69

As shown in Table 2, we performed ablation experiments for the proposed structural
and colorific conditions. The experimental results prove that the strategy effectively reduces
detail loss and color diffusion. As shown in Figure 10, the colorific condition can promote
the correct matching of the exemplar style and sketch correspondence, and the structure
condition can reduce mismatch and color diffusion.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 10. A qualiative example presenting the effectiveness of structural and colorific conditions.
(a) sketch input; (b) exemplar input; (c) output (w/o colorific condition); (d) coarse image (w/o
colorific condition); (e) output (w/o structural condition); (f) coarse image (w/o structural condition)
(g) output (full); and (h) coarse image (full).

As Table 2 shows, the FID metrics perform better with the addition of the CSFT module
since CSFT can effectively facilitate the establishment of pixel-level correspondences and
eliminate certain incorrect dense correspondences. At the same time, we found in practice
that the addition of CSFT joint training can facilitate coarse image generation for domain-
aligned networks. The control group of CSFT is a series of residual convolutions to maintain
input–output invariance.
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5. Discussion

The method proposed in this paper facilitates the solution of the problem of coloring
sketches with sparse information. Traditional image translation or image transfer methods
are not well suited for sketch colorization tasks because they have limited capability to
establish correspondence between sparse semantic images and exemplars. Therefore, for
sketch colorization, we propose a cross-domain alignment network that facilitates dense
correspondence at the pixel scale using the proposed CSFT module, and the proposed
structural and colorific conditions can be effectively applied to exemplar-based sketch
colorization tasks.

Our model is mainly trained on cropped image data with restricted resolution (e.g.,
256 × 256). We do not employ a multi-scale architecture like pix2pixHD [36] for high-
resolution image synthesis. Moreover, the model is not exhaustive, and it is difficult to
establish a perfect and correct correspondence because of the diversity and uncertainty of
the user input. Therefore, it is challenging for the model to learn how to determine the given
style’s suitability and color it reasonably within a specific limit from the style of the user-
given exemplar. For example, in the animal face dataset, we find that the converted results
are not always satisfactory, which is firstly caused by the excessive differences between
different species and secondly by the fact that the model is not yet able to establish a
perfect dense correspondence, and in this case, how to generate aesthetically and intuitively
appropriate results should be our consideration.

Currently, the model proposed in this paper has been initially tried in a sketch coloriza-
tion task. We believe that the proposed model has good potential for cross-domain image
translation tasks. In the future, we plan to extend the framework to the high-resolution
domain and integrate style-consistent examples into the keyframes of video data.

6. Conclusions

In this paper, we present a cross-domain translation framework for exemplar-based
sketch colorization tasks. We propose the cross-domain alignment module, effectively
establishing correspondence between isolated domains. In order to further promote cross-
domain learning, we propose a pixel-wise feature transfer component based on the self-
attention mechanism, which is called the cross-domain spatially feature transfer module
(CSFT). At the training stage, we design a simple and effective strategy to term the structural
and colorific conditions, which can effectively promote image quality. Our method achieves
better performance than existing methods in both qualitative and quantitative experiments.
In addition, our method learns dense correspondences of sketch images, paving the way for
some interesting future applications, which shows the significant potential in the practice
of content creation and other fields.
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