
MobileNeRF: Exploiting the Polygon Rasterization Pipeline
for Efficient Neural Field Rendering on Mobile Architectures

Zhiqin Chen1,2,3 Thomas Funkhouser1 Peter Hedman1 Andrea Tagliasacchi1,2,3

Google Research1 Simon Fraser University2

Abstract

Neural Radiance Fields (NeRFs) have demonstrated
amazing ability to synthesize images of 3D scenes from
novel views. However, they rely upon specialized volumet-
ric rendering algorithms based on ray marching that are
mismatched to the capabilities of widely deployed graph-
ics hardware. This paper introduces a new NeRF repre-
sentation based on textured polygons that can synthesize
novel images efficiently with standard rendering pipelines.
The NeRF is represented as a set of polygons with textures
representing binary opacities and feature vectors. Tradi-
tional rendering of the polygons with a z-buffer yields an
image with features at every pixel, which are interpreted
by a small, view-dependent MLP running in a fragment
shader to produce a final pixel color. This approach enables
NeRFs to be rendered with the traditional polygon rasteri-
zation pipeline, which provides massive pixel-level paral-
lelism, achieving interactive frame rates on a wide range of
compute platforms, including mobile phones.

Project page: https://mobile-nerf.github.io

1. Introduction

Neural Radiance Fields (NeRF) [27] have become a pop-
ular representation for novel view synthesis of 3D scenes.
They represent a scene using a multilayer perceptron (MLP)
that evaluates a 5D implicit function estimating the density
and radiance emanating from any position in any direction,
which can be used in a volumetric rendering framework to
produce novel images. NeRF representations optimized to
minimize multi-view color consistency losses for a set of
posed photographs have demonstrated remarkable ability to
reproduce fine image details for novel views.

One of the main impediments to wide-spread adoption
of NeRF is that it requires specialized rendering algorithms
that are poor match for commonly available hardware. Tra-
ditional NeRF implementations use a volumetric rendering

3Work done while at Google.

Figure 1. Teaser – We present a NeRF that can run on a variety of
common devices in real time.

algorithm that evaluates a large MLP at hundreds of sample
positions along the ray for each pixel in order to estimate
and integrate density and radiance. This rendering process
is far too slow for interactive visualization.

Recent work has addressed this issue by “baking” NeRFs
into a sparse 3D voxel grid [17, 43]. For example, Hed-
man et al. introduced Sparse Neural Radiance Grids
(SNeRG) [17], where each active voxel contains an opacity,
diffuse color, and learned feature vector. Rendering an im-
age from SNeRG is split into two phases: the first uses ray
marching to accumulate the precomputed diffuse colors and
feature vectors along each ray, and the second uses a light-
weight MLP operating on the accumulated feature vector to
produce a view-dependent residual that is added to the ac-
cumulated diffuse color. This precomputation and deferred
rendering approach increases the rendering speed of NeRF
by three orders of magnitude. However, it still relies upon
ray marching through a sparse voxel grid to produce the fea-
tures for each pixel, and thus it cannot fully utilize the par-
allelism available in commodity graphics processing units
(GPUs). In addition, SNeRG requires a significant amount
of GPU memory to store the volumetric textures, which pro-
hibits it from running on common mobile devices.

1

ar
X

iv
:2

20
8.

00
27

7v
1

 [
cs

.C
V

]
 3

0
Ju

l 2
02

2

https://mobile-nerf.github.io

In this paper, we introduce MobileNeRF, a NeRF that
can run on a variety of common mobile devices in real
time. The NeRF is represented by a set of textured poly-
gons, where the polygons roughly follow the surface of the
scene, and the texture atlas stores opacity and feature vec-
tors. To render an image, we utilize the classic polygon
rasterization pipeline with Z-buffering to produce a feature
vector for each pixel and pass it to a lightweight MLP run-
ning in a GLSL fragment shader to produce the output color.
This rendering pipeline does not sample rays or sort poly-
gons in depth order, and thus can model only binary opaci-
ties. However, it takes full advantage of the parallelism pro-
vided by z-buffers and fragment shaders in modern graph-
ics hardware, and thus is 10× faster than SNeRG with the
same output quality on standard test scenes. Moreover, it
requires only a standard polygon rendering pipeline, which
is implemented and accelerated on virtually every comput-
ing platform, and thus it runs on mobile phones and other
devices previously unable to support NeRF visualization at
interactive rates.

Contributions. In summary, MobileNeRF:
• Is 10× faster than the state-of-the-art (SNeRG), with the

same output quality;
• Consumes less memory by storing surface textures in-

stead of volumetric textures, enabling our method to run
on integrated GPUs with significantly less memory and
power;

• Runs on a web browser and is compatible with all devices
we have tested, as our viewer is written in HTML;

• Allows real-time manipulation of the reconstructed ob-
jects/scenes, as they are simple triangle meshes.

