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Figure 1: iBall augments basketball videos with gaze-moderated embedded visualizations to facilitate game understanding and
engagement of casual fans. It embeds data visualizations into basketball raw footage using a well-designed computer vision
pipeline, and automatically adapts the visualizations based on the game context and users’ gaze.

ABSTRACT
We present iBall, a basketball video-watching system that leverages
gaze-moderated embedded visualizations to facilitate game under-
standing and engagement of casual fans. Video broadcasting and
online video platforms make watching basketball games increas-
ingly accessible. Yet, for new or casual fans, watching basketball
videos is often confusing due to their limited basketball knowledge
and the lack of accessible, on-demand information to resolve their
confusion. To assist casual fans in watching basketball videos, we
compared the game-watching behaviors of casual and die-hard fans
in a formative study and developed iBall based on the findings.
iBall embeds visualizations into basketball videos using a computer
vision pipeline, and automatically adapts the visualizations based
on the game context and users’ gaze, helping casual fans appreciate

∗This work was done when Qisen Yang and Jerry Shan were interns at Harvard
University. They contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581266

basketball games without being overwhelmed. We confirmed the
usefulness, usability, and engagement of iBall in a study with 16
casual fans, and further collected feedback from 8 die-hard fans.
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1 INTRODUCTION
Basketball, one of the most popular team sports, has continued to
attract new fans over the past decades due to the proliferation of
video broadcasting and online video platforms. However, as our
formative study will show, unlike experienced fans, new or casual
fans often get confused when watching basketball videos. This is
because they lack sufficient basketball knowledge to understand
the players’ complex teamwork and in-game decisions. Existing
methods of providing extra information, such as scoreboards in
broadcasting videos and online webpages (e.g., ESPN [23]), often
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fail to adequately address their confusion. These methods either
cannot provide on-demand data or distract fans from the game by
showing data in separate windows. Thus, finding a way to enable
seamless access to extra data while watching basketball games
would particularly benefit casual fans in their understanding and
engagement of games.

Embedded visualizations provide a promising opportunity to al-
low audiences to access extra data without being distracted from the
game video by directly displaying data in the actual scenes. Given
such benefits, various commercial products [19, 76] and research
systems [15, 16] leverage embedded visualizations to augment
sports videos. However, these systems either focus on post-game
analysis rather than game-watching scenarios, or only use simple,
non-interactive text labels and progress bars to show data. Recently,
researchers have started to explore the design space of embedded
visualizations for game-watching scenarios but used low-fidelity
simulated environments (e.g., 3D simulated sports games [41], mov-
ing charts on white backgrounds [80]). Little is known about how
to design and implement interactive embedded visualizations in
real sports videos and how they can facilitate game understanding
and increase engagement of fans when watching games.

In this work, we aim to fill this gap by developing interactive
embedded visualizations to assist casual fans in watching basketball
game videos. To understand the particular practices, pain points,
and solutions of casual fans in watching basketball game videos,
we compared the game-watching behaviors of 8 casual and 8 die-
hard fans in a formative study. Findings revealed that the casual
fans were confused about key players and their in-game decisions
from time to time, and had trouble seeking customized data during
the game. Informed by the study, we developed iBall (Fig. 1), a
basketball game viewing system that automatically highlights key
players and visualizes their performance through gaze-moderated
embedded visualizations.

We developed iBall by tackling two main challenges. First, em-
bedding visualizations into actual scenes is recognized as a grand
challenge [22], especially for basketball, where players overlap
heavily and the camera moves rapidly. To tackle this challenge,
we contribute a CV pipeline that pre-processes team sports videos
for embedding visualizations. We also conducted experiments to
evaluate our pipeline quantitatively and discuss potential methods
to extend the pipeline to process live videos. Second, it remains
unclear how to design embedded visualizations that are informa-
tive but not overwhelming for individual audiences, who may have
various levels of game literacy, data needs, and personal interests.
We designed a set of gaze-moderated embedded visualizations that
leverage the user’s gaze to seamlessly present the data the user is
interested in and suppress others. To evaluate iBall, we conducted
a user study with 16 casual fans to compare the game-watching
experiences between raw video (RAW), video + embedded visualiza-
tions (AUG), and video + gaze-moderated embedded visualizations
(FULL). Participants spoke highly of our system, ranked FULL as
the best, and confirmed that our embedded visualizations and gaze
interactions were useful, usable, and engaging. We further collected
and discuss the feedback on iBall from another 8 die-hard fans. We
discuss our observations and design implications learned from the
study for future research inspiration.

In summary, through developing iBall, we make the following
four main contributions: 1) a formative study that identifies the pain
points of casual fans in watching basketball videos and solicits plau-
sible solutions from die-hard fans, 2) an open-source CV pipeline
to process team sports videos for embedding visualizations, 3) a set
of gaze-moderated embedded visualizations for basketball game
videos, and 4) a user study that assesses our system and provides
insightful feedback on using gaze-moderated embedded visualiza-
tions in team sports videos. Finally, we will open source our system
at https://github.com/ASportsV/iBall.

2 RELATEDWORK
We review prior work on personalized game viewing systems, em-
bedded visualizations in sports videos, computer vision for embed-
ded visualizations, and applications of gaze interactions.

2.1 Personalized Game Viewing Systems
Visualization has long been used in sports to present data [56],
including box scores [25], tracking data [18, 44, 55, 81], and meta-
data [77]. Sports visualizations are mainly used for post-game anal-
ysis or in-game informing purposes. This work mainly focuses on
the latter.

Sports games usually involve complex in-game decision-making.
To better understand, analyze, and appreciate players’ in-game
decisions, spectators often look for additional information when
watching a sports game [41]. To fulfill individual spectators’ infor-
mation needs, prior research has explored the design of interactive
game-watching systems. ARSpectator [87], for example, presents a
concept design of using mobile AR to enhance the experience of
live sports events. Gamebot [86] uses a conversational interface
to help users request data visualizations in watching NBA games.
GameViews [85] uses simple visualizations (e.g., line charts) to
show in-game box scores of basketball games. Omnioculars [41]
uses interactive embedded visualizations to support in-game analy-
sis of basketball games. CourtVision [19] is a commercial product
that allows inspectors to review basketball in-game data through
simple, non-interactive embedded visualizations (e.g., text labels,
progress bars). Compared to traditional sports, most E-Sports al-
ready provide a personalized game viewing experience by default.
Multiplayer Online Battle Arena (MOBA) games, such as Defense
of the Ancients2 [1] (Dota2) and League of Legends [3] (LoL), allow
spectators to interact with the systems to inspect in-game data (e.g.,
points over time) of players or teams. Nevertheless, these systems
either display the data in separated panels or require viewers to
explicitly interact with the system to request the data, inevitably
distracting viewers from the game. In contrast, we propose to use
embedded visualizations and gaze interactions to present extra data
in game videos, providing an intuitive, seamless, and engaging
watching experience.

2.2 Embedded Visualizations in Sports Videos
Embedded visualizations have been widely used for sports data
due to their ability to show the data into its physical context (e.g.,
a basketball court). Early works mainly embedded the data into
static court diagrams. Examples such as CourtVision [28] (basket-
ball), StatCast Dashboard [40] (baseball), and SnapShot [57] (ice

https://github.com/ASportsV/iBall


iBall: Augmenting Basketball Videos with Gaze-moderated Embedded Visualizations CHI ’23, April 23–28, 2023, Hamburg, Germany

hockey) display density maps on top of court diagrams to show
sports events, such as successful shots. Recent progress in CV now
allows embedding visualizations directly into sports videos instead
of just court diagrams. For example, Stein et al. [68, 69] developed
a method to automatically extract and visualize data from and in
soccer videos. Chen et al. [15, 16, 42] explored the design of aug-
mented sports videos and introduce fast prototyping tools to help
users create augmented videos for racket-based sports by using
direct manipulation and textual comments. However, these works
mainly target experts for analytic and authoring purposes. More
recently, researchers have started to explore embedded visualiza-
tions in live game-watching scenarios. Yao et al. [80] proposed the
notion of visualization in motion to depict visualizations that are
moving relative to the viewer and summarized a design space for
it. Lin et al. [41] presented a design framework for embedded visu-
alizations to facilitate in-game analysis when watching basketball
games. Yet, all the above works only evaluated visualizations in
simulated scenarios (e.g., moving charts on white backgrounds,
3D virtual sports games). We design our embedded visualizations
based on these prior works but particularly target real basketball
videos, with the aim to understand how embedded visualizations
can improve casual fans’ game-watching experience.

