This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Deep-learning-assisted Volume Visualization

Hsueh-Chien Cheng, Antonio Cardone, Somay Jain, Eric Krokos, Kedar Narayan, Sriram Subramaniam,
Amitabh Varshney Fellow, IEEE,

Abstract—Designing volume visualizations showing various structures of interest is critical to the exploratory analysis of volumetric
data. The last few years have witnessed dramatic advances in the use of convolutional neural networks for identification of objects in
large image collections. Whereas such machine learning methods have shown superior performance in a number of applications, their
direct use in volume visualization has not yet been explored. In this paper, we present a deep-learning-assisted volume visualization to
depict complex structures, which are otherwise challenging for conventional approaches. A significant challenge in designing volume
visualizations based on the high-dimensional deep features lies in efficiently handling the immense amount of information that
deep-learning methods provide. In this paper, we present a new technique that uses spectral methods to facilitate user interactions with
high-dimensional features. We also present a new deep-learning-assisted technique for hierarchically exploring a volumetric dataset.
We have validated our approach on two electron microscopy volumes and one magnetic resonance imaging dataset.

Index Terms—Volume visualization, convolutional neural networks

1 INTRODUCTION

EEP learning and, more specifically, convolutional neural
Dnetworks (CNNs) have received much attention in image
classification [1], face recognition [2], [3], and segmentation [4],
[5]. Given raw images as input, a CNN progressively builds its
final outcome by sequentially propagating responses from one
neural network layer to the next. The hierarchical architecture of
CNNs resembles the multiscale process of human visual system
that aggregates lower-level signals into higher-level concepts. A
CNN can learn, by iteratively fitting the network to the data, useful
application-dependent representations [2], [6] that facilitate the
search for solutions to complex problems.

Volume visualization typically involves three steps. First, users
define the criteria (e.g. intensity and texture) that distinguish the
structures of interest (e.g. soft tissue and bone). Second, based on
these user-defined criteria, users choose an appropriate set of per-
voxel features that span the low-dimensional subspace in which
one can look for desirable solutions (i.e. visualizations). Finally,
users interact with the visualization tool to create and modify
the solutions. In the past, handcrafted features that correspond
to specific user-defined criteria (e.g. size [7], [8], texture [9], and
visibility [10]) have been successfully used as volumetric features
for the second step. Nevertheless, as the complexity of the user-
desired criteria grows, finding features that precisely describe
the characteristics of the target structures becomes increasingly
challenging. Conventional handcrafted features no longer suffice
because they are defined locally without addressing the rela-
tionships among voxels in the global context, often crucial to
characterizing complex structures.

Although the high structural complexity significantly hinders

e H.-C. Cheng, S. Jain, E. Krokos, and A. Varshney are with the Department
of Computer Science, University of Maryland, College Park, MD, 20742.
E-mail: {cheng, somay, ekrokos, varshney} @ cs.umd.edu

o A. Cardone and A. Varshney are with the University of Maryland Institute
for Advanced Computer Studies, College Park, MD, 20742.

E-mail: {acardone, varshney} @umiacs.umd.edu

e K. Narayan and S. Subramaniam are with the Center for Molecular
Microscopy, NCI, NIH, Bethesda, MD, 20850.

E-mail: {narayank, subramas}@mail.nih.gov

the manual search for suitable feature spaces in the second step of
the current visualization workflow, users can still provide valuable
domain knowledge in a different way. From a machine learning
point of view, the criteria that distinguish different structures can
be implicitly defined by a large number of examples that include
as many structural variants as possible. In this paper, we present
our approach in which we train a CNN as if we were solving
a classification problem based on a given set of examples. After
training, the CNN automatically derives a high-level data repre-
sentation, thus creating a feasible feature space for visualizing
complex structures. Despite improvements in user interfaces [11],
[12], [13], [14] and semi-automatic techniques [15], [16], current
methods proceed with the assumption that a suitable feature space
is explicitly defined, not automatically learned. In contrast, the
proposed deep-learning-assisted approach automatically creates a
high-dimensional feature space in a data-driven way without an
explicit specification from the user.

In the derived feature space, voxels with similar characteristics
are in close proximity. These similar voxels can therefore be
selected for visualization based on a representative feature vector,
which we call characteristic feature vector throughout this paper.
However, the characteristic feature vector becomes complicated
to modify as its dimensionality grows. Previous work alleviates
this problem by designing visualizations in a reduced space with
manageable complexity [12], [17]. In this work, we present two
techniques for this usability problem. The first one reorders the
features with respect to their similarity. With this improved,
similarity-aware feature layout, the conventional design widget
can select groups of similar voxels in the original space without di-
mensionality reduction. This is complementary to the dimension-
reduction-based techniques. The second one is a semi-automatic
technique that generates a hierarchy of volume visualizations for
users to choose from, thus providing another layer of abstraction
on top of the high-dimensional feature space.

Although modern rendering techniques and hardware can now
render volumetric data interactively, we still need a suitable feature
space that facilitates natural differentiation of target structures
and an intuitive and interactive way of designing visualizations.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

This paper presents our initial explorations in using deep learning

methods to assist the design of volume visualizations. We expect

that the techniques presented in this work will be useful in many

visual computing tools that require informative visualizations.
The contributions of this work are:

e A deep-learning-assisted approach to automatically derive
high-level features based on information extracted from a
larger context than conventional local features.

o A feature reordering technique that groups similar features
together to facilitate manual visualization design and a
semi-automatic technique for hierarchical exploration.

¢ A method that converts a high-dimensional feature space
to a binary field that can be used as an input to the
conventional marching cubes algorithm.

2 RELATED WORK
2.1 Convolutional neural networks (CNNs)

The basic components of a conventional feedforward CNN include
convolutional layers, spatial pooling layers, and fully-connected
layers. A convolutional layer filters an input tensor with trainable
kernels, which combine neurons in a fixed receptive field. The
size of receptive fields directly affects the number of trainable
parameters. A spatial pooling layer outputs an aggregation of
nearby neurons with a predefined operator. For example, a max-
pooling layer outputs the maximum value within a small neighbor-
hood. A fully-connected layer connects every input neuron with
the output neurons, disregarding their spatial proximity. The raw
output values of neurons in convolution layers and fully-connected
layers are usually transformed by an activation function (usually
non-linearly) into the result signals, representing the activation
level of neurons.

AlexNet [1] is one of the most recognized contributions in
image classification and has become the standard benchmark
algorithm. AlexNet contains five convolutional layers followed by
two fully-connected layers, and three max-pooling layers mixed
in between. The last fully-connected layer then connects to the
output consisting of 1000 neurons, one for each target class.

Most ordinary CNN architectures more or less resemble the
basic construct of AlexNet but differ in depth. For example,
GoogleNet [18] has 22 trainable layers, much deeper than
AlexNet, which has seven trainable layers. At this scale of depth,
kernel sizes have to be kept small to maintain a manageable
model complexity. This limitation in kernel size does not restrict
the power of deep CNNs. In fact, deliberately stacking multiple
convolutional layers with small kernels leads to a large receptive
field, which is comparable to that of a large kernel but with fewer
parameters [19]. Although research in complex problems tends
to create deeper networks, simply stacking convolutional layers
in a CNN does not always lead to better performance because
of the increased model complexity. Addressing the deficiency
of conventional CNNs, a 152-layer residual network [20] shows
significant improvement over the state-of-the-art architectures.

Given a sequence of training examples, the training procedure
starts with a forward pass through the network, calculates a loss
value with respect to certain criteria, and then adjusts the weights
associated with the neurons in the network accordingly by the
backpropagation algorithm. Training a CNN appropriately can
be challenging because of problems such as overfitting and pre-
mature convergence, which deteriorate performance significantly.

2

Dropping connections between random neurons (i.e. removing
them from the network temporarily) avoids co-adaptations among
them [21], thereby reducing the chance of overfitting but also
slowing down convergence. The slow convergence of CNNs is
partly due to the frequent changes in the distribution of a layer’s
input during training. Batch normalization [22] addresses this
problem by normalizing each feature independently to have a zero
sum and unit variance distribution.

2.2 Volume visualization

Typical volume rendering techniques can be grouped into two
categories: direct and indirect volume rendering. Direct volume
rendering (DVR) techniques, such as volume ray-casting [23],
compose a result image by aggregating the colors and opaci-
ties of relevant voxels calculated using a user-defined transfer
function [24]. Indirect volume rendering (IVR) techniques first
generate geometric primitives as an intermediate representation
and then render those primitives using conventional 3D computer
graphics. For example, the marching cubes algorithm [25] extracts
a triangular mesh that represents an isosurface in a structured grid.