2. Related work

Our work lies within the field of view-synthesis, which
encompasses many areas of research: light fields, image-
based rendering and neural rendering. To narrow the scope,
we focus on methods that render output views in real-time.

Light fields [22] and Lumigraphs [15] store a dense grid
of images, enabling real-time rendering of very high quality
scenes, albeit with limited camera freedom and significant
storage overhead. Storage can be reduced by interpolating
intermediate images with optical flow [5], representing the
light field as a neural network [1], or by reconstructing a
Multi-Plane Image (MPI) representation of the scene [13,
26, 30, 39, 46]. Multi-sphere images enable larger fields of
view [2, 6], but these representations are still constrained to
a small viewing volume with limited camera motion.

Other approaches leverage explicit 3D geometry to en-
able more camera freedom. While early methods ap-
plied view-dependent texturing to a 3D mesh [7, 10, 11],
later methods incorporated convolutional neural networks

as a post-processing step to improve quality [16, 25, 36].
Point-based representations further increase quality by
jointly refining the scene geometry while training the post-
processing network [19, 20, 33]. However, as this convolu-
tional post-processing runs independently per output frame
it often results in a lack of 3D consistency. Furthermore,
unlike our work, they require powerful desktop GPUs and
have not been demonstrated to run on a mobile device. Fi-
nally, unlike the vast majority of the methods above, our
method does not need reconstructed 3D geometry as input.

NeRF [27] represents the scene as a continuous field
of opacity and view-dependent color, and produces images
with volume rendering. This representation is 3D consistent
and reaches very high quality results [3, 37]. However, ren-
dering a NeRF involves evaluating a large neural network
at multiple 3D locations per pixel, preventing real-time ren-
dering.

Many recent works have focused on improving the train-
ing speed of NeRF. For example, by modeling the opacity
and color of entire ray segments instead of just points [23]
or by subdividing the scene and modeling each sub-region
with a smaller neural network [31]. Recently, signifi-
cant speed-ups have been achieved by decoding features
fetched from a 3D embedding with a small neural network.
This embedding can either be a dense voxel grid [18, 35],
a sparse voxel grid [34], a low-rank decomposition of a
voxel grid [9], a point-based representation [42], or a multi-
resolution hash map [28]. These 3D embeddings can also
be used without a trained decoder, for example by directly
storing diffuse colors [24] or by encoding view-dependent
colors as spherical harmonics [34]. While these approaches
drastically speed up NeRF training, they still require a large
consumer GPU for rendering.

Rendering performance can further be increased by post-
processing a trained NeRF. For example, by reducing the
network queries per pixel with learned sampling [29], by
evaluating the network for larger ray segments [40], or by
subdividing the scene into smaller networks [31, 32, 41].
Alternatively, we can rely on pre-computation to speed up
rendering, by storing both the scene opacity and a latent
representation for view-dependent colors in a grid. Fast-
NeRF [14] uses a dense voxel grid and uses a global spheri-
cal basis function to represent view-dependence. PlenOc-
trees [43] uses an octree representation, where each leaf
node stores both opacity and spherical harmonics for colors.
SNeRG [17] uses a sparse grid representation, and evaluates
view-dependence as a post-process with a small neural net-
work. Out of these real-time representations, only SNeRG
has been shown to work on lower-powered devices with-
out access to CUDA. As our method directly targets render-
ing on low-powered hardware, we primarily compare with
SNeRG in our experiments.

2

Figure 2. Overview (rendering) – We represent the scene as a triangle mesh textured by deep features. We first rasterize the mesh to a
deferred rendering buffer. For each visible fragment, we execute a neural deferred shader that converts the feature and view direction to
the corresponding output pixel color.

Figure 3. Overview (train) – We initialize the mesh as a regular grid, and use MLPs to represent the features and opacity for any point
on the mesh. For each ray, we compute its intersection points on the mesh, and alpha-composite the colors of those points with respect to
their opacity to obtain the output color. In a later training stage, we enforce binary alpha values, and perform super-sampling on features
for anti-aliasing.

3. Method

Given a collection of (calibrated) images, we seek to op-
timize a representation for efficient novel-view synthesis.
Our representation consists of a polygonal mesh (Figure 2a)
whose texture maps (Figure 2b) store features and opacity.
At rendering time, given a camera pose, we adopt a two-
stage deferred rendering process:
• Rendering Stage 1 – we rasterize the mesh to screen

space and construct a feature image (Figure 2c), i.e. we
create a deferred rendering buffer in GPU memory;

• Rendering Stage 2 – we convert these features into a
color image via a (neural) deferred renderer running in
a fragment shader, i.e. a small MLP, which receives a
feature and view direction and outputs a pixel color (Fig-
ure 2d).