2.3 Computer Vision for Embedded
Visualizations

Recent years have shown remarkable advances in CV techniques
based on deep learning. Researchers have achieved unprecedented
success in a broad range of tasks including object detection [26, 43],
object tracking [7, 83], pose estimation [79], and segmentation [14].
Thanks to this progress, more and more data can be extracted from
videos (e.g., [20, 30, 36, 59]), opening new opportunities for sports
analytics. For example, the positions of the players and the ball [67],
as well as other tracking data [4, 5], of each NBA game are ex-
tracted and shared online. We refer the reader to Shih [63] for a
comprehensive survey on content-aware video analysis for sports.
Furthermore, these new CV techniques ease the embedding of vi-
sualizations into the video scenes, which is recognized as a grand
challenge in situated visualization [22]. Embedding visualizations
into sports videos requires a CV pipeline to complete tasks such
as detecting, tracking, and segmenting the players from the video,
estimating their pose, calibrating the camera [84], and sometimes
reconstructing the 3D scene [47]. Prior works [15, 16, 69] applied
a simplified CV pipeline to process racket-based sports videos, in
which the players are separated, and the camera is mostly static.
However, it is muchmore difficult to embed visualizations into team
sports videos (especially basketball) since players overlap heavily
and the camera typically moves rapidly. While commercial sys-
tems [19] can achieve good embedding results, they require videos
collected from multiple cameras [78] to register the visualizations.
To the best of our knowledge, there is no existing CV solution
that can embed visualizations into basketball videos based solely
on broadcasting videos. The lack of such a solution inevitably
hinders the research of embedded visualizations in complex, dy-
namic scenarios, such as team sports. In this work, we contribute a
CV pipeline that consists of open-sourced modular components to
process team sports videos for embedding visualizations.

2.4 Applications of Gaze Interactions
There is a long history of interest in leveraging gaze for interactions
due to its efficiency, expressiveness, and applicability in hands-free
scenarios [11, 45, 46]. Gaze interactions either explicitly or implic-
itly leverage the gaze to interact with digital content. We focus
on implicit methods and refer readers to a more comprehensive
review [45] for further reading.

Implicit gaze-based systems use gaze as an implicit input source,
usually in combination with other input modalities, to facilitate
interactions [24, 45]. Given that reliable eye trackers are now afford-
able enough to be integrated into desktop and laptop computers,
researchers have leveraged implicit gaze interactions to support a
variety of applications, such as content annotation [17, 70], video
editing [35, 48, 58], and remote collaborations [32, 38]. The most
relevant to our endeavor are attempts at adapting viewing content
based on users’ gaze. The gaze-contingent display [21], for example,
shows a higher resolution on the area the user is focusing on. Other
examples include adjusting the playback speed of lecture videos
based on the user’s gaze [51], or a tourist guide that directs a user’s
gaze to highlighted features in a panorama and adapts the audio
introductions accordingly [39]. Kurzhals et al. [37] have proposed
a gaze-adaptive system that dynamically adjusts video captions’
placement to optimize the viewing experience. We also aim to use
gaze to adjust video content but focus on augmented sports videos.

In the visualization field, research related to gaze mainly focuses
on visualizing gaze data [8] and analyzing users’ gaze in viewing
visualizations [9, 12]. Only a fewworks [53, 62, 65, 66] have explored
leveraging the gaze to interact with visualization systems. Silva et
al. [64] give a systematic review on eye tracking for visual analytics
systems and current challenges. We draw on this line of research
and, to the best of our knowledge, are the first to explore gaze-
aware embedded visualizations to improve the sports-watching
experience.

3 FORMATIVE STUDYWITH BASKETBALL
FANS

To understand the practices, pain points, and solutions of casual
fans in watching basketball videos, we conducted a formative study.

3.1 Study Setup
3.1.1 Participants
We recruited participants using university mailing lists and fo-
rums and pre-screened participants based on their fandom level,
game-watching frequency, and basketball knowledge. In total, we
recruited 8 casual fans (P1-P8; M=3, F=5; Age: 18 - 35), who only
knew “basic rules of basketball” and watched “1 - 10 games per year”.
To better identify the pain points specific to casual fans, we further
recruited 8 die-hard fans (P9 - P16; M=8; Age: 18 - 55), who knew
“basketball tactics and pros and cons of specific players” and watched
“at least 1 game per week”. No female die-hard fan responded to us.
All participants had normal vision or wore contact lenses or glasses
to correct to normal vision.

3.1.2 Procedure
We started each session by introducing our research motivation and
study protocol. The experimenter then conducted a semi-structured
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ba

Figure 2: a) Formative study setup. b) In the review phase, the participant’s gaze is visualized and overlaid on the video.

Table 1: The two game videos in the formative study.

Date Teams Quarter Duration (m:ss)

G1 2015.12.25 GSW vs. CLE∗ 4 9:02
G2 2015.12.22 OKC vs. LAC∗ 4 9:30

∗ GSW (Golden State Warriors), CLE (Cleveland Cavaliers), OKC (Oklahoma City
Thunder), and LAC (Los Angeles Clippers)

interview with each participant, focusing on their current practices,
pain points, and solutions when watching live basketball games.
Next, we followed the format of contextual query [31] to ask partic-
ipants to watch two videos (Table 1) on a 24-inch monitor. These
two games were rated as top-30 games of the season and have been
watched millions of times. We collected think-aloud and gaze data
during the game-watching process. To collect the gaze data, we used
Eyeware Beam [2], a commercial software that leverages Apple’s
TrueDepth camera [6] to track the participant’s head and gaze. The
participants sat approximately 60cm from the screen andwere asked
to adjust the chair before watching the videos (Fig. 2a). The system
was then calibrated and the participants were allowed to move the
head freely after the calibration. We used a TrueDepth camera-
based tracker as it provided sufficient accuracy [29] for inspecting
what video objects participants were looking at while watching the
game, at a much lower budget. For more fine-grained gaze data (e.g.,
saccades, fixation), more proficient eye-tracker would be required.

After watching each game video, we asked participants to re-
watch the game with their gaze data overlaid (Fig. 2b) and to elabo-
rate on any confusion, data needs, insights, and excitement they
had felt when watching the game for the first time. Participants
could pause the video in the review phase. Each participant was
compensated with a $20 gift card for their time (1 hour).

3.1.3 Analysis
Interviews and think-alouds were audio-recorded, transcribed, and
analyzed using a reflexive thematic analysis [10]. Three authors
coded independently on the transcriptions to form sets of plausible
codes and iteratively refined the codes to converge on a single
coding schema. Besides, three authors analyzed the gaze data by
manually annotating the video objects each participant was looking
at while watching the games. The categories of objects (Fig. 3 x-
axis) were generated based on the data and prior knowledge. We

classified participants as looking at an object only when their gaze
rested on the object for at least 0.25 seconds (fixation duration [54]).
The duration when the gaze was moving to the object was also
annotated as looking at the object.

3.2 Findings and Discussions
All the casual fans only watched “important games, such as semi-
finals or finals.” (P1) They were neither familiar with basketball
nor the NBA. In comparison, the die-hard fans watched basketball
games much more frequently. They had a rich knowledge of bas-
ketball (e.g., tactics), knowing almost all NBA players and even
their strengths and shortcomings. TV was the main way for all the
participants to watch live basketball games. Overall, for the casual
fans, watching live basketball games was a leisure activity, such as
hiking, but it was a more serious hobby for the die-hard fans.

