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Abstract
Achieving the optimal balance of minimizing bandwidth con-
sumption and end-to-end latency while preserving a satis-
factory level of visual quality becomes the ultimate goal of
live, interactive holographic communication, a fundamental
building block of immersive telepresence envisioned for 6G.
Nevertheless, achieving this ambitious goal poses significant
challenges for mobile devices with limited computing power,
considering the substantial amount of 3D data to stream, the
demanding latency requirements, and the high computation
workload involved. Instead of distributing immersive content
bit by bit, in this position paper, we propose to deliver seman-
tic information extracted from telepresence participants to
drastically reduce Internet bandwidth usage for task-oriented
applications such as remote collaboration. We contribute a tax-
onomy by categorizing related semantics into three different
types (i.e., keypoints, 2D images, and text), pinpoint the open
research challenges associated with developing a practical sys-
tem for each category in our comprehensive research agenda,
and delve into the potential solutions for overcoming these
challenges. The preliminary results from our proof-of-concept
implementation that harnesses keypoint-based semantics (par-
tially) validate the feasibility of our research agenda.

CCS Concepts
• Information systems → Multimedia streaming; • Com-
puting methodologies → Mixed / augmented reality.
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1 Introduction
The way humans communicate remotely has evolved from
post service (first invented around 2400 before the common
era), telegraph (in 1844), and telephone (in 1876), to video-
conferencing (in the 1950s). While the pandemic highlighted
the importance of and significantly improved the quality of
experience (QoE) for remote communication, we still largely
prefer to attend conferences and hold business meetings in
person, due to the inefficiency of current videoconferencing
techniques (e.g., lack of social signal interference such as eye
contact and body language) [11, 49, 69]. Thus, it has been
widely believed that hologram-based telepresence, which has
been envisioned as a top use case of 6G [23, 87, 89], bears the
potential to revolutionize remote communication by offering
truly immersive and interactive experiences.

Holographic communication [21] benefits from the delivery
of 3D content. A hologram, which can be generated with vol-
umetric content to capture 3D objects/scenes, is typically rep-
resented by a point cloud or mesh [5, 16]. Furthermore, recent
advancements in implicit neural representations, such as neu-
ral radiance fields (NeRF) [65], have gained popularity as a
viable alternative for representing volumetric content [64, 77].
Nevertheless, NeRF is primarily designed for static scenes
and requires prior knowledge for training, making its direct
application to live, interactive holographic communication
challenging (§3.2). One distinctive aspect of volumetric con-
tent is its ability to grant viewers the freedom to not only
alter their viewing direction but also freely move in 3D space,
known as six degrees of freedom (6DoF) motion.

While recent years have observed a growing endeavor to op-
timize volumetric content delivery and boost its QoE [32, 39,
47, 48, 56, 57, 102, 103, 105, 106], existing work falls short
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in the following aspects. First, prior accomplishments [34,
35, 39, 48, 57, 80, 102, 103, 105, 106] have mainly focused
on video on demand (VOD) that streams pre-recorded con-
tent. Different from VOD, live streaming facilitates more
exciting use cases of holographic communication, such as
telesurgery [20] and remote collaboration [90]. Second, even
with medium-quality volumetric content, state-of-the-art meth-
ods still demand considerable bandwidth requirements, for
example, ∼100 Mbps in ViVo [39]. Third, previous efforts [39,
48, 57] primarily target smartphones that display volumetric
content on a 2D screen, which, compared to mixed reality
(MR) headsets, leads to a barely satisfactory user experience.

To achieve a truly immersive and engaging experience for
telepresence, holographic communication should facilitate
interactive and live streaming of high-quality volumetric con-
tent for MR headsets. However, achieving this ambitious goal
is challenging due to the following reasons.
• Given its 3D nature, streaming high-quality volumetric
content leads to a tremendous amount of data to deliver (e.g.,
>1 Gbps throughput [73]), even with compression [48].
• Due to heat dissipation issues [63], head-mounted displays,
which offer an intuitive way to consume and interact with
volumetric content, usually operate with limited computing
capabilities, compared to smartphones.
• Interactive live streaming exacerbates the complexity of
the problem by mandating extremely low end-to-end latency,
typically less than 100ms, to ensure a desirable QoE [9, 15].