Our representation is built in three training stages, gradually
moving from a classical NeRF-like continuous representa-
tion towards a discrete one:
• Training Stage 1 (Section 3.1) – We train a NeRF-like

model with continuous opacity, where volume rendering
quadrature points are derived from the polygonal mesh;

• Training Stage 2 (Section 3.2) – We binarize the opac-
ities, as while classical rasterization can easily dis-
card fragments, they cannot elegantly deal with semi-

transparent fragments.
• Training Stage 3 (Section 3.3) – We extract a sparse

polygonal mesh, bake the opacities and features into tex-
ture maps, and store the weights of the neural deferred
shader.

The mesh is stored as an OBJ file, the texture maps in
PNGs, and the deferred shader weights in a (small) JSON
file. As we employ the standard GPU rasterization pipeline,
our real-time renderer is simply an HTML webpage. Ad-
ditional technical details about the training are available in
supplementary material.

As representing continuous signals with discrete repre-
sentations can introduce aliasing, we also detail a simple,
yet computationally efficient, anti-aliasing solution based
on super-sampling (Section 3.4).

3.1. Continuous training (Training Stage 1)

As illustrated in Figure 3, our training setup consists of
a polygonal meshM=(T ,V) and three MLPs. The mesh
topology T is fixed, but the vertex locations V and MLPs
are optimized, similarly to NeRF, in an auto-decoding fash-
ion by minimizing the mean squared error between pre-
dicted and ground truth colors of the pixels in the training

3

images1:

LC = Er‖C(r)−Cgt(r)‖22. (1)

where the predicted color C(.) is obtained by alpha-
compositing the radiance ck along a ray r(t)=o + td, at
the (depth sorted) quadrature points K={tk}Kk=1:

C(r) =
K∑
k=1

Tkαkck, Tk =
k−1∏
l=1

(1− αl) (2)

where opacity αk and the view-dependent radiance ck are
given by evaluating the MLPs at position pk=r(tk):

αk = A(pk; θA) A : R3 → [0, 1] (3)

fk = F(pk; θF) F : R3 → [0, 1]8 (4)

ck = H(fk,d; θH) H : [0, 1]8 × [−1, 1]3 → [0, 1]3 (5)

The small network H is our deferred neural shader, which
outputs the color of each fragment given the fragment fea-
ture and viewing direction. Finally, note that (2) does
not perform compositing with volumetric density [27], but
rather with opacity [1, Eq.8].

Polygonal mesh. Without loss of generality, we describe
the polygonal mesh used in Synthetic 360◦ scenes, and pro-
vide the configurations for Forward-Facing and Unbounded
360◦ scenes in supplementary material. 2D illustrations
can be found in Figure 4. We first define a regular grid
G of size P×P×P in the unit cube centered at the ori-
gin; see Figure 4a. We instantiate V by creating one ver-
tex per voxel, and T by creating one quadrangle (two tri-
angles) per grid edge connecting the vertices of the four
adjacent voxels. We locally parameterize vertex locations
with respect to the voxel centers (and sizes), resulting in
V∈[−.5,+.5]P×P×P×3 free variables. During optimiza-
tion, we initialize the vertex locations to V=0, which cor-
responds to a regular Euclidean lattice, and we regularize
them to prevent vertices from exiting their voxels, and to
promote their return to their neutral position whenever the
optimization problem is under-constrained:

LV =
∑
v∈V

(103 I(v) + 10−2) · ||v||1, (6)

where the indicator function I(v)≡1 whenever v is outside
its corresponding voxel.

Quadrature. As evaluating the MLPs of our representa-
tion is computationally expensive, we rely on an accelera-
tion grid to limit the cardinality |K| of quadrature points.
First of all, quadrature points are only generated for the set

1For real-world scenes, we further incorporate the distortion loss Ldist
introduced by [3, Eq. 15] to suppress floaters and background collapse.

of voxels that intersect the ray; see Figure 5a: Then, like In-
stantNGP [28], we employ an acceleration grid G to prune
voxels that are unlikely to contain geometry; see Figure 5b.
Finally, we compute intersections between the ray and the
faces ofM that are incident to the voxel’s vertex to obtain
the final set of quadrature points; see Figure 5c. For further
technical details on the computation of intersections, we re-
fer the reader to supplementary material. In summary, for
each input ray r:

B̃ = intersect(r,G) (7)

B = {b ∈ B̃ | G[b] > τG} (8)
K = intersect(r, {t ∈ T | t ∩ B}) (9)

where (a ∩ b)=true if a intersects b, and the acceleration
grid is supervised so to upper-bound2 the alpha-compositing
visibility Tkαk across viewpoints during training:

Lbnd
G =

∑
k

max(��∇ [Tkαk]− G[pk], 0) (10)

where ��∇ [.] is the stop-gradient operator that prevents the
acceleration grid from (negatively) affecting the image re-
construction quality. Similarly to Plenoxels [34], we addi-
tionally regularize the content of the grid by promoting its
pointwise sparsity (i.e. lasso), and its spatial smoothness:

Lsparse
G = ‖G‖11 Lsmooth

G = ‖∇G‖22 (11)

3.2. Binarized training (Training Stage 2)

Rendering pipelines implemented in typical hardware do
not natively support semi-transparent meshes. Rendering
semi-transparent meshes requires cumbersome (per-frame)
sorting so to execute rendering in back-to-front order to
guarantee correct alpha-compositing. We overcome this is-
sue by converting the smooth opacity αk∈[0, 1] from (3) to
a discrete/categorical opacity α̂k∈{0, 1}. To optimize for
discrete opacities via photometric supervision we employ a
straight-through estimator [4]:

α̂k = αk +��∇ [1(αk > 0.5)− αk] (12)

Please note that the gradients are transparently passed
through the discretization operation (i.e. ∇α̂ ≡ ∇α), re-
gardless of the values of αk and the resulting α̂k∈{0, 1}.
To stabilize training, we then co-train the continuous and
discrete models:

Lbin
C = Er‖Ĉ(r)−Cgt(r)‖22 (13)

Lstage2
C = 1

2L
bin
C + 1

2LC (14)

2This loss performs a stochastic upper-bound, as we initialize G[∗]=0,
and G[pk] receives gradients whenever Tkαk>G[pk].

4

Figure 4. Configurations of polygonal meshes – The meshes em-
ployed for the different types of scenes. We sketch the distribution
of camera poses in training views.

Figure 5. Quadrature points – are obtained by (a) identifying
cells that intersect the ray; (b) pruning cells that do not contain
geometry; and, (c) computing explicit intersections with the mesh.

where Ĉ(r) is the output radiance corresponding to the dis-
crete opacity model α̂:

Ĉ(r) =

K∑
k=1

T̂kα̂kck, T̂k =

k−1∏
l=1

(1− α̂l) (15)

Once (14) has converged, we will apply a fine-tuning step
to the weights in F andH by minimizing Lbin

C , while fixing
the weights of others.

3.3. Discretization (Training Stage 3)

After binarization and fine-tuning, we convert the repre-
sentation into an explicit polygonal mesh (in OBJ format).
We only store quads if they are at least partially visible in
the training camera poses (i.e. non-visible quads are dis-
carded). We then create a texture image whose size is pro-
portional to the number of visible quads, and for each quad
we allocate a K×K patch in the texture, similarly to Dis-
ney’s Ptex [8]. We use K=17 in our experiments, so that
the quad has a 16×16 texture with half-a-pixel boundary
padding. We then iterate over the pixels of the texture, con-
vert the pixel coordinate to 3D coordinates, and bake the
values of the discrete opacity (i.e. (3) and (12)) and fea-
tures (i.e. (4)) into the texture map. We quantize the [0, 1]
ranges to 8-bit integers, and store the texture into (loss-
lessly compressed) PNG images. Our experiments show
that quantizing the [0, 1] range with 8-bit precision, which
is not accounted for during back-propagation, does not sig-
nificantly affect rendering quality.

3.4. Anti-aliasing

In classic rasterization pipelines, aliasing is an issue
that ought to be considered to obtain high-quality ren-
dering. While classical NeRF hallucinates smooth edges
via semi-transparent volumes, as previously discussed,
semi-transparency would require per-frame polygon sort-
ing. We overcome this issue by employing anti-aliasing by
super-sampling. While we could simply execute (5) four
times/pixel and average the resulting color, the execution
of the deferred neural shader H is the computational bot-
tleneck of our technique. We can overcome this issue by
simply averaging the features, that is, averaging the input
of the deferred neural shader, rather than averaging its out-
put. We first rasterize features (at 2× resolution):

F(r) =
∑
k

Tkαkfk, (16)

and then average sub-pixel features to produce the anti-
aliased representation, before feeding it to our neural de-
ferred shader:

C(r) = H (Erδ∼r[F(rδ)], Erδ∼r[dδ]) (17)

where Erδ∼r computes the average between the sub-
pixels (i.e. four in our implementation), and dδ is the direc-
tion of ray rδ . Note how with this change we only queryH
once per output pixel. Finally, this process is analogously
applied to (15) for discrete occupancies α̂. These changes
for anti-aliasing are applied in training stage 2 (14).