3.2.1 Casual Fans’ Confusion inWatchingBasketball Games
In terms of the watching experience, all 16 participants confirmed
that they were confused from time to time when watching bas-
ketball games and that they would like to seek extra information,
other than the data provided by the scoreboard and commentaries.
Some confusion is common among both casual and die-hard fans,
such as questions like “who got a foul?” and “which team called the
timeout?” These questions can usually be resolved by “watching
the replay” (P15) or simply by searching Google. However, we did
identify some confusing aspects specific to casual fans that cannot
be easily resolved by the current methods and thus lead to a poor
watching experience:

C1: Casual fans are unsure about which players they should focus
on. When watching basketball games, the casual fans often could
not identify the important players and felt that the players were
just “moving objects.” (P4) The casual fans’ inability to identify key
players was also reflected in their gaze patterns. In our study, we
found that casual fans spent more time on the player with the ball
than the die-hard fans (Fig. 3), since they “didn’t notice other players’
[off-ball] movement” (P1) when watching the game. As a result, the
casual fans often missed important off-ball movements and felt that
the ball “magically fly to an open player.” (P1) Moreover, in some
casual fans’ gaze, we noticed some rapid zigzag movement between
the player with the ball and the other players, revealing their at-
tempts to scan through the players. P4, for example, explained that
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Figure 3: The gaze distribution in seconds shows that, compared to die-hard fans, casual fans spent more time watching the
player with the ball in both games. Due to the small sample size, we discuss these results with a descriptive approach and focus
more on other behavioral observations.

she was “scan[ning] other players” to predict the ball receiver at
the next pass while keeping an eye on the player with the ball,
leading to a heavy cognitive load. In contrast, the die-hard fans
scanned through the players much more predictively and often
could directly identify the next ball receiver.

C2: Casual fans are confused about the in-game decisions of play-
ers. The casual fans could hardly understand the in-game decisions
of the players, since the situated factors (e.g., players’ abilities)
behind these decisions were hard to interpret from the videos. Con-
sequently, the casual fans could not appreciate the game at the same
deep level as die-hard fans and had difficulties keeping pace with
their experienced friends. This was also revealed in the think-aloud
data of the participants. When watching the two videos, the most
frequent verbal comments from the casual fans were interjections,
e.g., “Oops”, “Wooooow!” Even in the follow-up review session, ca-
sual fans could hardly describe their thoughts while watching the
games. P3 acknowledged that she sometimes actually “didn’t totally
understand” what was going on but just felt excited. By contrast,
the die-hard fans could clearly elaborate, comment on, and even
suggest players’ tactics when watching the games. Generally speak-
ing, our study suggested that the experience of watching games for
the casual fans was closer to “feeling” while the experience for the
die-hard fans was closer to “reading”.

C3: Casual fans have trouble seeking customized data while watch-
ing game videos. All the casual fans never searched the internet
to seek data to resolve their confusion when watching the games.
This was because the games were so fast and overwhelming that
they could miss key events when looking up websites. Additionally,
the casual fans sometimes could not search for a player’s data be-
cause they did not know the player’s name. In contrast, the die-hard
fans would search websites (e.g., ESPN) when watching the games,
though they also complained about the context switching between
the games and the webpages. According to the casual fans, perhaps
the best way to seek information about game understanding was
to “ask my [experienced] friends.” (P2) Otherwise, they would just
“let it [the confusions] go.”

3.2.2 Die-hard Fans’ Suggestions for Understanding Basket-
ball Games

Since casual fans preferred to “ask experienced friends” to seek
information, we were interested in what information die-hard fans
suggest for understanding a live basketball game. Several critical
insights were suggested by die-hard fans:

Distinguishing between offense and defense. Basketball, from a
certain perspective, is a turn-based game. A basketball game con-
sists of multiple possessions (i.e., turns), in which the team that
has possession of the ball is on offense, and the other team is on
defense. A player can have completely different roles, tactics, and
behaviors between offense and defense. Being aware of players’
offense and defense status can help casual fans better understand
and follow the game.

Identifying Key Players. While basketball is a team sport, the
importance of each player, especially when she/he is on offense,
is different. Generally speaking, on the offensive side, the player
with the ball and the ball receiver at the next pass are the most
important ones. Players with open spaces are also critical to the
offensive team as they have a higher chance of making the goal. On
the defensive side, all the defenders guarding the player with the
ball are important. By identifying these key players, the die-hard
fans could watch the game more effectively and predictably. In
addition to the aforementioned key players, we also discussed other
players with the die-hard fans, such as offensive helpers who play
screens. Overall, they suggested not helping casual fans identify
these players, as their contributions to the possession outcome (e.g.,
a goal) are not explicit and thus can confuse casual fans.

Understanding In-game Decisions. Knowing players’ offensive
and defensive abilities is essential to understanding their in-game
decisions. The die-hard fans suggested two metrics to help casual
fans understand the players’ abilities. For offensive players, we can
present their location-based expected point value, which measures
how many points a player is expected to make if they shoot at
a specific location. For defensive players, we can present their
location-based percentage points difference, which measures how
much the field goal percentage of a player changes when being
defended by the defensive player. Both metrics can be calculated
or directly obtained by using the data from the Official NBA Stats
website [5]. The die-hard fans also suggested visualizing the one-on-
one relationships between offensive and defensive players, which
can reveal interactions between the players and their tactics (e.g.,
defensive switching).

3.3 Summary
In summary, the casual fans were often confused about the key
players and their in-game decisions, but rarely sought data to re-
solve their confusion because the searching process is slow and
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Table 2: Three design requirements for assisting casual fans
in game watching derived from the formative study.

Findings Design Requirements

C1: Casual fans are unsure
about which players they
should focus on.

R1: Guide the user’s attention
to the important offensive and
defensive players. (Sec. 5.1)

C2: Casual fans are confused
about the in-game decisions of
players.

R2: Visualize players’ offen-
sive and defensive abilities.
(Sec. 5.2)

C3: Casual fans have trouble
seeking customized data while
watching game videos.

R3: Provide a fast and seam-
less method to retrieve data of
interest. (Sec. 5.3)

distracting. To help casual fans better understand the game, the die-
hard fans suggested a few critical insights, including distinguishing
between offense and defense, identifying key players, and under-
standing players’ in-game decisions. By interpreting these findings
and suggestions, we derived three design requirements (Table 2)
and designed iBall. Next, we first introduce a CV pipeline (Sec. 4)
to enable iBall, followed by a set of gaze-moderated embedded
visualizations (Sec. 5).

4 A CV PIPELINE FOR EMBEDDING
VISUALIZATIONS

To embed visualizations into a basketball video, we need to recog-
nize the players (e.g., bounding box, identity, and key points) and
segment them from the background. To this end, we designed a CV
pipeline (Fig. 4) to pre-process team sports videos.

4.1 Recognizing the Players
To embed visualizations for a player, one must first recognize the
player in the video. For example, to display a label with the name of a
player, the system needs to detect the video object that corresponds
to the player (bounding box and identity) and the player’s key body
joints (key points) for placing the label. Given a raw video frame,
we obtain this information for each player via three steps:

Step 1. Player Detection (Fig. 4a). To obtain the players’ bound-
ing boxes and identities in a video frame, we use an object detection
model to locate and classify each player into different categories.
Different from common object detection tasks, we use the players’
identities as their categories. In our implementation, we fine-tuned a
COCO [13] pretrained YoLoX [27] model on an NBA player dataset
(details in Appendix A). The output of the model is a set of bound-
ing boxes associated with their identities and confidence scores
(i.e., ������ ). By convention, only those bounding boxes with ������
greater than a threshold �ℎ��ℎ are considered successful detections.

Step 2. Post-Processing (Fig. 4b). One limitation of the object
detector is that it only utilizes the players’ visual appearance in-
formation to determine their confidence score. Consequently, the
detector can assign low confidence scores to players whose visual
qualities are low (e.g., when they are occluded by others) and filter
them out. We thus use object trackers to exploit the players’ motion
information to complement the detector. An object tracker stores
the history of an object’s bounding boxes in the previous frames
and can predict the object’s bounding box in the next frame by
using a Kalman filter. We use object trackers as follows:

(1) For a frame �� , we divide all the detected bounding boxes
into three clusters based on their ������ : high-quality boxes
(������ > �ℎ��ℎ), low-quality boxes (���� < ������ < �ℎ��ℎ),
and rejected boxes (������ < ���� ).