Despite different ways of composing result images, DVR
and IVR techniques all require a feature space suitable for the
visualization criteria. Simple structures that are distinguishable by
intensity values can be extracted and visualized as corresponding
isosurfaces [25] following the IVR framework. In many applica-
tions, however, the complex structures and their surroundings are
indistinguishable based on a single isovalue. In these cases, the
target structures may be better extracted as subvolumes composed
of voxels with intensity values lay between an interval [26], [27].

Whereas typical IVR techniques extract geometric primitives
from a scalar field formed by intensity values, DVR techniques
rely on a transfer function, sometimes defined in an alternative
feature space derived from the intensity, to assign distinct colors
and opacities to different structures. Common features such as
gradient magnitude [11] and curvature [28] allow distinguishing
regions with significant local changes in intensity. Other special-
ized features are used for structures with specific characteristics.
For example, twenty texture features were used to identify voxels
with texture differences [9]. Evaluating the size of structures in
scale-space at each voxel creates a scale field that distinguishes
structures of different sizes [7]. An alternative way to assess
structure sizes is by searching in all directions for neighboring
voxels with similar intensities [8].

Whereas most volume visualizations are done manually, semi-
automatic techniques automate specific time-consuming proce-
dures to accelerate the design. Candidate isosurfaces that corre-
spond to meaningful structure boundaries can be selected automat-
ically based on gradient magnitudes [29]. Exploiting the proximity
of voxels in the feature space, many semi-automatic techniques
use clustering algorithms to group similar voxels, thus reducing
the complexity of visualization design [15], [16].

A prerequisite of successful volume visualizations, including
those created by semi-automatic techniques, is that the selected
feature space must differentiate the target structures. Finding such
a feature space is therefore critical for volume visualization design.
Nevertheless, existing feature spaces, including those formed by
texture features, are too local to reliably differentiate complex
structures when given only limited context around each voxel. In
this work, we address this limitation by automatically forming a
feature space based on high-level features extracted from a trained

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Configuration

& Gradient
Intensity

&
" Shape...

Volumetric data Visualization

(a) Conventional workflow

High-dimensional abstract space Configuration

Convolutional
neural network

Volumetric data Visualization

(b) Proposed workflow

Figure 1. (a) Conventional workflow requires users to adjust both the
feature space and the configuration. (b) Our deep-learning-assisted
approach derives from labeled examples a feasible feature space au-
tomatically, effectively removing the need for an user-defined feature
space.

CNN. Based on the CNN-derived feature space, we then create
visualizations following the IVR framework.

3 METHODOLOGY
3.1 Motivation

Visualization is crucial to the analysis of volumetric data yet
its design remains labor intensive. Conventional visualization
workflow assumes a feature space in which users, after some
trial and error, find a transfer function configuration suitable for
the target structures. Typically the feature space is handcrafted
with respect to specific application-dependent criteria. This man-
ual procedure limits the feature space to incorporate only local
features because of the limited human capacity to comprehend
and integrate non-local properties defined in high-dimensional
spaces. As structural complexity grows, the assumption of having
a user-manipulable feature space becomes increasingly unrealistic.
When the visualization results are not satisfactory, users are faced
with the hard choices of modifying the feature space, the transfer
function configuration, or both (Figure 1a).

This observation motivates our deep-learning-assisted ap-
proach that learns a feasible feature space automatically when
provided enough examples of the target structures. This approach
adopts a workflow that effectively replaces the manual search for
a feasible feature space by labeling of samples followed by deep
learning (Figure 1b). In contrast to crafting features in a high-
dimensional abstract space, the labeling task is much easier for
typical users, who are domain experts familiar with the data but
have limited knowledge of computational techniques.

3.1.1 Conventional volume visualization design

With imaging modalities such as X-Ray and computed tomogra-
phy, structures of different intrinsic material densities (e.g. soft
tissue and bone) are distinguishable by their distinct intensity val-
ues. This characteristic allows conventional intensity-based feature
spaces to separate these structures effectively. For example, the
boundaries of bone may correspond well to a specific isosurface.
With other modalities, such as electron microscopy, the type of

(a) Raw image (b) Ground truth

(c) Isosurface (isovalue = 112) (d) Our visualization

Figure 2. (a) In the hippocampus dataset, we find it challenging to
differentiate mitochondrial regions (orange) from non-mitochondrial re-
gions using conventional intensity-based feature spaces. (b) The ground
truth mitochondria. (c) The isosurface of isovalue 112, which is the
average intensity value of mitochondria, does not correspond well to the
boundary of mitochondria. In fact, no single isovalue would be suitable
for differentiating the mitochondria (cf. Figure 3a). (d) Our visualization
result is comparable to the ground truth because it is based on a feasible
feature space derived automatically.

structures to which a voxel belongs is seldom decided solely by
the voxel’s intensity value without consulting the arrangement
of the neighboring voxels. Large intra-class variations further
complicate the decision. In addition, gradient only describes local
changes in intensity values and lacks the capability of depicting the
boundary of complex structures. As a result, intensity and gradient
do not provide enough information for designing comprehensive
visualizations for complex structures.

For example in Figure 2, we compare the mesh generated
from the ground truth labels of mitochondria (Figure 2b) with
the meshes generated using the conventional marching cubes
algorithm (Figure 2c¢) and our deep-learning-assisted approach
(Figure 2d) for the hippocampus dataset (cf. Section 4.2). Al-
though the mitochondria are typically low in intensity, many non-
mitochondria voxels (e.g. those belonging to the membranes) are
also low in intensity (Figure 2a). As a result, the isosurface of
isovalue 112, which is close to the average intensity value of
mitochondria, does not map precisely to boundaries of mitochon-
dria, thus creating an incomprehensible visualization with severe
occlusions of various structures. In contrast, our method creates
a visualization of mitochondria comparable to the ground truth
labels.

The previous example shows the deficiency of conventional
feature spaces in depicting complex structures. In fact, a significant
overlap of the two types of voxels (i.e. mitochondria and non-
mitochondria) in the intensity histogram confirms that we cannot
obtain clear boundaries using a single isovalue (Figure 3a). Adding
gradient magnitude as a second dimension does not improve sepa-

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

— Non-mitochondria
0.035 Mitochondria

0.030

°
S

0.020

0.010 //"*\\M//// \\

0.005

Proportion

°
2

Intensity

(a) Intensity histogram

— Non-mitochondria
30 —— Mitochondria

Gradient Magnitude
5

0 50 100 150 200 250
Intensity

0

(b) Density plot of intensity and gradient magnitude

— Non-mitochondria
—— Mitochondria

~
g ° —

N

=10 -5 5 10

F‘(.‘3 1
(c) Density plot of seven Haralick features after PCA

Figure 3. (a) The overlap in the intensity histogram shows that we cannot
extract the mitochondria precisely using a single isovalue. The density
plots, in which higher saturation indicates higher density, show that (b)
intensity and gradient, and (c) seven selected Haralick features do not
help isolate the mitochondria either. The seven Haralick features are
projected onto the first two principal components, “PC 1” and “PC 27,
obtained using principal component analysis.

ration in the density plot either (Figure 3b). Besides intensity and
gradient magnitude, Haralick features [30], a set of texture features
calculated from a small local neighborhood, also lack the power
of isolating mitochondria although they have been successful for
other structures in computed tomography and magnetic resonance
images [9]. Here we calculate seven Haralick features (i.e. energy,
inertia, inverse difference moment, entropy, correlation, contrast,
and sum of entropy) with the same configuration [9]. After
projecting the voxels in two dimensions using principal component
analysis, the large overlap near the center shows that the selected
Haralick features do not separate the mitochondria from the rest
of the image (Figure 3c).