3.5. Rendering

The result of the optimization process is a textured
polygonal mesh (where texture maps store features rather
than colors) and a small MLP (which converts view direc-
tion and features to colors). Rendering this representation
is done in two passes using a deferred rendering pipeline:
1. we rasterize all faces of the textured mesh with a z-buffer

to produce a 2M×2N feature image with 12 channels
per pixel, comprising 8 channels of learned features, a
binary opacity, and a 3D view direction;

2. we synthesize an M ×N output RGB image by render-
ing a textured rectangle that uses the feature image as its
texture image, with linear filtering to average the features
for antialiasing. We apply the small MLP for pixels with
non-zero alphas to convert features into actual RGB col-
ors. The small MLP is implemented as a GLSL fragment
shader.

These rendering steps are implemented within the classic
rasterization pipeline. Since z-buffering with binary trans-
parency is order-independent, polygons do not need to be
sorted into depth-order for each new view, and thus can be
loaded into a buffer in the GPU once at the start of exe-
cution. Since the MLP for converting features to colors

5

Device Type OS GPU Power
iPhone XS Phone iOS 15 Integrated GPU 6W
Pixel 3 Phone Android 12 Integrated GPU 9W
Surface Pro 6 Tablet Windows 10 Integrated GPU 15W
Chromebook Laptop Chrome OS Integrated GPU 15W
Gaming laptop Laptop Windows 11 NVIDIA RTX 2070 115W
Desktop PC Ubuntu 16.04 NVIDIA RTX 2080 Ti 250W

Table 1. Hardware specs – of the devices used in our render-
ing experiments. The power is the max GPU power for discrete
NVIDIA cards, and the combined max CPU and GPU power for
integrated GPUs.

Dataset Synthetic 360◦ Forward-facing Unbounded 360◦

Method Ours SNeRG Ours SNeRG Ours
iPhone XS 55.89 0.0 8

8
27.19 2

8
0.0 8

8
22.20 4

5

Pixel 3 37.14 0.0 8
8

12.40 0.0 8
8

9.24
Surface Pro 6 77.40 Unsupported 21.51 Unsupported 19.44
Chromebook 53.67 22.62 2

8
19.44 7.85 3

8
15.28

Gaming laptop 178.26 8.30 1
8

57.72 3.63 55.32
Gaming laptop 606.73 43.87 1

8
250.17 26.01 192.59

Desktop 744.91 207.26 349.34 50.71 279.70

Table 2. Rendering speed – on various devices in frames per sec-
ond (FPS). The devices are on battery, except for the gaming lap-
top and the desktop which are plugged in, indicated with a . The
mobile devices (first four rows) have almost identical rendering
speed when plugged in. With the notation M

N
we indicate that M

out of N testing scenes failed to run due to out-of-memory errors.

Dataset Synthetic 360◦ Forward-facing Unbounded 360◦

Method Ours SNeRG Ours SNeRG Ours
GPU memory 538.38 2707.25 759.25 4312.13 1162.20
Disk storage 125.75 86.75 201.50 337.25 344.60

Table 3. Resources – memory and disk storage (MB).

is very small, it can be implemented in a GLSL fragment
shader [17], which is run in parallel for all pixels. These
classical rendering steps are highly-optimized on GPUs,
and thus our rendering system can run at interactive frame
rates on a wide variety of devices; see Table 2. It is also
easy to implement, since it requires only standard polygon
rendering with a fragment shader. Our interactive viewer
is an HTML webpage with Javascript, rendered by WebGL
via the threejs library.

4. Experiments

We run a series of experiments to test how well Mo-
bileNeRF performs on a wide variety of scenes and devices.
We test on three datasets: the 8 synthetic 360◦ scenes from
NeRF [27], the 8 forward-facing scenes from LLFF [26],
and 5 unbounded 360◦ outdoor scenes from Mip-NeRF 360
[3]. We compare with SNeRG, since, to our knowledge, it
is the only NeRF model that can run in real-time on com-
mon devices. We also include extensive ablation studies to
investigate the impact of different design choices.

Synthetic 360◦ Forward-facing Unbounded 360◦

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF 31.00 0.947 0.081 26.50 0.811 0.250 21.46 0.458 0.515
JAXNeRF 31.65 0.952 0.051 26.92 0.831 0.173 - - -
NeRF++ - - - - - - 22.76 0.548 0.427
SNeRG 30.38 0.950 0.050 25.63 0.818 0.183 - - -
Ours 30.90 0.947 0.062 25.91 0.825 0.183 21.95 0.470 0.470

Table 4. Quantitative Analysis – For JAXNeRF [12] and
NeRF++ [44], we dash entries where the original papers did not
report quantitative performance. For SNeRG, while one could ex-
tend the method to include the unbounded design from [3], imple-
menting this is far from trivial. Our method can be easily adapted
to work across all modalities.