In this position paper, we argue that in order to realize the
envisaged holographic communication that facilitates partic-
ipants of telepresence around the world, it is imperative to
remarkably reduce the bandwidth demands of delivering volu-
metric content while preserving high visual quality and mini-
mizing end-to-end latency. To this end, we propose SemHolo,
a first-of-its-kind semantic-driven holographic communica-
tion framework. Semantic communication is an emerging
paradigm that transmits only the crucial, relevant, and useful
information extracted from a vast quantity of data [36, 58, 95],
instead of leveraging bit-by-bit communication.

The motivation for incorporating semantic communication
into immersive telepresence stems from its task-driven nature.
To accomplish a task, an exact duplication of the 3D volu-
metric content of remote peers is often unnecessary. The key,
instead, is on the delivery of core interactions or significant
events in real time. Such critical elements could include a
speaker’s prominent gestures and facial expressions in the
online meeting or the critical maneuvers in remote surgery.

Figure 1 depicts the end-to-end pipeline of holographic
communication for telepresence with traditional and our pro-
posed semantic-based communications. For simplicity, we
show only two sites with participants wearing an MR head-
set, and there are multiple RGB(-D) sensors capturing them.

Semantics Comp. Overhead Data Visual Output
Extract Recon. Size Quality Format

Keypoint L H L M Mesh
Image - H M H Image
Text H H L M PtCl/Img

Table 1: Comparison of three holographic communication
semantics. L: low; M: medium; H: high. PtCl: point cloud.

Due to the resource restrictions of mobile headsets, users
are served by an edge server that is capable of executing
computation-intensive tasks, for example, executing deep
learning (DL) models. After rendering, remote participants
are displayed in real time on the MR headsets of other users.

Compared with traditional communication methods that
transmit 3D data in point cloud or mesh formats, semantic-
based approaches deliver mainly abstracted data, offering
a promising solution for network-friendly content distribu-
tion. Nonetheless, the effective design of semantic-driven
holographic communication remains largely uncharted terri-
tory, especially in networking and systems research. To shed
light on it, we undertake the following efforts in designing
SemHolo, representing our key contributions.
• We first establish a taxonomy by categorizing related seman-
tic information into three distinct types: keypoints, 2D images,
and text, based on the data transmitted over the Internet (§2).
Our investigation reveals that while the computer vision and
graphics communities have provided potential foundations
of various semantics for holographic communication, none
of them could satisfy all criteria for low data size, high vi-
sual quality, and real-time extraction and reconstruction, as
depicted in Table 1.
• We then delve into the research challenges associated with
each category and propose potential solutions (§3). For exam-
ple, although image-based semantics that leverage NeRF [65]
hold promise for photorealistic reconstruction, employing it
in holographic communication necessitates the capability for
real-time and continuous learning of the NeRF model, given
that the future frames are unknown in live streaming. To this
end, we propose a novel acceleration approach encompass-
ing an initial phase of offline pre-training for the preliminary
scene, subsequently complemented by frame-specific fine-
tuning. On the other hand, while keypoint- and text-based
semantics can significantly reduce bandwidth consumption,
they bring numerous challenges for real-time reconstruction.
Thus, we propose to exploit the unique features of the hu-
man visual system (e.g., foveated vision [33]) and inter-frame
similarities to mitigate the reconstruction overhead.
• Finally, we implement a proof-of-concept for SemHolo,
leveraging keypoint-based semantics for holographic com-
munication (§4). Our preliminary results indicate that it can
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Figure 1: The end-to-end pipeline of traditional and three semantic-based approaches for holographic communication.
For simplicity, we show only the communication process from A to B. The process from B to A mirrors this structure.
PtCl: point cloud.

deliver bandwidth savings of up to ∼207×, with the required
bandwidth being only 0.30 Mbps at 30 FPS. However, such
compact data representation yields subpar performance in
terms of visual quality. Moreover, the intricate process of gen-
erating 3D human models from keypoints with limited infor-
mation incurs considerable reconstruction overhead, leading
to an extremely low frame rate (e.g., <1).