3.1.2 Deep-learning-assisted visualization design

Previous studies on the hippocampus dataset have shown that
features depicting both the complex shape of the mitochondria
and the contextual information around voxels perform better in
segmentation [31]. If we were to apply the conventional design
workflow to visualize mitochondria and other complex structures
presented in this paper, users would need to define such sophisti-
cated features themselves. Although there may exist a combination
of novel and established features suitable for specific targets,
searching manually for that combination is time-consuming and

4
/]7 Patches Trained CNN
Volumetric I:> II |:>
data
Vector quantization @
o) High-level features
| . /foonB| e CITTTTTTTT]
ey (°8) | 1 <& O™
‘ \o% s =7 | CITTTTTTTT]
A VAN Index: 1 2 3 -
| [00) ‘
C\O 0/ e
\ N \ Characteristic feature vector
| Centroids } j Interpolate
o e——
\AHIIIIIIIII‘ P 5
'8 COLLLI | = ;
| ¢ CITTTTTTTT] :
| 123 | 13 2 —>

@ Spectrally-ordered features

Marching cubes-based rendering
Semi-automatic exploration

Figure 4. Our proposed deep-learning-assisted approach first extracts
high-level features from a trained CNN. We then use vector quantization
to encode the extracted high-dimensional features of each voxel by
the nearest centroid found using k-means clustering. Users modify the
visualization result, which is generated by a marching cubes-based
rendering, either by editing the characteristic feature vector or exploring
a pre-generated subvolume hierarchy semi-automatically.

challenging. On the contrary, our proposed approach uses a CNN
to perform that search effectively and automatically. Users can
therefore focus on creating comprehensive volume visualizations
based on the derived feature space.

Our deep-learning-assisted approach extracts high-level fea-
tures (i.e. deep features) from a trained CNN (top of Figure 4).
We first train the CNN as if we were solving a voxel-wise
classification problem. Because CNNs are powerful in finding
suitable application-dependent features, we use those features
to distinguish voxels that belong to various complex structures
during rendering. The extracted deep features correspond to much
higher level concepts when compared with local features such as
gradient magnitude or textures, thus improving their capability in
discerning complex structures.

Based on the derived feature space, we address practical
issues when creating volume visualizations using deep features
(bottom of Figure 4). Even for moderate-sized volumetric data, the
high dimensionality of features could be overwhelming because
of the limited memory available to a GPU. Therefore, we use
vector quantization to compress the features to a manageable size.
Furthermore, because the features that form the high-dimensional
feature space are not independent, we apply a spectral method
to reorder them. After feature reordering, users can easily create
visualizations by modifying a characteristic feature vector through
a simple design widget. We also use a semi-automatic method to
accelerate the design of volume visualization by pre-generating a
tree of visualizations, with which users can explore the volumetric
data hierarchically and interactively.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Table 1
The architecture of our proposed CNN

Layer #channels #neurons Kernel stride
Convolutional 64 32 %32 3x3 2
Convolutional 64 32x32 3x3 1
Max-pooling 64 16 x 16 2x2 2
Convolutional 64 16 x 16 3x3 1
Convolutional 64 16 x 16 3x3 1
Max-pooling 64 8x8 2x2 2
Convolutional 64 8x8 3x3 1
Convolutional 64 8x8 3x3 1
Max-pooling 64 4x4 2x2 2
Fully-connected 200 Ix1

Fully-connected #classes 1x1

3.2 Learning high-level features
3.2.1 CNN model

The high-level features are extracted from a CNN, which contains
three groups of convolutional layers (Table 1). In each group, we
stack two convolutional layers with 3 x 3 kernels to resemble
the reception field of a 5 x 5 kernel but with fewer trainable
parameters. We perform batch normalization [22] for all the
convolutional layers. We use dropout [21] with a probability of 0.5
for the first fully-connected layer. The first fully-connected layer
contains 200 neurons, which connect to neurons in the second
fully-connected layer. Each neuron in the second fully-connected
layer corresponds to an individual class in the data. After training
the CNN, we extract 200-dimensional voxel representation from
the first fully-connected layer.

We chose the values of parameters based on the results of
our preliminary study conducted using the target datasets. We
applied a random search strategy, which is often used for designing
CNNS, to determine the parameters based on the observed loss
values and the convergence of the network. For other datasets, we
may need to adjust these parameters depending on the complexity
of target classes for better performance. A more systematic but
time-consuming approach is through automatic hyperparameter
optimization [32].

A convolutional layer slides k trainable kernels W, ; over the
input 3D tensor U of size x X y X m, where x and y correspond
to the spatial dimensions, and m denotes the number of input
feature maps (or, channels). The layer outputs a 3D tensor V,
which is connected to the next layer. The i-th output feature map
Vi is calculated as V; =Y, W,,; x Uy, + b;, where b; denotes the
associated bias term. The convolution can be selectively applied
to neurons separated by a predefined distance referred to as stride.
Here the first convolution uses a stride of two, resulting in a
reduction in spatial dimension by half (first row, Table 1).

The output of a convolutional layer is always subjected to an
activation function that transforms the values in the i-th feature
map V; into corresponding activation signals. For all convolutional
layers and the first fully-connected layer, we use Parametric Rec-
tified Linear Unit (PReLU) [33]. For the second fully-connected
layer, we apply the soft-max function to calculate the predicted
probability of voxel classes.

Max-pooling layers scan and output the maximum neuron
within a local window. We use max-pooling with a 2 x 2 window
and a stride of two to reduce the spatial dimension by half after
each group of two convolutions.

3.2.2 Training

The training data contain 65 x 65 patches centered at a voxel
samples selected at random. We choose the same patch size used
in a previous study [4] with tissue sample and resolution similar
to the hippocampus dataset (cf. Section 4.2.3). We draw 400,000
voxels divided equally among the classes to avoid the majority
class from dominating other classes during training. We use a
batch size of 200 and train a total of 60,000 iterations. After
2,000 iterations the training set is resampled to learn from diverse
examples. We use ADADELTA solver [34] with a momentum of
0.9 and a decay of 5 x 10~* during training.

The input volume is padded with reflection about the edges
before generating patches to take into account cases where the
sampled voxels are near an edge. Because we only have incom-
plete context information to predict voxel class in these boundary
cases, the padding essentially fills the incomplete region with
information extrapolated from the neighborhood.

3.2.3 Class imbalance

The CNN trained with balanced classes tends to overestimate the
probability of the minority class in the testing stage because of the
significant disparity in abundance between the training data, which
contain equal amounts of samples among voxel classes, and the
testing data, which would have the actual class distribution. Such a
class imbalance is increasingly problematic as the disparity grows.

Because the degree of class imbalance in the datasets we used
is moderate, a simple way to address this problem is by multiply-
ing the predicted probability of each class by the corresponding
prior probability, thereby scaling down the predicted probability of
the minority class. We have also implemented the fitted transform
postprocessing [4], which finds a monotonic cubic polynomial to
match the predicted probability and the prior probability based
on the training samples. Instead of having a constant scaling
factor (i.e. the class prior), this technique transforms the predicted
probability in a data-driven way that allows the setting of variable
scaling factors with respect to the probability values.

3.3 Depicting Multiscalar Volumes

We apply the conventional marching cubes algorithm [25] to
extract boundaries that separate dissimilar voxels based on high-
dimensional features. For each cube, the marching cubes algorithm
determines the triangles given the eight bits defined at the bound-
ing voxels. Because in this work the input is a multiscalar field
formed by the high-dimensional feature space, we describe in the
following a method that converts the input multiscalar field to a
binary field with which the marching cubes algorithm can extract
surfaces as usual (Figure 5).

Assuming that each voxel is represented by a 200-dimensional
feature vector v = (vivy -+ vap0), we can decide whether two
voxels belong to the same structure by comparing their dot product
with a threshold 7. Following the same intuition, we can also
decide whether a voxel belongs to a user-defined structure, which
is specified by a characteristic feature vector w = (uj up -+ - up)-
The value of a voxel v in the binary field, used as the input for the
marching cubes algorithm, is calculated as:

0, ifu-v<ry

fuv) = { 6]

1, otherwise.

The extracted surface changes with the (binary) value of f(u,v),
which is controlled by the characteristic feature vector u and

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Characteristic feature vector

Ui Ui+

U = (Ug Uz... Uoo)

V = (V1 Vz... Vago)
Feature vector

Figure 5. Based on the high-dimensional feature space, we generate a
binary field by comparing the dot product of the characteristic feature
vector u and the feature vector v of each voxel with a threshold 7. We
then apply the conventional marching cubes algorithm on the binarized
volume.

the value of threshold 7. Users can interact with the design
widget to configure u and ¢ as well as the color and opacity
of the corresponding surface (used for blending multiple semi-
transparent surfaces).