Synthetic 360◦ Forward-facing Unbounded 360◦

V T V T V T
Number 494,289 224,341 830,076 338,535 1,436,033 608,785
Percentage 1.964% 1.783% 3.298% 2.690% 4.891% 4.147%

Table 5. Polygon count – Average number of vertices and tri-
angles produced, and their percentage compared to all available
vertices/triangles in the initial mesh.

4.1. Comparisons

To show the superior performance and compatibility of
our method, we test our method and SNeRG on a variety of
devices, as shown in Table 1. We report the rendering speed
in Table 2. The rendering resolution is the same as the train-
ing images: 800×800 for synthetic, 1008×756 for forward-
facing, and 1256×828 for unbounded. We test all methods
on a chrome browser and rotate/pan the camera in a full cir-
cle to render 360 frames. We also report the GPU memory
consumption and storage cost in Table 3. Note that SNeRG
is unable to represent unbounded 360◦ scenes due to its reg-
ular grid representation, and it does not run on phone or
tablet due to compatibility or out-of-memory issues.

Rendering quality. We report the rendering quality in
Table 4, while comparing with other methods using the
common PSNR, SSIM [38], and LPIPS [45] metrics. Our
method has roughly the same image quality as SNeRG, and
better than NeRF. Visual results are shown in Figure 6 (a-c).
Our method achieves image quality similar to SNeRG when
the camera is at an appropriate distance. When the camera is
zoomed in, SNeRG tends to render over-smoothed images.

Polygon count. In Table 5, we show the average num-
ber of vertices and triangles produced by our method for
each scene, and the percentage compared to all available
vertices/triangles in the initial mesh. Since we only retain
visible triangles, most of the vertices/triangles are removed
in the final mesh.

Shading mesh. In Figure 2a and Figure 7, we show the
extracted triangle meshes without the textures. The trian-
gle faces are mostly axis-aligned, instead of aligning with
the actual object surface. This is perhaps due to the ambi-
guity that good rendering quality can be achieved despite

6

Figure 6. Qualitative Results – Comparisons to the state-of-the-art and ablation studies. With a solid line we denote zoom-ins of the
rendered (800×800) image, while with a dashed line we move the camera to zoom-in onto the same detail.

Figure 7. Shading mesh – not textured. The mesh corresponds to
the bicycle (see Figure 1). We manually removed the background
mesh to better show the geometry of the object. Zoom-in to see
more details. In the bottom, we also show the rendered images of
our method. Note how the coarse mesh is able to represent detailed
structures such as the spokes of the wheels and the wires around
the handles, thanks to high-resolution textures with transparencies.

how the triangles are aligned. For example, the results of
our method after Stage 1 in Table 6 is similar to other meth-
ods in Table 4. Therefore, better regularization losses or
training objectives need to be devised if one wishes to have
better surface quality. However, optimizing vertices does
improve the rendering quality, as shown in Figure 6h.

4.2. Ablation studies

In Table 6, we show the rendering quality of our method
at each stage, and report our ablation studies. The render-
ing quality gradually drops after each stage, because each
stage adds more constraints to the model. In Stage 1, the
performance drops significantly if we use a fixed regular
grid mesh instead of having optimizable mesh vertices, or
if we forgo view-dependent effects by directly predicting

Synthetic 360◦ Forward-facing
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Stage 1, our method 32.13 0.955 26.57 0.839
Stage 1, fixed mesh grid 29.87 0.938 25.43 0.797
Stage 1, no view-dependent MLP 29.91 0.935 25.91 0.824
Stage 1, smaller grid P=128→ 64 31.58 0.952 26.39 0.831
Stage 1, no acceleration grid 31.77 0.953 26.61 0.835
Stage 2, our method 31.01 0.948 26.32 0.833
Stage 2, no fine-tuning 30.80 0.946 26.25 0.832
Stage 2, only pseudo-gradients 29.70 0.935 26.01 0.820
Stage 2, binary loss 30.89 0.947 26.32 0.832
Stage 3, our method 30.90 0.947 25.91 0.825
Stage 3, larger texture K=17→ 33 30.99 0.948 26.14 0.830
Stage 3, smaller texture K=17→ 9 30.49 0.945 24.85 0.796
Stage 3, no supersampling 29.26 0.937 24.88 0.799

Table 6. Ablation – rendering quality.