2 Background

2.1 Holographic Communication
Holographic communication involves capturing, creating, de-
livering, and rendering volumetric content in real time. Vol-
umetric content is usually captured with multiple RGB-D
cameras positioned to cover different viewing angles [22, 25,
32, 47, 73, 99]. By merging RGB-D images from multiple
cameras via synchronization, calibration, and filtering, we
can obtain free-view 3D models, typically rendered by tex-
tured meshes or point clouds [60]. Recently, implicit neural
representations such as NeRF [65], which employ multilayer
perceptron (MLP) networks to predict scene properties for
any point in 3D space, have emerged as another popular and
powerful representation of volumetric content [64, 77].

To maintain satisfactory QoE, delivering traditional volu-
metric content in point clouds or meshes requires substantially
higher network bandwidth than regular 2D video streaming.
Relying solely on compressing volumetric data may not yield
an optimal experience due to the on-device decoding overhead
and potential network constraints [39]. Thus, recent research
has pivoted toward optimization strategies for communication
and computation overhead [39, 48]. However, the bandwidth
requirement, even with medium-quality volumetric content
(e.g., ∼100 Mbps [39]), still exceeds the standard broadband
service in the U.S. (i.e., 25 Mbps [59]).

2.2 Semantic Communication
Semantic communication embodies task-oriented processes
where only pertinent, valuable, and beneficial information is

extracted from original data and conveyed to receivers [36,
58, 84, 95], instead of traditional bit-by-bit transmission. This
approach strategically optimizes communication overhead by
underscoring the intrinsic utility of transmitted data. Early
work on semantic communication centers around its literal
interpretation, focusing on text data delivery [94]. Recent
advancements have expanded this paradigm to encompass
other modalities, such as image information [95], broadening
the scope of semantic communication to other domains, for
example, the emerging metaverse [55, 104].

In the context of semantic-based holographic communi-
cation for immersive telepresence, this process involves the
extraction of semantic information at the sender side, trans-
mission over the Internet, and subsequent reconstruction of
volumetric content of the sender at the receiver side. Based
on our investigation of existing work, we identify three types
of semantics in holographic communication, which is mainly
determined by what is transmitted over the Internet (§2.3).

Note that a recent work considers vectors as a form of
semantics for point-cloud-based volumetric content [107].
This approach typically leverages encoder-decoder neural net-
work architectures [4]. It maps input data to a low-dimension
vector via the encoder (at the sender side) and then recov-
ers the original data with the decoder (at the receiver side).
However, it is similar to traditional point cloud compression
techniques [31, 41]. Moreover, it offers a limited compression
ratio and yields poor visual quality.

2.3 Taxonomy of Semantics

Keypoint-based Semantics. Keypoints represent specific and
unique features of an object. For human beings, keypoints
are primarily located in areas such as the body, hands, and
face [14, 44]. Human keypoint detection (a.k.a. human pose
estimation) aims to predict the positions (i.e., coordinates) of
body parts or joints of a person from an image or video. It
has been extensively studied, typically leveraging DL models
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for high accuracy [14, 44, 88, 91]. Tracking the temporal mo-
tion of keypoints can offer valuable insight into overall body
posture and movements [85]. Thus, they serve as a valuable
repository of semantics for holographic communication.

Most 3D keypoint detection schemes employ a two-step
process: initially predicting 2D keypoints and then lifting
them into 3D space (e.g., by utilizing DL models) [13, 75].
Despite requiring only RGB images without depth informa-
tion, this approach brings additional computational overhead
for learning and inference. On the other hand, by leveraging
depth information captured from off-the-shelf RGB-D cam-
eras such as Microsoft Kinect [2], we can directly extract 3D
poses, which potentially offers faster processing and higher
accuracy than inferring from 2D poses [92].