The marching cubes algorithm is highly parallelizable because
each cube can be processed independently. Our GPU-based paral-
lel implementation uses the histogram pyramid data structure [35]
to facilitate the query of a triangle’s location in the volume and
the query of the triangle indices (if any) inside of a specific cube.
In a histogram pyramid, each space-partitioning square cell stores
the number of triangles in the corresponding partition. The levels
from the bottom to the top of the pyramid represent the volumetric
data at increasingly lower spatial resolutions. When constructing
the pyramid, a cell stores the sum of eight corresponding cells (i.e.
2 x 2 % 2) in the previous (lower) level. Both queries require a top-
down traversal of the pyramid, which only takes a constant time
that is logarithmic to the size of spatial dimension (or linear to
the height of pyramid). For visual appeal, we smooth the extracted
triangular mesh by moving each vertex to the average location
of its adjacent vertices in the mesh. During mesh smoothing,
the query of adjacent vertices is done by first fetching a list of
triangles in the current cube and its neighboring cubes (through
the second type of queries) and then inspecting each edge of
the fetched triangles. We use two vertex buffers to store vertex
positions before and after the smoothing. After each smoothing
iteration, we swap the two vertex buffers to avoid expensive data
movement.

3.4 Reordering high-dimensional features

The order of features in conventional volume visualization designs
is usually straightforward and less of a concern because of the
low dimensionality of feature spaces. Nevertheless, the high-level
features extracted from the CNN are 200-dimensional. Further,
some, but not all, of the extracted features could be closely related
to each other. When features are in arbitrary order along the x-axis
of the design widget (left of Figure 5), assigning a meaningful
characteristic feature vector may require numerous control points,
explicitly defining the value of each dimension. Although the
reordering of features does not add to the possible visualizations
that can be generated using the deep-learning-assisted approach,
the usability issue must be addressed to benefit from the power of
high-dimensional representations.

We address the relationships among features by rearranging
them using spectral ordering, which sorts the features by the eigen-

(a) Similarity matrix with features in arbitrary (left) and spectral order (right).

(b) Characteristic feature vector (¢ = 0.65)

(c) Visualization with features in arbitrary (left) and spectral order (right).

Figure 6. (a) Before spectral ordering, the similarity matrix, in which a
bright pixel represents a pair of highly correlated features, does not
show any apparent pattern. After spectral ordering, highly correlated
features are closer to each other. (b) A simple characteristic feature
vector. (c) The arbitrary order of features does not exploit the correlation
among features, thus leading to broken surfaces. The spectrally ordered
features allow creating a visualization that reveals interesting structures
using the same, simple characteristic feature vector in (b).

vector of the second smallest eigenvalue of a graph Laplacian [36].
First, the normalized Laplacian matrix is generated based on
feature-to-feature similarity; then, the eigenvector associated with
the second smallest non-negative eigenvalue (the Fiedler vector) is
calculated; finally, the features are sorted based on their values in
the Fiedler vector. The result is an ordering of features where
neighboring features are similar. The Fiedler vector and other
eigenvectors associated with small eigenvalues also form the basis
of spectral clustering [37].

We use the following example to show the effect of rearranging
deep features into the spectral order (Figure 6). A bright pixel in
the 200 x 200 similarity matrix marks a pair of highly correlated
features (Figure 6a). Many pairs of the 200 features are indeed
highly correlated because many pixels are bright. Nevertheless,
an arbitrary order of features does not take advantage of such
correlations, resulting in a disorganized similarity matrix (left of
Figure 6a). The spectrally ordered similarity matrix puts similar
features closer together, resulting in large bright blocks of various
sizes along the diagonal (right of Figure 6a). An accessible feature
order therefore allows selecting similar voxels using fewer control
points in the design widget.

Reordering features into this accessible form is a crucial
step. In this example, we use the same characteristic feature
vector, which simply specifies an increasing weight from the first
(leftmost) to the last (rightmost) feature (Figure 6b), and compare
the visualization results obtained before and after reordering
features. An arbitrary feature order does not exploit the similarity
among features and creates surfaces that are broken into small
pieces, which do not correspond well to specific structures (left of

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Figure 6¢). In contrast, the spectrally ordered features are highly
structured such that even a simple characteristic feature vector can
reveal some interesting structure (right of Figure 6c).

3.5 Feature compression

Interactive rendering of volumetric data based on high-
dimensional voxel representations can be prohibitive because the
inflated data size may exceed the memory size on modern GPUs.
Although directly using 20-dimensional texture features has been
shown to be effective previously on small datasets (less than 8.4
million voxels) [9], in this paper we use 200-dimensional features
and validate our technique on much larger datasets (over one
hundred million voxels). Suppose each feature is stored as a four-
byte floating point number, loading all 200 features would require
80 gigabytes of memory per hundred million voxels. The high
storage demand far exceeds the capability of modern consumer-
level graphic cards.

Possible solutions to this problem are out-of-core rendering
and data compression. For simplicity, we use vector quantization
(VQ) to compress the high-dimensional feature vector v. We use
an incremental k-means algorithm [38] to find N, voxel clusters
(i.e. code words in the codebook). Each voxel is encoded by the
index of the nearest cluster centroid based on L? distance. During
rendering, voxels are decoded by referencing the codebook.

Reconstruction using VQ, which is a lossy compression tech-
nique, inevitably introduces information loss. The codebook size
N, is closely related to the reconstruction error of VQ. Choosing
too small a value for N, leads to excessive information loss such
that the reconstructed feature vectors (i.e. the cluster centroids
found by k-means) do not well approximate the actual feature
vectors. On the other hand, choosing too large a value for N,
inflates the size of the codebook and requires much more computa-
tion. A similar information loss introduced by dimension reduction
techniques has been shown to be tolerable when simplifying the
feature space of volume rendering [12], [17]. In the following,
we will evaluate how information loss affects the quality of
visualizations created using our deep-learning-assisted approach.

In Figure 7, we visually evaluate the quality of the visualiza-
tion results with various codebook sizes N.. In this example, we
use a subvolume containing a sporulating bacterium of the bacteria
dataset (Figure 7a). By comparing the results shown in Figure 7b—
7e, the only visually apparent difference is in the small region near
the center of the spore (black box in Figure 7b) when N, = 64; the
other three results are comparable despite the difference in N,
(Figure 7c-7e).

Figure 8 shows the mean and mean squared error with N, rang-
ing from 32 to 512 for the three datasets we used (Section 4.2.2—
4.2.4). Here we measure error as the L? distance between the
actual and reconstructed vectors. As the value of N, increases, both
errors decrease exponentially, whereas the running time increases
linearly (cf. Figure 18). The reconstruction error for the BRATS
dataset is larger than the other two datasets possibly because the
BRATS dataset is multimodal with large intra-class variations.
Larger N, requires more storage for the code, thus limiting the size
of volume that can be loaded on a GPU. Therefore, throughout this
work, we choose N, = 256 so that we can conveniently store the
code in one byte without incurring size limitation.

In some cases where an outlier voxel is replaced by the
centroid of the assigned cluster, calculated as the representative
for the majority voxels in that cluster, the error leads to an effect

(b) N. = 64 () N, =128

(a) Visualization (N, = 256)

(d) N, =256 (e) N, =512
Figure 7. The size of codebook N, in VQ controls the amount of infor-
mation loss. The zoom-in views shown in (b—e) are generated from the
same subvolume (red box in (a)) in the bacteria dataset with N, ranges
from 64 to 512. When N, = 64, the view shows a noticeable disparity
near the center of the spore (black box in (b)). The results in (c—e) are
comparable without significant visual differences.

12 160

11

10

100

»
o
=3

Mean error (ME)
<
oy
5
3
8
3
8
3
3
2
G
|
=
wv
m
©
3
Mean squared erro

N
S

N
=]

3264 128 256 512
Number of clusters

Figure 8. The reconstruction error of vector quantization decreases as
the size of codebook (i.e. number of clusters) increases

similar to a low-pass filter. The errors introduced in such cases
are troublesome if those outliers, possibly anomalies or infrequent
cases in the data, should be presented (instead of filtered out) in the
visualization. In our applications that focus on creating a general
view of the data, the low-pass filtering effect does not obstruct the
understanding and interpretation of the visualization results.

3.6 Semi-automatic exploration

The extraction of surfaces based on a user-defined characteristic
feature vector is flexible in identifying various groups of voxels.
Nevertheless, even after reordering features, configuring the char-
acteristic feature vector can still be tedious and time consuming. In
the past, we have used recursive segmentation of intensity-gradient
2D histogram to group similar voxels into a hierarchy [16]. Here
we develop a similar semi-automatic method to explore volumetric
data by exploiting voxel similarities in high-dimensional feature
spaces. This method enables users to efficiently explore a set of
surfaces sequentially following a pre-calculated hierarchy.