Speed in FPS Space in MB
Synthetic 360◦ scenes Pixel 3 Surface Gaming GPU Disk

Pro 6 laptop memory storage
our method 37.14 77.40 606.73 538.38 125.75
Larger texture K = 33 32.48 2

8
59.15 589.20 1290.88 283.50

Smaller texture K = 9 37.74 94.62 617.74 336.63 67.00
No supersampling 51.81 113.41 649.86 440.25 125.75
No view-dependent MLP 52.16 96.76 638.30 538.38 125.75

Forward-facing scenes Pixel 3 Surface Gaming GPU Disk
Pro 6 laptop memory storage

our method 12.40 21.51 250.17 759.25 201.50
Larger texture K = 33 12.88 3

8
18.79 241.52 2024.13 462.75

Smaller texture K = 9 12.70 23.61 257.64 394.13 105.75
No supersampling 16.97 42.11 413.02 645.00 201.50
No view-dependent MLP 23.72 28.06 385.65 759.25 201.50

Table 7. Ablation – rendering speed/memory.

the color and alpha of each point. The performance drops
slightly if the grid is smaller (P=64 vs. 128). If we remove
the acceleration grid, we are not able to quadruple the batch
size during training; the performance drops if we train this
model the same number of iterations as our method. Note
that the PSNR of this model is higher on forward-facing
scenes. This is because the acceleration grid will remove

7

Figure 8. Limitations – (a) the monitor/table are hollow, because
the reflections are modelled as real objects behind the monitor and
below the table. (b) our method generates scattered small frag-
ments in the semi-transparent parts. (c) the camera is too close
to the scene and details in the grass cannot be represented at the
chosen texture resolution.

Figure 9. Scene editing: composition – The figure shows a com-
posited scene in two viewing directions. We add four objects
learned from the synthetic 360◦ scenes into an unbounded 360◦

scene; see Figure 1 for the original scene. The scene, rendered in
1920×1080 resolution without super-sampling, runs at 150 FPS
on the gaming laptop, and consumes 1.5 GB of GPU memory.

Figure 10. Scene editing: removal – We removed the horns from
the horns scene, the leaves from the leaves scene, and the T-rex
from the T-rex scene. All scenes are real forward-facing scenes.

cells that are not visible in the training images, thus can-
not “inpaint” the objects and may leave holes. In Stage
2, if we do not perform the fine-tuning step that only op-
timizes F and H and fix the weights of others, the perfor-
mance drops. If we only use the binary opacity with pseudo-
gradients by applying Lstage2

C =Lbin
C instead of Eq. 14, the

performance drops. If we use a binary loss on the pre-
dicted opacity, e.g., Lbinary=−

∑
|αk−0.5|, instead of us-

ing the pseudo-gradients with Ĉ(r), the performance drops
slightly. In stage 3, when we use a larger texture sizeK=33
instead of 17, the performance improves, but the texture
size will be quadrupled; the performance drops when we
use a smaller texture size K=9. If we remove the super-
sampling step, the performance drops significantly. Visual
results are shown in Figure 6. We omit some models be-
cause they do not have significant visual differences com-
pared to our method. Notice the squared pixels of the tex-
ture images are clearly visible in the dashed-line boxes in
(e) and almost invisible in (d). The aliasing artifacts are
conspicuous in the solid-line boxes in (f). In Stage 1, if the
grid vertices cannot be optimized, the results will be signif-
icantly worse, as shown in (h). Without the small MLP, the
model cannot handle reflections, as shown in (i). Changing
to a smaller grid size introduces some minor artifacts in (j).
In Table 7. we show the rendering speed and space cost if
we use a larger or smaller texture size, or if we remove the
super-sampling step, or if we only perform the rasterization
without using the small MLP to predict the view-dependent
colors. One can find that the super-sampling step and the
small MLP have the most significant impact.

5. Conclusions

We introduce MobileNeRF, an architecture that takes ad-
vantage of the classical rasterization pipeline (i.e. z-buffers
and fragment shaders) to perform efficient rendering of
surface-based neural fields on a wide range of compute plat-
forms. It achieves frame rates an order of magnitude faster
than the previous state-of-the-art (SNeRG) while producing
images of equivalent quality.

Our method has several limitations: our estimated sur-
face may be incorrect, especially for scenes with specu-
lar surfaces and/or sparse views (Figure 8a); it uses binary
opacities to avoid sorting polygons, and thus cannot handle
scenes with semi-transparencies (Figure 8b); it uses fixed
mesh and texture resolutions, which may be too coarse for
close-up novel-view synthesis (Figure 8c); it models a radi-
ance field without explicitly decomposing illumination and
reflectance, and thus does not handle glossy surfaces as
well as recent methods [37]. Extending the polygon render-
ing pipeline with efficient partial sorting, levels-of-detail,
mipmaps, and surface shading should address some of these
issues in future work. Finally, the explicit mesh representa-
tion provided by MobileNeRF gives us direct editing con-
trol over the NeRF model without any complex architectural
change (e.g. ControlNerf [21]), but in this paper we only su-
perficially investigated these possibilities; see Figure 9 and
Figure 10.