Recovering the human model from keypoints, however, is
non-trivial. Existing methods heavily rely on prior knowl-
edge of the complete 3D data [54, 81], which considerably
increases communication overhead. Note that given keypoints
cannot encode texture information, solely relying on them
for reconstruction will result in a non-clothed body struc-
ture [19, 66, 67].
Image-based Semantics capitalizes NeRF [65], an innovative
technique that employs implicit neural representations for 3D
scene reconstruction. NeRF allows the delivery of 2D images
as semantic information for holographic communication. It
utilizes a (pre-trained) MLP neural network to learn a static
3D scene from 2D images. The MLP network processes 3D
spatial coordinates and viewing directions to output color and
volume density at any location. By integrating the predicted
color and volume density along each camera ray, which is the
line that originates from the camera and passes through each
pixel in the 2D image, NeRF leverages volume rendering [26]
to generate a 3D scene that can be viewed from any angle.
NeRF has demonstrated the potential to reconstruct high-
fidelity 3D scenes [62, 64], including human models [77, 93].
Text-based Semantics lies in the intersection between 3D
visual understanding [37], natural language processing, and
generative AI [51]. It aims to translate 3D representations
into textual descriptions and vice versa. On the sender side,
the conversion of 3D data into textual information can benefit
from 3D dense captioning [17, 18, 101], which primarily fo-
cuses on generating detailed text for point clouds. It involves
feature extraction from the point cloud, for example, with
PointNet++ [79], followed by a caption decoder to transform
these features into text. On the receiver side, the emerging
text-to-3D generative techniques [45, 51, 70, 78] have set
the stage for reconstructing point clouds from text. Existing
approaches typically utilize pre-trained text-to-2D diffusion
models [71] as an initial step to convert text into 2D images.
Subsequently, they leverage NeRF [65] to generate free-view

3D scenes [45, 78] or design additional diffusion models to
create point clouds [70].

3 Research Agenda
In this section, we outline the research challenges and their
potential solutions for each semantics in SemHolo.

3.1 Keypoint-based Semantics
The major advantage of keypoint-based semantics is its small
data size, as keypoints are denoted as 2D/3D coordinates, and
a modest number of keypoints (e.g., ∼100 [10]) can represent
the human model. While the state-of-the-art [66, 83, 96] tends
to encode keypoints into parametric body models, such as
SMPL-X [74], before reconstruction, the size of transferred
data remains low (e.g., ∼1.91 KB per frame, as demonstrated
in §4). However, such low data size poses significant chal-
lenges for time-efficient and visually satisfactory content re-
construction.
Real-time Reconstruction. The sparse keypoints preclude
the recovery of a detailed mesh, necessitating further pro-
cessing such as additional training [19, 83] to produce a fine-
grained mesh. However, doing this may exceed latency re-
quirements, as demonstrated in §4. One potential solution is
to exploit the unique feature of the human visual system that
only content near foveal areas requires high resolution [33].
Therefore, we could opt to directly transmit the compressed
3D mesh for the foveal region to maintain high visual qual-
ity while delivering keypoints for only peripheral regions to
reconstruct the mesh with limited refinement.

This approach poses the following challenges. First, accu-
rately predicting the future foveal area of users is difficult
due to the high-speed movements of eye gaze [7, 40]. To
address this issue, one can classify gaze movements into three
patterns: fixation, smooth pursuit, and saccades, determined
by their speeds ranging from low to high [52]. Saccades, in
particular, often account for errors in gaze prediction due to
their high velocity [40, 68]. However, by leveraging saccadic
omission [24], we can predict mainly the landing positions
of saccades [6, 7, 68] to improve QoE. Second, there exists a
trade-off between the communication overhead for delivering
the 3D mesh for the foveal area and the reconstruction over-
head for peripheral regions. A larger foveal area implies a
higher bandwidth consumption. However, this could alleviate
the burden of refining the mesh generated from keypoints in
the peripheral. On the other hand, a smaller foveal area can
save bandwidth usage. Nonetheless, it may require refinement
for the mesh generated from keypoints to maintain a satisfac-
tory QoE. Third, given that the reconstructed human model
consists partly of the original mesh and partly of the mesh
reconstructed from keypoints, seamlessly integrating these
components necessitates further exploration.
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High-quality Texture Alignment. Since texture could not be
encoded in keypoints, the recovered mesh derived from key-
points contains only geometry, resulting in a non-clothed body
structure [19, 66, 100]. A feasible solution could be to directly
deliver the compressed 2D texture, given its high compression
ratio and thus relatively small data size [72], to the receiver,
who can then align it with the reconstructed geometry. How-
ever, considering that geometry reconstruction may result in
information loss and thus the reconstructed geometry may
be inconsistent with the original one, achieving high-quality
texture mapping presents a significant challenge. A promising
solution is to initially project the 2D texture onto the recov-
ered 3D geometry by leveraging projection mapping [27, 28],
followed by applying deformation techniques [12], which
adjust the texture according to the alterations in geometry to
improve visual quality.
Trade-off between Size of Transferred Data, Computation
Overhead, and Visual Quality. To improve the visual quality
of the reconstructed mesh, an intuitive strategy is to extract
more keypoints by utilizing intricate models. While doing this
may not significantly increase bandwidth requirements, given
that only hundreds of keypoints should be sufficient to repre-
sent the human body [14], it inevitably heightens computa-
tional overhead. Moreover, state-of-the-art efforts [66, 83, 96]
may not entirely capitalize on the additional information of-
fered by these extra keypoints. This is because they choose
to encode keypoints into parametric human models, such as
SMPL-X [74], before reconstruction to enable smooth stream-
ing. Given that these models operate with fixed parameters,
the enhancements in visual quality achievable through the
extraction of additional keypoints may be limited. Adding
more parameters to these models may disrupt their inherent
3D rotation representations, leading to discontinuities [46].