The hierarchy is generated as follows. Given the N, centroids
obtained by VQ, we calculate the adjacency matrix based on
the L? distance between two centroids. Based on the adjacency
matrix, we then subdivide the N, centroids into two groups of
centroids using spectral clustering [37]. In the next iteration, the
same subdivision procedure is applied to both generated groups,
further subdividing them into smaller groups. The subdivision is
repeated until the group contains only one centroids and cannot
be further subdivided. We organize the result of subdivision into a

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

binary tree, in which a subdivision is represented by a parent node
and two child nodes. Each node corresponds to a subset of codes
grouped together during subdivision. Given that the membership
of voxels in that subset defines a binary field, we can extract for
each node the corresponding surface using the marching cubes
algorithm.

During interaction, the user traverses the binary tree to hierar-
chically explore surfaces generated from the volumetric data. For
example, by switching from a parent node to its child node, the
surface shrinks from the one represented by the parent node to the
one represented by the child node. The user can also select two
child surfaces to visualize the subdivision of the parent surface.

4 EXPERIMENTS
4.1 Implementation

We implemented the CNN using Caffe framework [39]. The GPU-
based parallel implementation of the marching cubes-based vol-
ume rendering is implemented using OpenGL and OpenCL!. The
feature reordering and compression are implemented in MATLAB
and Python, respectively.

4.2 Results

High-resolution 3D imaging has become an important tool to study
minute changes in morphology and geometry [40], [41]. Visualiza-
tion of large high-resolution volumes is essential to the analysis of
complex structures that are inaccessible by conventional methods.
In this section, we focus on two imaging modalities: focused
ion-beam scanning electron microscopy (FIB-SEM) and magnetic
resonance imaging (MRI). FIB-SEM is a high-resolution (up to
few nanometers) imaging technique for 3D reconstruction. MRI
is clinically used for diagnosis of brain tumor and traumatic brain
injury. We present visualization results generated with two FIB-
SEM images and one MRI dataset of human brain using the deep-
learning-assisted approach. In addition, we evaluate the power of
CNN-derived features by comparing segmentation performance.

4.2.1 Segmentation performance measures
The segmentation performance is evaluated by the VOC
score [42], which is calculated as VOC = ﬁ, where TP,

FP, and FN denote the number of true positives, false positives,
and false negatives, respectively. By penalizing classifiers with
high FP rates, the VOC score can distinguish reasonable classifiers
from classifiers that predict the same (majority) class all the time.
We calculate class-wise VOC to evaluate segmentation quality for
each class individually.

4.2.2 Dataset 1: Bacteria

The first dataset contains one volume of size 1150 x 450 x 400 at
resolution 12nm X 12nm X 12nm. The original anisotropic volume
resolution is 3nm X 3nm X 6nm [43]. With this dataset researchers
study the sporulation of B. subtilis [44], a common rod-shaped
gram-positive bacterium. Sporulation (i.e. formation of an en-
dospore) is a unique survival mechanism triggered by certain
bacteria in response to environmental stressors such as nutrient
depletion. Once initiated, the process of sporulation includes a
series of events that are tightly regulated both genetically and

1. https://www.khronos.org/opencl/

400| i

Figure 9. (left) The bacteria dataset is divided into the left and right
halves for training and testing. (right) Both the spores (green) and
the vesicles (yellow arrow) in the two sporulating bacteria are low
in intensity. Because the difference in intensity between a spore and
other structures (e.g. vesicle and cytoplasm) can be small, conventional
intensity-based feature spaces will not differentiate them well.

temporally. This temporal process results in a sequence of well-
defined and replicable morphological states [44]. The course of
cell development is of great interest to biologists.

This dataset is manually labeled with four classes: Resin, cell
wall, spore, and others.

1) Resin: The dark region in the background.

2) Cell wall: The bright thin layer separating the interior of
a bacterium and the surrounding resin.

3) Spore: The large dark oval-shaped structure inside of a
sporulating bacterium. The intensity value and shape of
a spore change over time, depending on the life cycle
stage of the bacterium. In this dataset, about 20% of the
bacteria are sporulating.

4) Others: All the other unlabeled subcellular features (e.g.
vesicles and cytoplasm).

Figure 9 shows an example of two bacterial cells with the four
structures of interest. Because the cells are oriented arbitrarily
in 3D, the appearance of these structures can be significantly
different in 2D projections; this observation also applies to the
hippocampus dataset (Section 4.2.3). We divide the original image
stack into two sets of equal size 575 x 450 x 400, one for training
and validation, and the other for testing.

In the following, we evaluate the quality of the segmen-
tation results and compare the effectiveness of the two post-
processing techniques that address the class imbalance prob-
lem (Section 3.2.3). In the training volume of the bacteria
dataset, the proportion of (resin, cell wall, spore, others) is
(0.472,0.119,0.034,0.374), respectively. Because of the scarcity
of the spores (0.034), we expect an overestimation of the abun-
dance of spores in the testing stage.

Interestingly, the result shows that simple postprocessing using
class prior can actually deteriorate segmentation performance.
Figure 10 compares the precision and recall obtained with and
without postprocessing. For the bacteria dataset, scaling the pre-
dicted probability by class prior overestimated the effect of class
imbalance and scaled down the predicted probability of minority
classes (i.e. spore) too much, resulting in a significant drop in
recall for the spore class (from 0.881 to 0.718; blue hexagon to
green hexagon, Figure 10). In contrast, the result generated by the
fitted transformation (red hexagon, Figure 10) has a better balance
between precision and recall and lies near the diagonal line, where
precision and recall are the same.

Figure 11 shows a concrete example comparing the segmenta-
tion results (Figure 11c—11e) of the input image (Figure 11a) with
the ground truth (Figure 11b). For the spore class, scaling by class
prior resulted in significantly more false negatives (Figure 11d)
than before postprocessing (Figure 11c¢). The VOC score of the

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Figure 10. Left: The fitted transform postprocessing (red) generates
results along the diagonal of the precision-recall plot; the results are
better than those obtained with scaling by class prior (green) and without
postprocessing (blue). Right: The same conclusion can be drawn by
comparing class-wise VOC scores.

(b) Ground truth (c) No postprocessing

(a) Raw image

(d) Class prior (e) Fitted transform

Figure 11. This example shows the spore (green) in (b) the ground truth
labels and the segmentation results (c) generated without postprocess-
ing, and postprocessed with (d) class prior and (e) fitted transform for
the raw image in (a). Simply scaling the predicted probability by class
prior resulted in many false negatives for the spore class. In contrast,
the data-driven fitted transformation of probability is more robust and
generates a result comparable to the ground truth.

spore class decreases from 0.733 to 0.690 (right, Figure 10).
Scaling by the fitted transformation is more robust for diverse
classes because the scaling factors are derived in a data-driven
way. In fact, the fitted transformation increased the VOC scores
of all four classes in the bacteria dataset and both classes in the
hippocampus dataset (right, Figure 10).

Having validated the segmentation results, we next present
our visualization results using the deep-learning-assisted approach
in Figure 12. The two characteristic feature vectors shown in
Figure 12e correspond to the surfaces extracted for the spores
(Figure 12a and Figure 12b) and the cell walls (Figure 12c),
respectively. Combining the two extracted surfaces leads to a
composite visualization showing both structures (Figure 12d).
The close relationships between the semantics and the derived
deep features are attributed to the semantic information users
provide (in the form of the voxel labels) to the CNN in the
training stage. Grouping semantically-related features together in
the design widget with spectral ordering facilitates the editing
of characteristic feature vectors to target voxels with specific

9

semantics. Further studies are needed to examine the constituents
of these semantically-coherent features and whether they can be
reused for building visualizations for different structures.

4.2.3 Dataset 2: Hippocampus

The second dataset> [31], [45] contains two volumes of
hippocampus, each of size 1024 x 768 x 165 at resolution
5nm X 5Snm X 5Snm. Abnormal changes in morphology and spatial
distribution of mitochondria are known to be related to cancer
and neurodegenerative diseases such as Parkinson’s disease [46].
Better visualization and segmentation of mitochondria are crucial
to the study of these diseases. The mitochondria in both volumes
are manually labeled; all the other structures are considered as
non-mitochondria (Figure 13). We use the first volume for training
and validation, and the second volume for testing. The first
volume is divided into the training and the validation sets of size
768 x 768 x 165 and 256 x 768 x 165, respectively.

Previous studies have shown that contextual features improve
segmentation quality over standard features including intensity
histogram, gradient magnitude, and texture-related features cal-
culated locally [31]. Similar to the high-level features derived by
CNNgs, the contextual features describe relationships among voxels
in a large neighborhood, thus allowing them to depict more pre-
cisely the structures of mitochondria. Nevertheless, the contextual
features are handcrafted instead of automatically learned.