8

References

[1] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes
Kopf, and Changil Kim. Learning neural light fields with
ray-space embedding networks. CVPR, 2022. 2, 4

[2] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian
Richardt, and James Tompkin. MatryODShka: Real-
time 6DoF video view synthesis using multi-sphere images.
ECCV, 2020. 2

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2, 4, 6

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 4

[5] Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian
Richardt. OmniPhotos: Casual 360° VR photography. ACM
Transactions on Graphics, 2020. 2

[6] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Er-
ickson, Peter Hedman, Matthew DuVall, Jason Dourgarian,
Jay Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics, 2020. 2

[7] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of Computer graphics and interactive
techniques, 2001. 2

[8] Brent Burley and Dylan Lacewell. Ptex: Per-face texture
mapping for production rendering. In Computer Graphics
Forum, 2008. 5

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. ECCV, 2022. 2

[10] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured
light fields. Computer Graphics Forum, 2012. 2

[11] Paul Debevec, Yizhou Yu, and George Borshukov. Effi-
cient view-dependent image-based rendering with projective
texture-mapping. In Eurographics Workshop on Rendering
Techniques, 1998. 2

[12] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020.
6

[13] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. DeepView: View synthesis with learned
gradient descent. CVPR, 2019. 2

[14] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin. Fastnerf: High-
fidelity neural rendering at 200fps. In ICCV, 2021. 2

[15] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The lumigraph. SIGGRAPH, 1996. 2

[16] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics, 2018. 2

[17] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-

diance fields for real-time view synthesis. ICCV, 2021. 1, 2,
6

[18] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and
Niloy J. Mitra. Relu fields: The little non-linearity that could.
ACM Transactions on Graphics, 2022. 2

[19] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and
George Drettakis. Point-based neural rendering with per-
view optimization. In Computer Graphics Forum, 2021. 2

[20] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient
sphere-based neural rendering. CVPR, 2021. 2

[21] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey
Tulyakov, and Gerard Pons-Moll. Control-nerf: Editable fea-
ture volumes for scene rendering and manipulation. arXiv
preprint arXiv:2204.10850, 2022. 8

[22] Marc Levoy and Pat Hanrahan. Light field rendering. SIG-
GRAPH, 1996. 2

[23] David B. Lindell, Julien N.P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural rendering.
CVPR, 2021. 2

[24] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
SIGGRAPH, 2019. 2

[25] Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang, Pavel
Pidlypenskyi, Jonathan Taylor, Julien Valentin, Sameh
Khamis, Philip Davidson, Anastasia Tkach, Peter Lincoln,
Adarsh Kowdle, Christoph Rhemann, Dan B Goldman,
Cem Keskin, Steve Seitz, Shahram Izadi, and Sean Fanello.
Lookingood: Enhancing performance capture with real-time
neural re-rendering. ACM Transactions on Graphics, 2018.
2

[26] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics, 2019. 2, 6

[27] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 4, 6

[28] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
2022. 2, 4

[29] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H Mueller, Chakravarty R Alla Chaitanya, Anton
Kaplanyan, and Markus Steinberger. Donerf: Towards real-
time rendering of compact neural radiance fields using depth
oracle networks. In Computer Graphics Forum, 2021. 2

[30] Eric Penner and Li Zhang. Soft 3D reconstruction for view
synthesis. ACM Transactions on Graphics, 2017. 2

[31] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: Decom-
posed radiance fields. CVPR, 2021. 2

[32] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 2

9

[33] Darius Rückert, Linus Franke, and Marc Stamminger. Adop:
Approximate differentiable one-pixel point rendering. arXiv
preprint arXiv:2110.06635, 2021. 2

[34] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2,
4

[35] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. CVPR, 2022. 2

[36] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics, 2019. 2

[37] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. CVPR, 2022. 2, 8

[38] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 2004. 6

[39] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. CVPR, 2021. 2

[40] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang,
and David Forsyth. Diver: Real-time and accurate neural ra-
diance fields with deterministic integration for volume ren-
dering. CVPR, 2022. 2

[41] Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing
Huang, James Tompkin, and Weiwei Xu. Scalable neural in-
door scene rendering. ACM Transactions on Graphics, 2022.
2

[42] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. CVPR, 2022. 2

[43] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2

[44] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 6

[45] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, 2018. 6

[46] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. ACM Transactions on
Graphics, 2018. 2

10

	1 . Introduction
	2 . Related work
	3 . Method
	3.1 . Continuous training (Training Stage 1)
	3.2 . Binarized training (Training Stage 2)
	3.3 . Discretization (Training Stage 3)
	3.4 . Anti-aliasing
	3.5 . Rendering

	4 . Experiments
	4.1 . Comparisons
	4.2 . Ablation studies

	5 . Conclusions