The model-free method [19] that directly maps keypoints
to 3D mesh is a potential solution to exploit the benefits
of additional keypoints. However, it functions on a single-
frame basis and neglects the temporal dynamics inherent in
video frames. Consequently, applying such a technique to
video streaming may yield unsatisfactory visual quality due
to temporal discontinuity and visual artifacts [75]. In light
of these limitations, we plan to develop a non-parametric,
temporal-aware framework, followed by exploring the trade-
offs between the number of extracted keypoints, computation
overhead, and visual quality within this framework.

3.2 Image-based Semantics
By leveraging NeRF [65], image-based semantics offers two
distinct advantages. First, it requires only RGB images as
input, which makes it suitable for outdoor use cases for which
depth sensors usually do not work well [62]. Second, with
high-resolution images for training and inference, NeRF can

reconstruct high-fidelity, photorealistic 3D scenes. However,
in the context of live, interactive holographic communication,
it poses significant challenges associated with dynamic scene
reconstruction and rate adaptation.
Dynamic Scene Reconstruction. The original NeRF is de-
signed for mainly static scenes, which is not suitable for
streaming. While recent advances introduce the temporal di-
mension into NeRF to make it streamable, they depend on a
pre-trained MLP model [8, 76, 86]. Hence, they are capable
of mainly VOD services that stream pre-recorded content and
are not compatible with live, interactive holographic commu-
nication where the content of future frames is unknown.

To incorporate NeRF into live, interactive holographic com-
munication, we face the complex challenge of real-time, con-
tinuous training of NeRF models for 3D scene reconstruction.
In light of this, we propose a solution hinged on the observa-
tion that changes in a user’s profile over time are likely to be
limited. For instance, during a meeting, the major change in
the user’s appearance may be only facial expressions. Thus,
once a user-specific NeRF model has been trained, there is no
need to retrain the model from scratch.

Based on this observation, we can include a cold start
session. Before a user’s inaugural engagement, we train a
dedicated NeRF model. Recent research indicates that it can
be completed within a few minutes [30]. Subsequently, during
the user’s ongoing engagement, we fine-tune the pre-trained
model by feeding features extracted from the changed pix-
els [98]. This adjustment is designed to equip the model with
the ability to reconstruct the 3D scene for the current frame,
potentially expediting continuous training.
Reducing Latency with Rate Adaption. Given that image-
based semantic communication involves the delivery of 2D
images over the Internet, it bears similarities to traditional 2D
video streaming. Since delivering multiple high-resolution
2D videos may still require substantial bandwidth [42], it
is necessary to design a rate adaption scheme, for example,
by adjusting the resolution of images based on the predicted
bandwidth available for the receiver [43, 61].

An ideal design for accommodating inputs with diverse
resolutions involves adjusting the model size in accordance
with the resolution. This approach can utilize a portion of the
model to handle smaller input resolutions, leading to acceler-
ated fine-tuning and inference processes and thus diminishing
end-to-end latency. This is because smaller models generally
demonstrate expedited training (fine-tuning) and inference
times compared to their larger counterparts [53]. However,
the weight parameters within the NeRF model are intricately
interconnected, implying that the omission of even a small
portion of them could lead to reconstruction failure [29]. Con-
sequently, the original NeRF architecture is ill-suited for seg-
mentation and cannot be readily adapted to accommodate



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Ruizhi Cheng, Kaiyan Liu, Nan Wu, and Bo Han

varying input resolutions. A naive solution could involve
training models of different sizes, achieved by increasing
their depth and width to suit different input resolutions. Nev-
ertheless, this would inevitably lead to significant increases
in memory footprint and storage overhead.