Figure 10 shows that the postprocessing affects segmentation
performance significantly for the hippocampus dataset, where
the mitochondria occupy about four percent of the total voxels
in the training volume. After applying the two postprocessing
techniques, the precision of mitochondria increased significantly
whereas the recall decreased moderately (blue plus symbol to
green and red plus symbols in Figure 10). The postprocessing
has a large impact on performance because more voxels have
similar predicted probabilities for both classes in the hippocampus
dataset. After adjusting the predicted probabilities, more voxels in
the hippocampus dataset change their predicted class from mito-
chondria (minority class) to non-mitochondria (majority class).
The postprocessing increased the VOC scores of mitochondria
from 0.566 to 0.752 (class prior) and 0.754 (fitted transformation);
both scores are higher than 0.741, which is the state-of-the-art
previously reported [31].

We have shown that the visualization results of the bacteria
dataset (cf. Figure 12) indicate that the derived deep features
are semantically meaningful. In that example, the features align
closely with the classes assigned by users. For a voxel class
with large intra-class variations, the derived deep features may
each detect specific variants of the same class. For solving a
classification problem, the CNN aggregates those deep features
(using the last fully-connected layer) to detect that voxel class as
a whole. For creating interesting visualizations, we can use these
diverse deep features to show subclasses within a user-assigned
voxel class.

For example in Figure 14b, the mitochondria (orange) and
the non-mitochondria regions in the left (blue) correspond to
the orange and blue characteristic feature vectors (Figure 14c).
Although the same (non-mitochondria) class is assigned to both
non-mitochondria regions in the left and right during training, the
CNN derived different features for them because of their distinct
appearance. In the left, the single largest non-mitochondria region

2. http://cvlab.epfl.ch/data/em

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

(b) Spore

(a) All spores in the bacteria dataset

(c) Cell wall (d) Composite result

(e) Characteristic feature vectors

Figure 12. (a) The visualization of the spores in the bacteria dataset generated using the deep-learning-assisted approach. We show in the next
two figures (b) the spore and (c) the cell wall of a bacterial cell. (d) By rendering two semi-transparent surfaces, the composite result shows both
the spore and the cell wall. (e) The green and orange characteristic feature vectors generate the green (r = 0.36) and orange (¢ = 0.46) surfaces.

1024

768

Figure 13. (left) The hippocampus dataset consists of two volumes for
training and testing (not shown here), both of the same size. (right) Both
the mitochondria (orange) and membranes (yellow arrow) are low in
intensity; therefore, they are inseparable using intensity-based features.

(a) Raw image (b) Composite result

(c) Characteristic function

Figure 14. (a) Within the non-mitochondria region (outside of the or-
ange regions), subregions with noticeably different characteristics can
be identified. (b) The extracted deep features enable the visualization
of the non-mitochondria regions without membranes (blue subvolumes
in the left). (c) The two characteristic feature vectors correspond to
the mitochondria (orange, ¢ = 0.63), and the non-mitochondria regions
without membranes (blue, ¢t = 0.49) in the composite visualization.

is bright and uniform, whereas the non-mitochondria regions in the
right consist of small bright regions separated by dark membranes.
As a result, the blue characteristic feature vector generates the
surface that separates the left region from the right region.

4.2.4 Dataset 3: Multimodal Brain Tumor Image Segmen-
tation Benchmark (BRATS)

The Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS) [47] contains MRI images taken with glioma patients.
Here we report results generated with the dataset released with the
MICCAI 2013 data challenge’. In this dataset, each sample vol-
ume consists of four channels, namely the T1, Tlc, T2, and Flair
channels. The abnormal tissues, edema, necrosis, non-enhancing
tumor, and enhancing tumor, are manually labeled by experts.
The boundaries between abnormal tissues and normal tissues (e.g.
the gray matter, the white matter and the cerebrospinal fluid)
are usually ambiguous. Figure 15 shows an example of the four
channels and the four types of abnormal tissues. Typical volumes
are cube-shaped, composed of about six to eight million voxels,
resampled and registered into 1mm isotropic resolution.

Here we report the visualization results based on the deep fea-
tures extracted from a recently published CNN-based method [5],
which is designed specifically for the BRATS dataset. Instead of
training from scratch, we use the trained CNN model provided by
the authors of the original study as a feature extractor that gener-
ates 256 deep features* for each voxel. We focus on showcasing
the semi-automatic exploration of our visualization design given
an alternative high-dimensional feature space, which in this case
is also derived by a trained CNN model.

The visualizations presented in Figure 16 are created with
a sample of high-grade gliomas (i.e. HG_0011) in the BRATS
dataset. Following the hierarchical exploration procedure from the
top to the bottom of the tree, the final four surfaces correspond
to four leaf nodes in the binary partition tree (Figure 16c).
Comparing the composite result (Figure 16b) created with the
four surfaces obtained using the semi-automatic method with the
ground truth (Figure 16a), we can see some inconsistencies near
the center of the tumorous region. For example, the yellow region
(enhancing tumor) that wraps around the red region (necrosis) is
more apparent in our visualization. These inconsistencies are due
to the difficulty in precisely identifying the ambiguous boundaries
between abnormal tissues of different types. In fact, the BRATS
dataset is so challenging that the evaluation of segmentation
performance is done after merging multiple voxel classes (e.g.
complete tumor that consists of all four classes and core tumor

3. http://braintumorsegmentation.org/
4. Output of the second fully-connected layer (layer 10 in the original paper).

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

(a) T1 (b) Tlc

(e) Ground truth

(c) T2 (d) Flair

Figure 15. A slice in the volume for the (a) T1, (b) Tlc, (c) T2, and (d)
Flair channels. (e) The ground truth labels of the necrosis (red), edema
(green), non-enhancing tumor (blue), and enhancing tumor (yellow).

(a) Ground truth (b) Composite result

(c) Nodes and corresponding surfaces

Figure 16. (a) The visualization of ground truth labels. (b) The composite
result generated using the semi-automatic method. (c) The binary tree
allows hierarchical exploration of the volume. The four child subvolumes
(represented by the leaf nodes) are created by partitioning the parent
subvolume (represented by the purple node).

that consists of the three classes excluding edema [47]). Our
semi-automatic exploration method enables users to visualize the
complete tumor by selecting the purple node (top left corner
of Figure 16¢), which represents the union of the four child
subvolumes represented by the leaf nodes.

Figure 17 shows five visualization results generated from
images in the testing set of BRATS, which are not used during the
training of the CNN. By applying the semi-automatic exploration
method, we can visually distinguish diverse subvolumes with
pseudo colors. The ground truth labels for images in the testing

(a) HG_0205 (b) HG_0208 (c) HG_0209

(d) HG_0210 (e) HG_0303

Figure 17. The visualization results generated by the semi-automatic
approach reveal subvolumes inside of the brain; these subvolumes could
correspond to tumorous tissues in the high-grade gliomas samples. The
cut plane shows the Flair channel.

set are, however, not available to the public. These subvolumes
need to be further validated by experts to ensure that they belong
to tumorous tissues.

As research using CNN-based methods on this dataset in-
creases (from three in 2014 to nine in 2016), we expect the
derived high-level features to grow more powerful in the future.
Our deep-learning-assisted visualization approach can continually
leverage the advances in deep learning methods. Another interest-
ing observation in applying our deep-learning-assisted approach to
multimodal data is that the interactions among the four different
channels are addressed by the first convolution layer. Therefore,
the final deep features we extracted are derived both from a
larger context and across various channels. Combining informa-
tion across channels is crucial to effectively visualize multimodal
data. In particular for MRI, using the joint histogram of multiple
channels as the feature space has been shown to be effective
in showing normal tissues such as cerebrospinal fluid and gray
matter [48]. For tumorous tissues, deep features may provide the
required context information and descriptive power that leads to
better visualizations.

4.3 Rendering speed and computation time

Compared with the conventional marching cubes algorithm, our
deep-learning-assisted volume visualization introduces extra steps
to 1) decode a voxel to its corresponding feature vector and
2) update the binary field whenever the characteristic feature
vector or the threshold changes. In our implementation, decoding
is a simple texture look-up. Updating the binary field requires
re-evaluating Equation 1, which can be done efficiently and in
parallel using vector arithmetic on the GPU.