(2) For each high-quality box, we match it with the trackers in
the previous frame ��−1 by calculating the Intersection over
Union (IoU) between the box and the predicted boxes of the
trackers. A tracker is considered as matched with the high-
quality box if it maximizes the IoU. If matching is successful,
we assign the matched tracker to the box; otherwise, we
initialize a new object tracker for the box.

(3) For each low-quality box, we match it with the remaining
trackers (i.e., those that have not been matched with any
high-quality boxes). If matching is successful, we assign the
matched tracker to the box.

(4) Finally, we output all the boxes with matched trackers.

R aw  Footag e

Foreground

Background
A ug m ented V i deo

S em anti c S eg m entati on

Pose Estimation

C V  P r o c essing  P ip eline

Visualization

G az e- m oderated Em b edded V i s

G az e D ata

G am e D ata

c

Player Detection

Post-Processing

Interpolator

Tracker

a

d

b

Figure 4: Our CV pipeline takes a raw video as the input, outputs the bounding box, identity, and key points of each player,
and separates the image frame into the foreground (humans) and background (all others). The bounding boxes, identities,
and key points are used to create visualizations, which are then composited with the foreground and background to form the
augmented video.



iBall: Augmenting Basketball Videos with Gaze-moderated Embedded Visualizations CHI ’23, April 23–28, 2023, Hamburg, Germany

Intuitively, this method uses the motion information of the players
to select some low-quality bounding boxes to complement the
output of the detector. We refer the readers to Bot-SORT [7] for
more details about the tracker and the matching process.

Step 3. Pose Estimation (Fig. 4c). We use a pose estimation
model to obtain the players’ key points, such as head, hands, hip,
and feet. In our implementation, we first used the bounding boxes
produced in Step. 2 to extract the players from the video frame and
then fed those boxes to ViTPose [79] to estimate the key points.

4.2 Separating Foreground and Background
According to previous works [16, 41], embedded visualizations
for sports, such as empty areas, are often placed on the ground,
beneath the players’ feet. To achieve this, we need to separate
the video frame into the foreground (the objects on the ground)
and background (the ground), draw the visualizations onto the
background, and finally overlay the foreground on the background
to form an augmented video frame (Fig. 4d). Ideally, all the objects
should be segmented from the ground. To simplify the segmentation
process, we decided to only segment humans from the video as
the foreground and leave the remaining pixels as the background,
as humans are the major objects on the ground in a basketball
video. In our implementation, we used a ViT-Adapter [14] trained
on COCO 164K [13] to perform binary semantic segmentation to
segment the humans.

4.3 Computational Evaluation
To evaluate the performance of our pipeline, we conducted several
experiments focused on three main questions: 1) Can the object de-
tector detect the players?; 2) Can the post-processing step improve
the detections?; 3) How much time does each step take? To answer
these three questions, we manually annotated the bounding box
and identity of each player in each frame of the two game videos
used in Sec. 3 (i.e., G1 and G2). We then split each video into clips
and allocated 70% for training and 30% for testing. To accelerate the
training process, we sampled every tenth frame from the training
clips and used only these frames for training. This is because the
consecutive frames often contain redundant information. Despite
this, the testing was conducted on all frames in the testing clips.
The details of the dataset can be found in Appendix A. We trained
and evaluated the detector on G1 and G2 separately, using their
default hyperparameters whenever possible.

We did not evaluate the accuracy of the Pose Estimation and
Semantic Segmentation steps because we used off-the-shelf models
for their standard tasks without any fine-tuning in these two steps.
Yet, their performance for basketball videos can be qualitatively
evaluated by inspecting the augmented videos provided in the
supplemental material.

Table. 3 shows the performance of our fine-tuned object detector
on the testing clips of G1 and G2. To access the detector, we followed
the convention to calculate the Average Precision (AP) metrics over
different IoUs. The higher the AP, the better it is. 𝐴𝑃50:95 is the
average AP over different IoU, from 0.5 to 0.95 with step 0.05. 𝐴𝑃50
and 𝐴𝑃75 are the APs calculated at IoU 0.5 and 0.75, respectively.
The larger the IoU, the stricter the metric will be. Overall, the
results reveal that our fine-tuned object detector can performwell in

Table 3: Average Precision of the Player Detection and Post-
processing steps.

Dataset Step AP50:95 AP50 AP75

G1 Player Detection 65.4 83.6 76.2
Post-Processing 69.2 (+3.8) 87.9 (+4.3) 79.4 (+3.2)

G2 Player Detection 70.7 86.1 82.3
Post-Processing 75.0 (+4.3) 90.0 (+3.9) 85.3 (+3.0)

COCO∗ YoLoX 51.2 69.6 55.7
∗Due to the lack of benchmarks, we provide YoloX’s performances on COCO as a
reference. However, it does not serve as a comparative baseline.

detecting players. Furthermore, all the APs increase after applying
the post-processing step, which shows that the post-processing step
is useful and can complement the detector to improve its results.

Table 4: Time cost of each step.

Step Time (ms)

Player Detection 31.98
Post-Processing 2.40
Pose Estimation 121.00
Semantic Seg.∗ 3674.96
∗Semantic Segmentation can run in parallel with other steps.

In terms of time performance, Table. 4 shows the average time
in milliseconds (ms) each step takes to process a video frame. We
tested the pipeline on a machine with a Nvidia Tesla V100 graphic
card and only counted the inference time of the models by excluding
the model and dataset loading time. Overall, the Player Detection
and Post-processing steps use 34ms for one frame, almost achieving
30FPS. Other steps, especially the Semantic Segmentation step, need
longer to process one frame. These results show that the semantic
segmentation model we used is the bottleneck for extending the
pipeline to support real-time scenarios.

4.4 Extendibility, Generalizability, and
Limitations

The contribution of our pipeline does not lie in the individual com-
ponents but a workable solution that shows which CV models are
required and how they can be composited together to process bas-
ketball videos for the purpose of embedding visualizations into
videos. To inspire future research, we further discuss the extendibil-
ity, generalizability and limitations of the pipeline:

Extendibility. Our pipeline can be extended for better perfor-
mance. To improve the accuracy, we can try using better models or
adding extra components to the post-processing step to improve
the detections. For example, in our implementation, we further
interpolated and smoothed the bounding boxes for the user study.
To improve the efficiency, we can use faster models, more pow-
erful graphic cards, or remove the Semantic Segmentation step if
visualizations on the ground are not needed. Overall, our pipeline
can serve as a reference for other researchers to develop their own
systems for their specific scenarios, videos, and tasks.

Generalizability. The CV pipeline can be applied to other basket-
ball videos and even other team sports videos. For example, there
are about 450 players in the NBA [49]. To generalize the pipeline
to other NBA game videos, we need to develop a player dataset of
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these 450 players to fine-tune the detector. Note that it is not nec-
essary to develop a player dataset for each video. Our experiments
showed that the detector could detect players on unseen testing
clips even if it was trained only on the training clips. If the player
dataset is large enough, the detector fine-tuned on it can be applied
to any NBA game video. This is not impossible as modern deep
learning-based image classifiers can achieve superhuman perfor-
mance on tasks with more than 1000 classes [82] and many priors
can be used to optimize the model results, e.g., there are no more
than 24 players in a game.

Limitations. The pipeline and the evaluation have a few limita-
tions. First, as shown in Table. 4, the processing time of our pipeline
for one frame is about 4 seconds. While the Semantic Segmentation
step can run in parallel with others, our implementation can only
pre-process the game videos instead of running in real-time. Second,
our pipeline only extracts 2D information from the video, limiting
the design space of available embedded visualizations. For example,
without the camera parameters, we cannot display visualizations
that are static relative to the ground, such as trajectories. In reality,
the camera parameters can be provided by the producer of the video
or estimated using camera calibration techniques (e.g., [34, 61]). In
our implementation, similar to prior research [15, 16], we treated
the camera parameters as partially known meta information to
display visualizations that are static relative to the players. Third,
we only evaluated the pipeline on G1 and G2. A larger video dataset
with more ground truth labels is required to fully test the pipeline.
We consider developing such a sports video dataset beyond the
scope of this work and leave it for the future.