Thus, we are investigating scalable neural networks [97],
such as slimmable networks [50] and progressive networks [82].
They are designed to train a single model that can be divided
into multiple executable sub-networks with different widths
and layers. To enable rate adaptation, each sub-network could
be trained to accommodate a particular input resolution. For
example, a narrower sub-network handles low-resolution in-
put, whereas a wider sub-network, which incorporates nar-
rower ones, manages high-resolution input. By progressively
adjusting the network parameters between narrower and wider
sub-networks, we are able to dynamically adapt the model
size in correlation with the input resolution.

3.3 Text-based Semantics
The principal advantage of text-based semantics is its com-
pact data representation. Its major challenges lie in real-time
semantic extraction and content reconstruction, as well as in
improving the visual quality of reconstructed content.
Real-time Extraction and Reconstruction. The real-time
requirements of holographic communication pose significant
challenges for building blocks of text-based semantics, which
heavily rely on complex DL models for extracting seman-
tics [18, 101] and reconstructing content [45, 51, 70]. To
address this problem, we propose to capitalize on the conti-
nuity of human motion, where inter-frame differences may
be small. Specifically, for the first frame, we encode the in-
formation of the entire point cloud into text-based semantics.
For subsequent frames, we can encode only the differences
from the preceding frame, reducing the computation overhead
of extraction and reconstruction. However, both existing ex-
traction and reconstruction models for text-based semantics
operate on a frame-by-frame basis, falling short of utilizing
inter-frame similarities. Therefore, it is non-trivial to incorpo-
rate temporal features into them.
High-quality Reconstruction. Existing accomplishments
demonstrate the capability to reconstruct only simple objects,
such as cartoon avatars [78] and tableware [45, 70]. They
might be inadequate for reconstructing photorealistic human
models. We propose to partition the human model into cells
and utilize multiple text channels to describe each cell. Doing
this will add only limited communication overhead, given
that the text size is usually small. On the receiver side, each
channel could be reconstructed at different quality levels by
leveraging content reduction techniques [33, 39]. By doing
this, we can not only reduce reconstruction overhead but also
maintain a satisfactory QoE.

Semantic-based Traditional
w/o compre. w/ compre. w/o compre. w/ compre.

0.46 0.30 95.4 10.1

Table 2: Comparison of required bandwidth (Mbps) at 30
FPS for keypoint-based semantic and traditional commu-
nication approaches before and after data compression.

One associated challenge arises from the potential loss of
global information, such as the overall body pose, caused by
the segmentation of human models. This could lead to inac-
curate reconstruction [74]. Thus, we will conduct a two-step
encoding. First, we encode global features with a dedicated
text channel. Following this, we design fine-grained local fea-
ture channels with reference to the global one to ensure their
correctness and coherent relationship with global features
during reconstruction.

4 Preliminary Results and Discussion
To better understand the challenges faced by SemHolo, we
build a proof-of-concept that partially implements keypoint-
based semantics for holographic communication (§3.1).

4.1 Experiment Setup
We utilize X-Avatar [83], a state-of-the-art model for generat-
ing human meshes from keypoints. It encompasses two net-
works. The first one takes 3D keypoints aligned with SMPL-X
parameters as input and outputs geometry. The second one
leverages created geometry and original RGB-D data to learn
texture, which is needed because X-Avatar aims to apply the
model to unseen humans. However, as proposed in §3.1, given
that we possess the ground-truth texture for telepresence, we
could deliver the compressed textures instead of learning
them. Therefore, we retrain the X-Avatar model without the
texture part. X-Avatar can tune the output resolution, indicated
by the number of voxels along each dimension. Specifically,
we generate mesh at resolutions of 128, 256, 512, and 1024,
enabling us to explore the trade-off between visual quality
and computation overhead. We employ the RGB-D image
datasets released by X-Avatar and its provided 3D poses for
our experiments.