We measure the rendering speed with an NVIDIA Quadro
K6000 GPU. For a volume with 43 million voxels, our GPU-
based volume renderer can render surfaces of similar size (470k
triangles) at a speed of 45 and 40 frames per second using the
conventional marching cubes algorithm and our deep-learning-
assisted approach, respectively. Five iterations of smoothing of
the mesh with 470k triangles took about 0.26 second, which is too
slow if we perform smoothing every time the mesh changes when
users interact with the widget. Consequently, we perform mesh
smoothing optionally.

The processing time reported in the following is based on a
computer with an Intel Xeon E3-1230 V2 3.3GHz CPU, 16 GB of
RAM, and an NVIDIA GTX 970 GPU. Figure 18 shows the time

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

20

0
Lis
g e—e k-means
8 e VQ
7}
€ 10
o
[}
2
o /
E s
=]

0

3264 128 256 512

Number of clusters

Figure 18. The run time of k-means and VQ grows linearly with N..

to perform k-means clustering and VQ with N, ranging from 32
to 512; the computation time grows linearly with N.. The training
of the CNN took about 2.5 hours; the training needs to be done
only once for the training dataset. After training the CNN, the
extraction of deep features for new data (i.e. forward pass of a
trained CNN) took 3.4 minutes per million voxels. The extraction
process is voxel-independent and can be easily parallelized to
multiple GPUs.

4.4 Discussion

In the previous sections, we have shown that the proposed deep-
learning-assisted volume visualization is powerful in discerning
complex structures using high-level features extracted from a
trained CNN. Ideally, we would want to know the corresponding
high-level concept each individual feature represents. Understand-
ing these derived features is an ongoing pursuit in the deep learn-
ing community [6], [49]. As of now the limited interpretability
of deep features indeed causes difficulties in establishing the
connections between a deep-feature-based characteristic feature
vector and the corresponding visualization result. Interestingly, by
organizing features using spectral ordering, users can still design
useful volume visualizations without directly interpreting each
feature dimension that defines the feature space. An alternative
strategy, used in our semi-automatic method, is to circumvent the
interpretability problem by providing another layer of abstraction
and hide the underlying features from users. This strategy is also
used by many other semi-automatic methods.

Although the choice of features evolves from intensity to
locally-derived features (e.g. texture) and, as introduced in this
paper, deep features, volume visualization design remains a
manual and trial-and-error process. A distinct line of research
focuses on minimizing human involvement by creating volume
visualizations automatically [50]. These automatic techniques can
also be adapted to search for solutions in the CNN-derived feature
space used in this paper.

4.5 Limitation

Our current supervised-learning-based approach requires labeled
data for training the CNN; this limitation could be mitigated by
applying semi-supervised or unsupervised learning. For example,
instead of training a CNN for classification, train an autoen-
coder [51] that learns to reconstruct voxels from intermediate
codes that represent high-level features derived directly from the
data without supervision. The other techniques used in our deep-
learning-assisted approach still apply to those derived abstract

12

features regardless of the way they are generated. Unsupervised
techniques, while not relying on user inputs, at the same time elim-
inate valuable supplementary domain knowledge from the learning
process. Further studies are needed to understand whether and how
unsupervised learning can help visualize complex volumetric data.

All the images used in this paper are isotropic such that
the rendering results can be easily interpreted visually (with a
1:1:1 aspect ratio). Some imaging modalities, such as FIB-SEM,
produce anisotropic raw images with a lower resolution along the
imaging axis (e.g. z-axis for the bacteria dataset, Section 4.2.2). In
that regard, simple binning or other sophisticated reconstruction
methods [52] can be applied.

5 CONCLUSIONS AND FUTURE WORK

Designing volume visualizations is challenging because the cur-
rent workflow requires users to explicitly define a feasible feature
space for the target structures. Existing studies have focused on
visualizing structures based on specific handcrafted local features.
As the complexity of structures increases, the difficulty of defining
a suitable feature space also increases significantly.

In this work, instead of relying on handcrafted features, we
use convolutional neural networks (CNN5s) to automatically derive
useful features from the data. In contrast to the local features that
have been used in the past, the features extracted from the CNNs
depict high-level concepts that are difficult to describe by local
features. We rearrange the extracted high-dimensional abstract
features by spectral ordering such that similar abstract features
are close together in the design widget, thus facilitating interactive
exploratory visualization. In addition, we present a semi-automatic
technique that creates a binary tree of volume visualizations,
which enables users to hierarchically explore volumetric data by
tree traversal.

In the future, we plan to apply fully-convolutional network
to accelerate the time-consuming voxel-wise prediction [53], and
3D convolutions to further address the spatial relationships among
voxels [54]. We also plan to examine the differences in features
derived by different CNN models. Another possible extension is
integrating features from different layers in the CNN to design
visualizations at various granularities, possibly showing substruc-
tures within a structure.

ACKNOWLEDGMENTS

We thank Sérgio Pereira for providing the trained model for the
brain MRI study. This work has been supported in part by the NSF
Grants 14-29404, 15-64212, the Intramural Research Program of
the National Cancer Institute, NIST Grant #70NANB15H329, the
State of Maryland’s MPower initiative, and the NVIDIA CUDA
Center of Excellence. Any opinions, findings, conclusions, or
recommendations expressed in this article are those of the authors
and do not necessarily reflect the views of the research sponsors.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the Annual
Conference on Advances in Neural Information Processing Systems,
2012, pp. 1097-1105.

[2] Q. Le, “Building high-level features using large scale unsupervised
learning,” in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013, pp. 8595-8598.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representa-
tion by joint identification-verification,” in Proceedings of the Annual
Conference on Advances in Neural Information Processing Systems,
2014, pp. 1988-1996.

D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Proceedings of the Annual Conference on Advances in Neural
Information Processing Systems, 2012, pp. 2843-2851.

S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation
using convolutional neural networks in MRI images,” IEEE Transactions
on Medical Imaging, vol. 35, no. 5, pp. 1240-1251, May 2016.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in Proceedings of International
Conference on Learning Representations Workshop, 2015.

C. Correa and K.-L. Ma, “Size-based transfer functions: A new volume
exploration technique,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 14, no. 6, pp. 1380-1387, 2008.

S. Wesarg, M. Kirschner, and M. F. Khan, “2D histogram based volume
visualization: Combining intensity and size of anatomical structures,”
International Journal of Computer Assisted Radiology and Surgery,
vol. 5, no. 6, pp. 655-666, 2010.

J. Caban and P. Rheingans, “Texture-based transfer functions for direct
volume rendering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1364-1371, Nov. 2008.

C. Correa and K.-L. Ma, “Visibility histograms and visibility-driven
transfer functions,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 2, pp. 192-204, Feb. 2011.

J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional transfer
functions for interactive volume rendering,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 8, no. 3, pp. 270-285, 2002.
X. Zhao and A. E. Kaufman, “Multi-dimensional reduction and transfer
function design using parallel coordinates.” in Proceedings of IEEE
International Conference on Volume Graphics, 2010, pp. 69-76.

R. Maciejewski, Y. Jang, I. Woo, H. Jdnicke, K. Gaither, and D. Ebert,
“Abstracting attribute space for transfer function exploration and design,”
IEEE Transactions on Visualization and Computer Graphics, vol. 19,
no. 1, pp. 94-107, Jan. 2013.

D. Jonsson, M. Falk, and A. Ynnerman, “Intuitive exploration of volu-
metric data using dynamic galleries,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 896-905, Jan. 2016.

R. Maciejewski, I. Woo, W. Chen, and D. S. Ebert, “Structuring feature
space: A non-parametric method for volumetric transfer function gen-
eration,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 6, pp. 1473-1480, 2009.

C. Y. Ip, A. Varshney, and J. JaJa, “Hierarchical exploration of volumes
using multilevel segmentation of the intensity-gradient histograms,”
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 12, pp. 2355-2363, 2012.

H. S. Kim, J. P. Schulze, A. C. Cone, G. E. Sosinsky, and M. E. Martone,
“Dimensionality reduction on multi-dimensional transfer functions for
multi-channel volume data sets,” Information Visualization, vol. 9, no. 3,
pp. 167-180, 2010.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, Sep. 2014, pp. 1-9.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proceedings of International Confer-
ence on Learning Representations, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929-1958, 2014.

S. JToffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of
International Conference on Machine Learning, 2015, pp. 448—456.

J. Kriiger and R. Westermann, “Acceleration techniques for GPU-based
volume rendering,” in Proceedings of IEEE Conference on Visualization,
Washington, DC, USA, 2003, pp. 287-292.