5 GAZE-MODERATED EMBEDDED
VISUALIZATIONS

Based on the identified design requirements from the formative
study, we designed a set of gaze interactions that can naturally guide
and respond to the user’s attention through gaze tracking without
explicit user input. Our gaze-moderated embedded visualizations
1) guide audiences’ attention and 2) reveal players’ offensive and

defensive abilities and 3) update the embedded visualizations based
on gaze. The system flow is shown in Fig. 5a-c.

5.1 Guiding Audiences’ Attention
To help casual fans identify the important players (R1), we first
ranked the players’ importance levels according to die-hard fans’
suggestions and then highlighted the players accordingly.

5.1.1 Ranking Players’ Importance Levels
Based on the formative study, we adopted an offensive-first method
to rank the players’ importance into three levels:
Lv3 - Key offensive players: The player with the ball, the next

ball receiver, and the players with open spaces are consid-
ered as the most important offensive players. When pre-
processing the game videos, we used positional tracking
data [67] to identify which players had the ball or were with
open spaces in each frame. Meanwhile, we looked ahead 1.8
seconds (selected empirically) to find the next ball receiver.
To extend our system to livestream scenarios in the future,
potential approaches could be to use machine learning mod-
els [60] or the buffer time in video streaming to detect the
next ball receiver.

Lv2 - Key defensive players: The players who are defending the
player with the ball are considered as the important defend-
ers. In our implementation, inspired by previous work [72],
we detect important defenders by checking which defenders
were closest to the player with the ball within a time interval.

Lv1 - Other players: All other players who do not belong to Lv3
and Lv2 fall into this level.

To detect if a player is in offense or defense, we also used the po-
sitions of the players and the ball. If a player or one of her/his
teammates is the closest player to the ball within a predefined time
interval (0.5s in our implementation), she/he is in offense; otherwise,
in defense. Note that we deliberately ignored some important play-
ers, such as those who play screens or specific tactics, since casual
fans usually cannot understand why these players are important.
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Figure 5: The system takes positional tracking data and historical stats as input to calculate the players’ importance and
offensive and defensive abilities. Only the important players and their offensive and defensive abilities will be highlighted
and visualized in the video. The user can use gaze points to adjust the players’ importance levels, as well as controlling whose
abilities to show.
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Lv1 Lv2 Lv2.5 Lv3 !"#$!"#$

Figure 6: Visualization of various importance levels: Lv3, key offensive players, highlighted by a sportlight; Lv2.5, players of
interest to the user, triggered by Gaze Focus, highlighted by a glowing effect (will be introduced in Sec. 5.3); Lv2, key defensive
players, highlighted by extra brightness; Lv1, other players, no highlighting.

5.1.2 Visualizing Importance Levels
We designed multiple highlight effects to guide user attention to
players at different importance levels (Fig. 6). We considered the
effectiveness and aesthetics of the visualizations and iterate our
designs to make them intuitive and distinguishable, i.e., the one for
a higher importance level is more attractive. We displayed the name
of players with importance levels greater than Lv2. We also colored
the name of “star” players in gold with an icon showing their roles
(i.e., for good shooter and for good defender). Furthermore,
Lv3 spotlight encodes the different offense roles with color, green for
players with open space and white for other key offensive players.

5.2 Revealing Players’ Abilities
To help casual fans understand the players’ abilities (R2), we com-
puted and visualized two location-based metrics of the players
whose attention level is higher than Lv1 (Fig. 5b).

5.2.1 Measuring Players’ Offensive and Defensive Abilities
We used two well-established metrics to indicate the players’ offen-
sive and defensive abilities:

• Offense - Expected Point Value (EPV) measures how
many points a player is expected to make if he/she shoots
from the current position. In basketball, it is a value between
0 and 3. Fundamentally, the goal of offensive tactics in bas-
ketball games is to maximize the EPV of the shooter. Thus,
visualizing the EPV can help casual fans better understand
and evaluate the in-game decisions of offensive players (e.g.,
pass or shoot). We obtained the EPV for each player based
on their historical shot records. Specifically, we created a
hexbin shot chart [71] for each player based on their histori-
cal shot records, in which the bins are grouped based on the
shooting regions (defined by Official NBA Stats [5]). We then
calculated the EPV per region by multiplying the player’s
field goal percentage and points they can make in the region.
The results were cached as an EPV map for efficient access
in each frame. Figure 7 shows an example EPV map.

• Defense - Percentage PointsDifference (DIFF%) is amea-
sure of a defender’s ability to affect a shooter’s shot percent-
age. Good defenders will have a negative DIFF% since they
hold their opponent to a lower percentage than normal. For
example, Stephen Curry’s DIFF% is −3.6%, which means on
average, a shooter’s shot percentage will decease by 3.6%
when being guarded by Curry.We acquired DIFF% by regions

Figure 7: An EPV map of Stephen Curry based on his shoot-
ing records in the 2015-16 season. A darker color indicates a
higher EPV.

for each player directly from NBA Stats [5]. Besides DIFF%,
the distance between a defender and the offensive player
with the ball (DIST) is critical to the defensive performance.
We calculated DIST based on the positional tracking data.

5.2.2 Visualizing Players’ Offensive and Defensive Abilities
Grounded in the design space proposed by prior work [41], we
designed three embedded visualizations to present the offensive
(EPV) metric, defensive (DIFF% and DIST) metric, and the one-on-
one relationship between the defenders and the offensive player
with the ball:

• Offense Ring (Fig. 8a) presents the player’s location-based
EPV, where a larger ring with darker color indicates better
offensive ability. The inner and outer rings represent the
minimum and maximum of possible EPV (i.e., 0 and 3). We
used both the size and color of the middle ring to encode the
player’s EPV at the current position for easier interpretation.

• Defense Shield (Fig. 8b) represents the defender’s location-
based DIFF% and DIST in an arc shape, where a thicker and
longer arc indicates better defensive ability. The thickness of
the “shield” encodes the inverse DIFF% (a negative value) to
make the visualization intuitive. The arc length of the “shield”
encodes the subtraction of DIST from maximum guarding
distance, since a larger DIST indicates lower pressure from
the defender to the player with the ball. We displayed an
outer border of the “shield” to show the maximal guarding
distance (empirically selected as 12 feet) for comparison.
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Figure 8: Three embedded visualizations for in-game data: a) Offense Ring shows the offensive performance of an offensive
player. The darker, larger, the better. b) Defense Shield shows the defensive performance of the defender. The thicker, longer,
the better. c) One-on-one Line shows the one-on-one relationship between the offensive player with the ball and the defenders.

• One-on-one Line (Fig. 8c) visualize the one-on-one rela-
tionship between the key defenders and the offensive player
with the ball. The player with the ball can be defended by
multiple defenders.

All these three visualizations are updated dynamically in the game
based on the players’ positions. We also darkened the background
image to provide enough contrast for reading the visualizations.

5.2.3 Design Process and Alternatives
We finalized our designs through multiple rounds of iterations, es-
pecially for Offense Ring. Two considerations mainly drove our de-
cision to use a ring placed on the ground — the visualization should
1) tightly connect with the target player and 2) avoid occluding
other objects. Similar designs were used in previous research [41]
and basketball video games [50]. Figure. 9a-c show some alternative
designs we explored but none of them were satisfactory.

When designing the visual encoding of Offense Ring, we first
used the size of the ring to encode a player’s shooting frequency
and a divergent color scale to encode the player’s EPV, with the

league average EPV as the midpoint. Figure. 9d shows an EPV map
we created based on this encoding schema. However, in a pilot
study, we found that this encoding schema was too complex to
interpret for casual fans. For example, when the size of the ring is
small (low shooting frequency) but the color is dark blue (high EPV),
casual fans cannot judge if this is a good chance for the player to
shoot or not. Thus, we decided to remove the encoding of shooting
frequency and use both size and color to encode EPV. However, this
could still be confusing as the size scale is sequential but the color
scale is divergent. Consequently, we decided to use a sequential
color scale instead of a conventional divergent one. This design was
found to be easy to understand with clear messages (i.e., the bigger
and darker, the better) to improve game understanding for casual
fans. Different design decisions could be made for other purposes
or fans, e.g., for analytic purposes or die-hard fans [41].