4.2 Experimental Results
Data Size. We first compare the size of transferred data over
the Internet between traditional and semantic communica-
tion methods. Table 2 shows the required bandwidth at 30
frames per second (FPS) before and after compression for
two communication approaches. For semantic communica-
tion, the transmitted data is the 3D pose aligned with SMPL-X.
The data size per frame before compression is 1.91 KB (i.e.,
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(a) (b) (c) (d)

Figure 2: (a): Textured mesh generated from RGB-D data;
(b) – (d): Mesh (without texture) generated from keypoints
with output resolutions of 128, 256, and 1024, respectively.
The visual quality of reconstructed mesh at 512 resolution
is similar to that of 1024 resolution.

Figure 3: Textured mesh
from RGB-D data (left) and
from learning with resolu-
tion of 1024 (right).

128 256 512 1024
Resolution

0

1

2

FP
S

Figure 4: Reconstruction
FPS of different mesh reso-
lutions on an NVIDIA A100
GPU.

0.46 Mbps at 30 FPS). After compressing it with the Lem-
pel–Ziv–Markov chain algorithm (LZMA) [38], the data size
per frame is 1.23 KB (i.e., 0.30 Mbps at 30 FPS). For the
traditional approach, the transmitted data is the untextured
3D mesh of the sender generated from SMPL-X parameters.

In this case, the data size per frame is 397.7 KB (i.e., 95.4
Mbps at 30 FPS) before compression and 42.1 KB (i.e., 10.1
Mbps at 30 FPS) after compression with Draco [1]. Thus,
keypoint-based semantic communication can potentially offer
∼207× and ∼34× bandwidth savings before and after com-
pression, respectively. Note that while the required bandwidth
at 30 FPS for compressed mesh in our experiment is only ∼10
Mbps, it does not involve textures, and the human model used
for experiments is still not photorealistic. The envisioned
telepresence that renders photorealistic 3D human models
may significantly increase bandwidth requirements [73].
Visual Quality. Figure 2 shows the 3D mesh directly gener-
ated from the raw RGB-D data (with texture) as the baseline
and reconstructed from keypoints (without texture). The pre-
liminary results indicate that in general, as the resolution
increases, the detail in the mesh generated from keypoints
augments. Specifically, at the resolution of 1024, the gener-
ated mesh is capable of revealing intricate details such as hand
joints and facial contours. However, it still cannot recover the
details of the clothes, such as folds.

Figure 3 presents the mesh with texture from the raw RGB
data and that generated with the learning approach of X-
Avatar at a resolution of 1024. The mesh learned by X-Avatar
fails to accurately mirror detailed expressions. For instance, in
the mesh created from raw RGB-D data, the person displays
an open mouth with a pout. However, the learned mesh only
reflects the open-mouth action, missing out on capturing the
pouting expression.
Reconstruction Time. Figure 4 illustrates the FPS of mesh
reconstruction for different resolutions on an NVIDIA A100
GPU, which is lower than 1 for most resolutions. Even with
a resolution of 128, the FPS is <3, far below the required
30 FPS for real-time telepresence. Note that A100 [3] is one
of the most powerful workstation GPUs currently available.
When executed on an NVIDIA RTX 3080 GPU for laptops,
it cannot handle the mesh reconstruction at resolutions of 512
and 1024, further exacerbating the reconstruction overhead.
Discussion. Our preliminary results demonstrate the inherent
trade-offs between data size, computation overhead, and vi-
sual quality in semantic-based holographic communication.
For keypoint-based semantics, despite its small data size, the
high compression ratio introduces significant challenges for
real-time reconstruction and maintaining the high visual qual-
ity of reconstructed content. Thus, we should judiciously con-
sider the trade-offs when designing the full-fledged SemHolo.

5 Conclusion
In this position paper, we presented a holistic research agenda
for semantic-driven, live, interactive holographic communica-
tion, a cornerstone of emerging immersive telepresence. To
mitigate the huge bandwidth consumption stemming from
the 3D nature of volumetric content, we proposed a pioneer-
ing approach that transmits semantic information in lieu of
traditional bit-by-bit communication. Aiming to minimize
both bandwidth consumption and end-to-end latency while
maintaining a satisfactory level of visual quality, we delved
into each semantic category to elucidate the open research
challenges and propose potential solutions. Our preliminary
results from a proof-of-concept implementation for keypoint-
based semantics demonstrated that while it can significantly
reduce bandwidth consumption, it presents considerable chal-
lenges in achieving high FPS and satisfactory visual quality.
We hope that our study will inspire further research in this
domain, propelling toward the realization of live, interactive
holographic communication.
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