P. Ljung, J. Kriiger, E. Groller, M. Hadwiger, C. D. Hansen, and
A. Ynnerman, “State of the art in transfer functions for direct volume
rendering,” Computer Graphics Forum, vol. 35, no. 3, pp. 669—691, Jun.
2016.

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

13

W. E. Lorensen and H. E. Cline, “Marching Cubes: A high resolution 3D
surface construction algorithm,” in Proceedings of the Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’87.
New York, NY, USA: ACM, 1987, pp. 163-169.

1. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima, “Volumetric data
exploration using interval volume,” IEEE Transactions on Visualization
and Computer Graphics, vol. 2, no. 2, pp. 144155, 1996.

P. Bhaniramka, C. Zhang, D. Xue, R. Crawfis, and R. Wenger, “Volume
interval segmentation and rendering,” in Proceedings of IEEE Symposium
on Volume Visualization and Graphics, Oct. 2004, pp. 55-62.

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller, “Curvature-
based transfer functions for direct volume rendering: Methods and
applications,” in Proceedings of IEEE Conference on Visualization, 2003,
pp. 513-520.

T. Gerstner, “Multiresolution extraction and rendering of transparent
isosurfaces,” Computers & Graphics, vol. 26, no. 2, pp. 219-228, Apr.
2002.

R. M. Haralick, “Statistical and structural approaches to texture,” Pro-
ceedings of the IEEE, vol. 67, no. 5, pp. 786-804, 1979.

A. Lucchi, C. Becker, P. M. Neila, and P. Fua, “Exploiting enclosing
membranes and contextual cues for mitochondria segmentation,” in
Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2014, pp. 65-72.

J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proceedings of the International Conference
on International Conference on Machine Learning, Atlanta, GA, USA,
2013, pp. I-115-1-123.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proceedings of IEEE International Conference on Computer Vision,
2015, pp. 1026-1034.

M. D. Zeiler, “ADADELTA: An adaptive learning rate method,”
arXiv:1212.5701 [cs], Dec. 2012.

C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel, “High-speed march-
ing cubes using HistoPyramids,” Computer Graphics Forum, vol. 27,
no. 8, pp. 2028-2039, Dec. 2008.

M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-
ical Journal, vol. 23, no. 2, pp. 298-305, 1973.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888-905, 2000.

D. Sculley, “Web-scale k-means clustering,” in Proceedings of the Inter-
national Conference on World Wide Web. ACM, 2010, pp. 1177-1178.
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” in Proceedings of the ACM International Conference
on Multimedia, 2014, pp. 675-678.

A. Bartesaghi, A. Merk, S. Banerjee, D. Matthies, X. Wu, J. L. S.
Milne, and S. Subramaniam, “2.2 A resolution cryo-EM structure of
B-galactosidase in complex with a cell-permeant inhibitor,” Science, vol.
348, no. 6239, pp. 1147-1151, Jun. 2015.

K. Narayan and S. Subramaniam, “Focused ion beams in biology,”
Nature Methods, vol. 12, no. 11, pp. 1021-1031, Oct. 2015.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The Pascal Visual Object Classes (VOC) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman,
A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-
resolution correlative focused ion beam scanning electron microscopy:
Applications to cell biology,” Journal of Structural Biology, vol. 185,
no. 3, pp. 278-284, Mar. 2014.

I. S. Tan and K. S. Ramamurthi, “Spore formation in Bacillus subtilis,”
Environmental Microbiology Reports, vol. 6, no. 3, pp. 212-225, Jun.
2014.

A. Lucchi, Y. Li, and P. Fua, “Learning for structured prediction using
approximate subgradient descent with working sets,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, Jun.
2013, pp. 1987-1994.

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. McBride, A. J.
Whitworth, and L. J. Pallanck, “The PINKI1/Parkin pathway regulates
mitochondrial morphology,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 105, no. 5, pp. 1638-1643,
Feb. 2008.

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerst-
ner, M.-A. Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TVCG.2018.2796085, IEEE Transactions on Visualization and Computer Graphics

Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette,
C. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes,
E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M.
Iftekharuddin, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A.
Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R. Raviv, S. M. S.
Reza, M. Ryan, D. Sarikaya, L. Schwartz, H.-C. Shin, J. Shotton, C. A.
Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M.
Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye,
L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput,
“The multimodal brain tumor image segmentation benchmark (BRATS),”
IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024,
Oct. 2015.

J. Kniss, J. P. Schulze, U. Wossner, P. Winkler, U. Lang, and C. Hansen,
“Medical applications of multi-field volume rendering and VR tech-
niques,” in Proceedings of the Joint Eurographics - IEEE Conference
on Visualization. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2004, pp. 249-254.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in Proceedings of International Conference on Ma-
chine Learning, 2014, pp. 647-655.

M. Ruiz, A. Bardera, I. Boada, 1. Viola, M. Feixas, and M. Sbert,
“Automatic transfer functions based on informational divergence,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12,
pp- 1932-1941, 2011.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
Jul. 2006.

M. Weigert, L. Royer, F. Jug, and G. Myers, “Isotropic reconstruction
of 3D fluorescence microscopy images using convolutional neural net-
works,” in Proceedings of International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, Cham, Sep.
2017, pp. 126-134.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.

T. Brosch, L. Y. W. Tang, Y. Yoo, D. K. B. Li, A. Traboulsee, and R. Tam,
“Deep 3D convolutional encoder networks with shortcuts for multiscale
feature integration applied to multiple sclerosis lesion segmentation,”
IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1229-1239,
May 2016.

Hsueh-Chien Cheng received a B.S. in Com-
puter Science from National Tsing Hua Univer-
sity, a M.S. in Computer Science and Informa-
tion Engineering from National Taiwan Univer-
sity, and a Ph.D. in Computer Science from the
University of Maryland. His research interests
include computer graphics and data visualization
with biomedical applications.

Antonio Cardone received a Ph.D. in Mechan-
ical Engineering at University of Maryland, Col-
lege Park in 2005. He is a Research Associate
at the National Institute of Standards and Tech-
nology (NIST) and a Research Scientist for the
Institute for Advanced Computer Studies at the
University of Maryland. His research focuses on
computational geometry, image processing and
CAD/CAM with application in bioinformatics, ma-
terial science and engineering design.

14

Somay Jain Somay Jain received a B.Tech
(Honors) in Computer Science from International
Institute of Information Technology, Hyderabad
in 2015 and a M.S. in Computer Science from
University of Maryland, College Park in 2017.
His research interests include computer graph-
ics, computer vision and using them in biomedi-
cal applications.

Eric Krokos received a B.S. degree in Computer
Science and a Masters degree in Computer Sci-
ence from the University of Maryland at College
Park. He is currently a Ph.D candidate in the De-
partment of Computer Science at the University
of Maryland at College Park. His research in-
terests include understanding the psychological
effects of Virtual Reality and developing effective
data visualization and interaction.

Kedar Narayan is a group leader at the Center
for Molecular Microscopy at Frederick National
Lab. He has a Ph.D. in immunology and a back-
ground in chemistry, pathology, and biophysics.
Kedars work focuses on the use of emerging
technologies, including FIB-SEM, electron to-
mography and correlative imaging approaches
to explore cellular processes at nanoscale res-
olutions.

Sriram Subramaniam is a senior investigator at
NIH and the Director of the Center for Molecu-
lar Microscopy. He also serves as the Chief of
the Biophysics Section in the Laboratory of Cell
Biology, Center for Cancer Research, NCI, and
has an adjunct faculty appointment at The Johns
Hopkins University School of Medicine.

Amitabh Varshney is the Director of the Insti-
tute for Advanced Computer Studies (UMIACS)
and Professor of Computer Science at the Uni-
versity of Maryland at College Park. He has a
Ph.D. in Computer Science from UNC Chapel
Hill and a B.Tech. in Computer Science from IIT
Delhi. Dr. Varshneys research is on exploring
large data visualization and interaction including
spatial and temporal summarization, multireso-
lution hierarchies, gesture recognition for virtual
environments, and visual interaction with wall-
sized tiled displays. He is the Director of the NVIDIA CUDA Center
of Excellence at Maryland. Varshney received a NSF CAREER Award
and the IEEE Visualization Technical Achievement Award in 2004. He
served as the Chair of the IEEE Visualization and Graphics Technical
Committee 2008—2011. He has served as the Associate Editor for IEEE
TVCG 1999-2003, and is currently the Associate Editor-in-Chief of IEEE
TVCG.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