5.3 Gaze-based Interactions
To help casual fans seamlessly and efficiently access data of players
they are interested in while watching the game (R3), we explored

a b c d

Figure 9: Left: Three design alternatives for Offense Ring. a) Displaying the data on top of the player can occlude other players.
b) Moving the visualization higher (e.g., the design in CourtVision [19]) can make it hard to connect to the target player.
c) Displaying the data aside of the players (e.g., the shot meter in NBA 2K [50]) can also occlude other players. Right: An
experimental EPV map of Steven Curry encodes his shooting frequency and EPV by using the size and divergent color scale.
Different from Fig. 7, the bins in this EPV map are not grouped by regions.
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Figure 10: Two gaze interactions to adjust the embedded visualizations: a) Gaze Focus lifts the importance level and shows
in-game data of players that are of interest to the user. b) Gaze Filter drops the importance level of video objects who are not
the user’s focus (e.g., open players and audiences out of focus).

using gaze as an input signal and designed two gaze interactions
(Fig. 5c). The fans can still be guided by the visualizations to identify
important offensive players.

5.3.1 Gaze Focus – Fetching Data of Players of Interest to the
User

Gaze Focus allows the user to express their interests in players
through gaze dwelling, which lifts the importance level of the play-
ers. Gaze Focus comprises the following three considerations:

• Trigger: According to our formative study, the users’ gaze
can move rapidly between, and across, players. To avoid
showing data of players glanced over by the user accidentally,
we defined a “dwell time” [54] for the interaction. The user
needs to dwell her/his gaze on a player for 0.25 seconds to
trigger the interaction.

• Visual feedback: To help the user realize that she/he is
gazing at a player and triggering the interaction, we designed
a highlight effect (Fig. 6c) in which the glow of the player will
gradually increase when the user is gazing at the player, until
the interaction is triggered. This design provides continuous
visual feedback for the user while conforming with the visual
design of importance levels.

• Outcome: Once the user triggers the interaction, iBall lifts
the targeted player to Lv2.5 if she/he is currently at a lower
level (Fig. 10a). As a result, the system will also visualize the
name and offensive or defensive data of the player. Lastly,
when the user moves her/his gaze away from the player,
the player will stay in Lv2.5 for 1.8s (selected empirically)
before reverting to their original player importance level.
We designed such a lasting duration to cope with the users’
rapid saccade in game watching.

5.3.2 Gaze Filter – De-emphasizing Video Objects Out of the
Sight

To prevent users from being overwhelmed by too many Lv3 players,
we designed Gaze Filter to turn off the green spotlights of open
players beyond a pre-defined filter radius. Gaze Filter incorporates
three considerations:

• Trigger: Generally speaking, the system should always avoid
overwhelming the user. Thus, Gaze Filter is consistently trig-
gered and updated when the user moves his/her gaze. It
centers at the user’s gaze point with a filter radius of 650px
(empirically selected).

• Visual feedback: To indicate the user that the interaction
is being triggered, we designed a radial blurring effect that
darkens the audience outside the filter radius and updates
dynamically. We smooth the movement of the radial blurring
effect to prevent it from abruptly changing location due to
the user’s saccade. Note that the blurring effect will not be
applied to players and the court to ensure their readability.
This visual feedback can notify the user about the existence
of the interaction while also creating a theater mode that
helps the user to focus on and engage with the game.

• Outcome: The green spotlights, which are used to highlight
offensive players with open spaces, outside the filter radius
will be turned off (Fig. 10b). An ease-in-out effect is applied
to the change.

6 USER STUDY
To assess the usefulness, usability, and engagement of using our
gaze-moderated embedded visualizations in watching basketball
videos, we conducted a comparative study between three modes –
watch with raw footage (RAW), with solely embedded visualizations
(AUG), and with gaze-moderated embedded visualizations (FULL).
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6.1 Study Setup
6.1.1 Participants and Apparatus
We recruited 16 casual fans (F1-F16; M = 10, F = 6; Age: 18 - 35)
through university mailing lists and forums after screening for their
fandom levels and basketball knowledge. All participants watched
“less than 10 games per year” and only “know the basic rules” of
basketball. All participants had not participated in our formative
study. The study was conducted in the lab with a 24-inch monitor.
We followed the same ergonomic settings in the formative study
but changed to use a Tobii eye tracker 5 (133Hz) [74] for more
accurate gaze interactions. The study took about one hour and each
participant was compensated with a $20 gift card.

6.1.2 Design and Procedure
The study consisted of two tasks, namely, Task1 - RAW vs. AUG,
and Task2 - AUG vs. FULL. Each task compared two modes. For
each task, we used a game video from the formative study and
evenly split it into two video clips (each lasting around 4.5 minutes)
for each mode. The videos and the order of modes in each task
were counterbalanced across participants. Each session included
the following phases:

Phase 1. Introduction (10mins). The study started with an intro-
duction of the researchmotivation, the purpose of the study, and the
protocol. After the participant signed a consent form, we conducted
a warm-up interview about basketball game-watching experiences.

Phase 2. Comparative Tasks (40mins). We asked participants to
finish two comparative tasks (each lasted 20 mins): InTask1 -RAW
vs.AUG, the participants watched two video clips in RAW andAUG
modes, respectively. Before AUG mode, we conducted a training
session to walk the participant through the four embedded visual-
izations in a separate video (about 20 seconds). We only proceeded
to the task when participants were clear and confident enough to
use the embedded visualizations. In Task2 - AUG vs. FULL, the
participants watched another two video clips in AUG and FULL
mode, respectively. Again, a training session was conducted before
starting FULL mode to ensure the participant were confident to
use the gaze interactions. Participants were encouraged to think
aloud about their game observations when watching the videos. At
the end of each video clip, we performed a post-video interview to
collect the participants’ feedback on the mode they had just experi-
enced. At the end of each task, participants filled out a post-task
questionnaire to rate their experiences.

Phase 3. Post-study Questionnaire (10mins). We asked participants
to complete a post-study questionnaire of their subjective ratings
on the overall system, rank the three modes, and provide feedback
on the entire system.

6.1.3 Measures
We collected quantitative measurements of user subjective ratings
in the post-task and post-study questionnaires. At the end of each
task, participants were asked to rate the usefulness, engagement,
and usability of the features they had just experienced, including
the four visualizations (i.e., Player Highlight, Offense Ring, Defense
Shield, and One-on-one Line) in Task1 and the two gaze interac-
tions (i.e., Gaze Focus and Gaze Filter) in Task2, on a 7-point Likert
scale. In the post-study questionnaires, we asked participants to
rate the overall system on five questions about system usefulness
and engagement [52] and ranked the three modes.

6.2 Study Results
We first report the ratings of the overall system and the rankings
of the three modes, and then discuss the feedback on the useful-
ness, engagement, and usability of individual visualizations and
interactions.

6.2.1 The overall user experience of iBall was predominantly
positive, with FULL being most preferred

Figure 11 left shows that the majority rated iBall as “helpful” and
“fun”, felt “in control” and “encouraged” when using the system, and
were “likely to use” it for watching basketball games. Figure 11 right
presents the rankings of the three modes, showing that FULL was
the most preferred mode by 12 participants, followed by AUG by
4 and RAW by none. The four participants who didn’t rank FULL
as the best were mainly concerned about the blurring effect of the
audience in Gaze Filter, stating that a game video without audiences
seemed abnormal. However, they agreed that the filtering of open
players (highlighted in green) was useful. Thus, the system should
allow users to turn off the blurring effect.

6.2.2 Embedded visualizations are more useful if they are
more attractive and informative

Participants rated positively on the usefulness of each visualization
(Fig. 12a). Among the four embedded visualizations, Player High-
light was considered to be the most useful in “predicting the ball
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Figure 11: Left: Ratings on the overall system. Right: Rankings of different modes, i.e., RAW – watch with raw footage, AUG –
watch with embedded visualizations solely, FULL – watch with gaze interaction and embedded visualizations.
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Figure 12: Ratings on the usefulness, engagement, and usability of the embedded visualizations and gaze interactions in iBall.

receiver” at the next pass, “highlighting the open players”, and thus
“making the game much clearer”, as mentioned by the participants.

Participants also rated Offense Ring and Defense Shield as useful
to understand players’ in-game decisions. For example, F8 thought
that Offense Ring could “help me expect when he’s gonna shoot. Oth-
erwise, it’s just like this person can shoot anytime.” ; F3 commented
that Defense Shield clearly showed “who’s able to defend” and ex-
plained why “James can easily score on Iguodala”. However, some
participants found them less useful since the visualizations were
placed on the ground, different from the ball at hand-height, and
thus often hard to notice in a tense game. Nevertheless, most of
the participants agreed that “it was nice to have” Offense Ring and
Defense Shield in the system.

One-on-one Line was controversial in terms of usefulness. Some
participants considered it helpful “to follow the game and to see who
was involved [in defending]” (F6) while others felt it suffers from the
same limitations as Offense Ring and Defense Shield (i.e., cannot be
noticed) with less useful information that was already “clear from
the video.” (F1)

6.2.3 Gaze interactions are useful as they satisfy audiences’
personal information and cognitive needs

Both Gaze Focus and Gaze Filter received very positive ratings
regarding usefulness (Fig. 12a). All participants enjoyed using Gaze
Focus as it could help them immediately “know the name of the
player [who I am looking at]” with simple and effective interaction.
Gaze Filter also improved the game understanding of participants
as it could “make the scene tidier” (F2) and “focus the information on
what I’m looking [at].” (F4)

6.2.4 Embedded visualizations are engaging since they pro-
vide a deeper epistemic pleasure

The participants felt that the embedded visualizations were engag-
ing (Fig. 12b) since they could help them “understand and follow the
game”. This is also reflected in the positive relationship between
the usefulness and engagement of the embedded visualizations –
the more useful, the more engaging. For example, F1 commented
that “it is nice to know who the star players are because otherwise,
they all look like regular players to me.” F5 remarked that he “always
tried to predict the receiver of a pass but always failed.” With the vi-
sualizations, he felt much more confident in predicting the receiver
and felt quite a sense of accomplishment whenever he was correct.

6.2.5 Gaze interactions are engaging since they promote proac-
tive game viewing experiences

Gaze interactions are also engaging (Fig. 12b) since they make the
passive watching experience interactive and proactive. F2 said when
the video scene responded to her gaze, she felt that she was “a part
of the game.” F4 particularly enjoyed using the gaze interactions,
which made him “almost feel like I’m there.” Moreover, participants
provided that using the gaze interactions was “natural” and would
not add further cognitive cost to the game watching since “you
can actively control it ... you don’t have to [use it]” (F5). Overall, the
participants’ feedback provides a strong hint that the engagement of
watching sports videos can be improved if video content responds
to the audience’s gaze.

6.2.6 The gaze-moderated embedded visualizations are easy
to understand and use

All participants confirmed the usability of the embedded visualiza-
tions and gaze interactions in iBall (Fig. 12c). They thought both
the visualizations and gaze interactions were “easy to understand”
and “use”. We noticed that while some participants thought that
One-on-one Line was not that useful, they still agreed that it was
easy to understand.

6.3 Implications for Designing
Gaze-moderated Embedded Visualizations

We now discuss the design implications we learned from the feed-
back and observations in the user study.

6.3.1 Visual attention matters when designing embedded vi-
sualizations

Instead of being overwhelmed by the embedded visualizations,
some participants sometimes even could not notice several of them.
This may be due to a phenomenon known as Inattentional Blind-
ness [33], in which viewers can fail to perceive visually salient
objects or activities. This finding implies that designers should con-
siderhow to properly direct the user’s attentionwhen design-
ing embedded visualizations to effectively convey information
and avoid overwhelming the user. For instance, F5 suggested that we
should highlight Offense Ring, instead of players, to help audiences
efficiently identify the player with the highest EPV; Highlighting
visualizations that are linked to immediate actions can increase the
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information salience, e.g., highlighting the Offense Ring when a
player is about to shoot.

6.3.2 Synchronization of seeing and hearing matters when
designing embedded visualizations

F4 mentioned that he paid less attention to the commentaries in
AUG mode but listened to them more carefully in RAW mode,
which implied that the embedded visualizations could “overlay”
the commentaries. In FULL mode, several participants reported
using gaze interactions to search for players mentioned in the com-
mentaries. These observations indicate that there is an interaction
between the participants’ perception of the embedded visualiza-
tions and the commentaries. Such an interaction between vision
and hearing has long been identified (e.g., McGurk effect [73]).
This highlights the importance of synchronizing the embedded
visualizations and the commentaries to create a consistent
watching experience. Some participants suggested leveraging
the commentaries to create embedded visualizations, as explored
in a recent paper [15].

6.3.3 Gaze interactions shift the game from explanatory to
exploratory

In FULL mode, the participants spent more time using their gaze
to highlight players, while in AUG mode, participants tended to
follow the players highlighted by the system. This difference sug-
gests that AUG mode is more explanatory while the addition of
gaze interactions can shift it towards exploratory. This is not sur-
prising, as the gaze interactions allows the audiences to actively
explore the game more. When designing gaze interactions for game
viewing systems or, broadly speaking, any situated visualization
systems that involve visual guidance, designers must consider the
ultimate goal of the systems and strike a balance between
explanatory and exploratory.

6.3.4 Gaze interactions enable active learning in gamewatch-
ing

The gaze interactions can also help audiences learn basketball
knowledge progressively. For example, Gaze Filter only highlights
open players with green spotlights when the players are near the
user’s gaze. F3 used this feature to verify his hypotheses of team
tactics by moving his gaze to some areas and seeing if the system
“showed green [highlighting]” there. F15 elaborated that Gaze Focus
helped him better recognize players by showing the name of a
player to confirm that he was looking at the right person. Such a
hypothesis-testing process made the participants feel more confi-
dent in interpreting the game. We see this as an interesting oppor-
tunity to leverage gaze-moderated embedded visualization to
develop long-term impact for the users beyond improving their
watching experience within individual games.

6.3.5 Suggestions
While the participants generally spoke highly of iBall, they did men-
tion a few limitations related to the system implementations. For
example, F8 disliked the visual artifacts introduced by the imperfect
segmentation model; some participants said that Gaze Focus was
not accurate when the players crowded together. These limitations
can potentially be resolved with more advanced models or eye
trackers. The participants also suggested several improvements for

iBall, such as providing more customization options (e.g., for the
visualizations and gaze interactions) through a “Preference” panel
and allowing the visualizations to adapt to the pace of the game
(e.g., e.g., showing more details in slow-paced and less in fast-paced
situations). Another point worth mentioning is that a few partici-
pants wished the system could generate play-by-play replays with
embedded visualizations to explain the game in detail. This could
be an interesting direction for future research.

6.4 Feedback from Broader Users
While iBall is designed for casual fans, we also conducted a follow-
up study with die-hard fans to explore its potential use beyond our
original target users. We recruited 8 die-hard fans (D1-D8; M = 8;
Age: 18 - 35), who knew “basketball tactics and pros and cons of
specific players” and watched “at least 1 game per week”. No female
die-hard fan responded to us. We followed the same process as
in Sec. 6.1 to help the die-hard fans experience our system with
a focus on collecting feedback on the real-world use of iBall. We
discuss their major opinions that differed from those of the casual
fans, as well as how iBall can be further improved.

6.4.1 iBall can improve gameunderstanding and engagement
for die-hard fans

All die-hard fans confirmed the usefulness of iBall in watching
basketball videos. Unlike the casual fans (F1-F16), the die-hard fans
could gain a deeper understanding of the game with the embed-
ded visualizations. For example, they could further recognize the
offensive tactics of the team from the highlighted open players. For
some die-hard fans, the usefulness of iBall extends beyond under-
standing the games. D4 - D7, for example, were basketball players
themselves and believed that iBall could help them improve their
in-game decisions and tactics. On the other hand, the die-hard fans
did request extra in-depth data that were currently not supported
by iBall, such as the trajectories of the players’ off-ball movements.
Besides game understanding, the die-hard fans also agreed that
iBall could enhance their engagement in game watching, especially
the gaze interactions, which gave them a feeling of “participating
in the game.” (D1)

6.4.2 Customization is indispensable for the die-hard fans
The feedback from the die-hard fans indicates that there is no
one-size-fits-all design that will satisfy everyone. Compared to the
casual fans, the die-hard fans had more diverse opinions on the
features. For instance, D5 preferred highlighting fewer open players,
while D6 preferred highlighting more; D1 thought that showing the
names could help him learn about unfamiliar players, while some
participants only cared about the “star” players; D7 and D2 wanted
more gaze interactions, but D4 found them distracting. While their
preferences vary, they all agreed that there are valid reasons for
the different design choices and that the best solution is to give
users the option to customize the system, which is aligned with
findings by Lin et al. [41]. One interesting question is how to help
users efficiently express their preferences for customization, as the
range of possible configurations can be very large.
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6.4.3 Embedded visualizations do not need to be displayed
throughout the entire game

Seven out of 8 die-hard fans thought that they did not need the
embedded visualizations to be displayed throughout the entire game.
They explained that iBall is most useful when players are executing
the coach’s strategy, such as in the first two quarters. However,
when the game is decided by the “star” players’ in-game states and
improvisations (during crunch time), the embedded visualizations
may be less useful. In addition, some participants (e.g., D4, D5) felt
that watching a full game with gaze interactions can be exhausting,
as they would “keep using the interactions”. This echoes our finding
in Sec. 6.3.3 that gaze interactions promote proactive analysis. The
participants suggested that the system should allow users to decide
when to display the embedded visualizations.

6.4.4 Gaze interactions should provide more adaptive data
for the die-hard fans

When using the gaze interactions, the die-hard fans wanted more
adaptive data for different teams, players, and game events. For
example, the retrieved data for the Golden State Warriors could
focus on teamwork, while the data for the Cleveland Cavaliers could
emphasize the performance of their “star” players.When gazing two
“star” players facing off against each other, such as LeBron James vs.
Steph Curry, the system could display their historical one-on-one
records. Besides, the data could adapt to specific game events, such
as dunking, or the intensity of the game. These suggestions, which
would require a more intelligent and sophisticated system, are left
for future research.

7 DISCUSSIONS
In this section, we will discuss potential future research directions
and limitations of our current study.

Reproducible Environments For Embedded Visualizations
Research. Compared to traditional web-based visualizations, em-
bedded or situated visualizations are particularly challenging to
research since the physical context where they are registered in
is inherently difficult to reproduce, distribute, and benchmark. It
can be more difficult, or even impossible, to reproduce the physical
context if it is dynamic (e.g., sports scenarios). This perhaps is the
major reason why most existing research [41, 80] uses reproducible
simulated environments (e.g., virtual reality) to study embedded
visualizations. In this work, we use videos to explore the design of
interactive embedded visualizations in dynamic, complex scenar-
ios. To advance research in embedded visualizations, we will open
source our video-based environments (i.e., code and data) so that
others can reproduce our system and develop their own.

Gaze Interactions for Embedded Visualizations. In recent
years, eye-tracking technology has become increasingly affordable.
Compared to other input modalities such as keyboard, mouse, and
voice, gaze input can enable fast, intuitive, and implicit interactions.
In fact, gaze interactions are widely supported in head-mounted
displays [75] for augmented or virtual reality (AR/VR), which are
the main scenarios for using embedded visualizations. Our research
shows that even only using simple gaze data (i.e., the 2D position of
the gaze point on the screen) can significantly increase the useful-
ness and engagement of embedded visualizations. However, gaze
interactions have their own limitations, such as that they cannot be

used in multi-viewers scenarios (e.g., TV in living rooms). Besides,
we have not yet explored using advanced gaze events (e.g., fixation,
saccade, pursuit) or combining gaze with other input modalities
(e.g., speech) to achieve more adaptive or customized embedded
visualizations, which we consider as promising future directions.

Towards Augmenting Live Game Viewing. In Sec. 4.4, we dis-
cussed the technical challenges and potential solutions for extend-
ing the CV pipeline to livestreams. Additionally, to support the
embedded visualizations in livestreams, the system also requires
real-time tracking data of the players. If this data is unavailable, a
potential solution is to use camera calibration techniques [34, 61]
to estimate the camera parameters, which can be used to estimate
the players’ positions and calculate the offensive and defensive
metrics. On the other hand, real-world scenarios also provide addi-
tional resources for improving the system, including videos with a
higher resolution and framerate, buffer time in streaming, camera
parameters, and steering from human experts. Thus, we believe our
system can be extended to live game videos by the broadcasters or
researchers once these additional resources are available.

Augmenting Real-world Games Beyond Videos. With the de-
velopment of sensing techniques and AR devices such as head-
mounted displays, it becomes increasingly possible to augment
real-world games with digital information. While our research pro-
vides a step-stone towards augmenting real-world environments,
several issues must be taken into account when adopting it to AR,
including the limited field of view, the effect of stereoscopy vision
and depth perception, and the ability to freely change viewing per-
spective.We hope that the lessons learned from the present research
can inspire and provide a solid foundation for future research on
augmenting in-person gamewatching scenarios, ultimately general-
izing embedded visualizations to general real-world environments.

Study Limitations. Our user study only evaluated the system
on G1 and G2 rather than videos of entire basketball games. The
study results, including the ratings and gaze distributions, only
provide qualitative evidences. The designs of the embedded visual-
izations and gaze interactions in iBall are derived based on the 16
participants in our formative study. Further explorations are thus
suggested for different scenarios and user groups.

8 CONCLUSION
This work explores using gaze-moderated embedded visualizations
to facilitate game understanding and engagement of casual fans. We
compared the game-watching behaviors of casual and die-hard fans
in a formative study to identify the particular pain points of casual
fans in watching basketball videos. Based on the findings, we de-
veloped a CV pipeline to support iBall, a basketball video-watching
system equipped with gaze-moderated embedded visualizations.
With iBall, casual fans can effectively identify key players, under-
stand their in-game decisions, and personalize the game-viewing
experiences through natural gaze interactions. We evaluated the
CV pipeline with computational experiments. A user study with 16
casual fans confirmed the usefulness, engagement, and usability of
iBall. We further collected feedback on iBall from 8 die-hard fans.
The feedback of these 24 participants provides useful suggestions
to improve iBall and insightful implications for future research in
interactive embedded visualizations for sports game viewing.
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Table 5: Statistics for our player dataset.

Num of Frames Num of Labels

G1 - train 9552 8837
G1 - test 4029 3596
G2 - train 8312 6530
G2 - test 3485 3485

Table 6: Number of labeled instances for each player class in G1.

Class Label # of instances
G30 12574
G9 12953
G23 12404
C0 12418
C8 12461
C23 12354
G11 11760
G34 11834
C4 10629
C2 6663
C5 5268
C13 1508
G31 643

Table 7: Number of labeled instances for each player class in G2.

Class Label # of instances
O0 10375
L3 11115
O9 9761
O3 9407
O35 9194
L6 9774
L32 9401
O12 9235
L1 5576
L11 5632
L12 3864
L4 3632
O21 653
L33 642
O2 506

We created a dataset for the two videos (G1 and G2) used in our
formative study. For both videos, we first removed all transition
scenes (e.g., replays) since transition scenes typically show close-up
views of the players and can be noise for the detector. We gathered
13581 and 11797 frames for G1 and G2, respectively. For each frame,
we identified the players with at least half of the body in the scene
and labeled their bounding boxes with the players’ unique IDs.
Occluded players were also labeled if at least half of their bodies

were in the scene. In total, there are 13 and 15 unique IDs (i.e.,
classes) in G1 and G2, respectively. Table. 5 shows an overview
statistics of our dataset. Table. 6 and Table. 7 provide a detailed
breakdown of the number of labeled instances the datasets have
for each class. The first letter of the class names (except Negative)
indicates the player’s team (where G = Golden State, C = Cleveland,
O = Oklahoma City, and L = Los Angeles), and the number that
follows is the number of the player’s labels.
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