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Figure 1: Appearance interpolation between two 4D videos of walking and jogging motions (a and e, highlighted), at the half-way
position, effectively synthesizing a very fast walk motion (notice the change in pose in b–d compared to a and e). (b) Linear
appearance interpolation results in severe ghosting artifacts (e.g. on the face). (c) Online appearance alignment using 4D video
textures [CVCH14]. (d) Our appearance alignment using precomputed 4D model flow has comparable visual quality to (c), but
runs an order of magnitude faster. The heat maps visualize the quality of appearance alignment using the optical flow between
the two warped input appearances (a and e) before they are blended (see Section 6.1 for details).

Abstract
We introduce the concept of 4D model flow for the precomputed alignment of dynamic surface appearance across
4D video sequences of different motions reconstructed from multi-view video. Precomputed 4D model flow allows
the efficient parametrization of surface appearance from the captured videos, which enables efficient real-time
rendering of interpolated 4D video sequences whilst accurately reproducing visual dynamics, even when using
a coarse underlying geometry. We estimate the 4D model flow using an image-based approach that is guided by
available geometry proxies. We propose a novel representation in surface texture space for efficient storage and
online parametric interpolation of dynamic appearance. Our 4D model flow overcomes previous requirements
for computationally expensive online optical flow computation for data-driven alignment of dynamic surface
appearance by precomputing the appearance alignment. This leads to an efficient rendering technique that
enables the online interpolation between 4D videos in real time, from arbitrary viewpoints and with visual quality
comparable to the state of the art.

1. Introduction

Modern performance capture methods enable the reconstruc-
tion of moving, textured surfaces with an underlying tempo-
rally coherent geometry that deforms over time, so-called 4D
videos [BHKH13, BHB∗11, dAST∗08]. These models can be

textured classically [TFB14], projectively [BBM∗01] or by
free-viewpoint rendering that captures view-dependent de-
tails [DYB98]. Each recorded 4D video can easily be played
back, but not modified, since geometry, motion and appear-
ance need to be modified coherently.
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Recently, the first methods were proposed that enable the
synthesis of new dynamic shape sequences by interpolating
between discrete captured motions in a space of shape se-
quences. At first, this was demonstrated for geometry only
[HHS09, CTGH13]. However, synthesizing an interpolated
textural appearance is a different and challenging problem in
its own right. Initial attempts combined closest-pose retrieval
from a database of poses with image warping to align the
textures [XLS∗11], while more recent work uses a parame-
terized motion space with online optical flow alignment at
render time to combine the dynamic appearance from mul-
tiple sequences [CVCH14]. This enables plausible texture
synthesis for interpolated poses (such as in Figure 1c), but
online optical flow computation at render time is computa-
tionally expensive, which prevents its use in real-time appli-
cations. Precomputation of dense surface correspondences
is desired; however, existing approaches for surface track-
ing [BHKH13, dAST∗08, BHPS10] deform the underying
geometry proxy to store the correspondences, limiting the
acuracy by the mesh resolution.

We contribute in this paper by introducing the concept
of the 4D model flow, the dense appearance correspondence
field between any two 4D models (the frames of 4D videos),
for example between different poses such as walking and
running motions of a human character.

In order to synthesize the appearance of intermediate poses
across sequences, one needs to compute the 4D model flow,
which brings the surface appearance of different poses into
correspondence. This correspondence is defined in terms of
visual appearance similarity on the surface, and not the under-
lying geometry itself, as is the case in scene flow [VBR∗05].
While scene flow aims to compute geometric correspondence
between poses, and often uses appearance for this goal, our
4D model flow explicitly computes the “appearance motion”
between 4D video models. This is because surface appearance
changes over time, such as clothes and hair move dynamically
across surfaces during motions. Using the 4D model flow,
one can create the dynamic surface appearance of an arbitrary
interpolated 4D model by simply indexing into the flow at
interpolated locations, and retrieving appearance information
from the endpoints (4D models).

Note that 4D model flow provides accurate per-pixel ap-
pearance correspondences regardless of the underlying mesh
resolution, which enables fine-detail appearance alignment
across 4D models even using coarse geometries. Such de-
tailed alignment cannot be achieved by mesh tessellation of
the 4D model, for example using 3D displacement maps, be-
cause triangle subdivision, based on barycentric interpolation,
inherently loses the correct correspondence within the trian-
gle. Furthermore, current approaches for full-body 4D video
reconstruction [BHKH13,dAST∗08] do not achieve accurate,
high-resolution geometry registration, but only provide a rel-
atively coarse but temporally coherent representation of the
scene. Despite this limitation, our 4D model flow exploits the

known coarse geometry alignment for detailed appearance
alignment.

Here, we show how to estimate the 4D model flow from
a set of meshes and multi-view images. For this, we use
image-based correspondence finding, guided by 3D geometry
proxies. Since the 4D model flow is defined on the mesh
surface, we show how it can be stored compactly in a UV
map, which is a view-independent and efficient way for index-
ing into it. This enables real-time 4D video interpolation, as
shown in Figure 2 and our supplementary video, with compa-
rable visual fidelity to previous approaches but at 10× higher
frame rates.

2. Related Work

Free-viewpoint playback of recorded performances has re-
ceived considerable attention. Several complementary re-
search directions have been explored, including multi-
view depth estimation and view interpolation [ZKU∗04,
EDDM∗08] and reconstruction of 3D model sequences from
multi-view videos [SH07, VBMP08]. More recently, mesh
tracking using geometric [ZBH12] and appearance cues
[BHKH13, BHB∗11] has enabled these per-frame mesh mod-
els to be conformed to a single deforming mesh over time
(so-called 4D video). The resulting texture parametrization
over such meshes was subsequently leveraged to extract a
single static texture map, capturing a Lambertian model of
appearance [TFB14], and harnessed for blending mesh se-
quences [CTGH13].

The small size and low complexity of static texture maps
are ideal for mesh animation, but they lack the realism of
free-viewpoint video that is achieved by sampling multi-
view videos in a view-dependent manner at render time.
Video textures use intra-frame correspondence in a monocular
video, and a temporal frame re-ordering method to create new
monocular video where an object follows a path designed
by a user or a captured skeleton motion [FNZ∗09]. A full
spatio-temporal mapping between all frames of two monoc-
ular video sequences was computed in [LLN∗14] to enable
plausible monocular video morphing under non-rigid motion.
Our approach enables smooth variation of viewpoint and
interpolation between 4D videos at the same time. Dense cor-
respondence techniques can be used to align view-dependent
textures, as they achieve sufficient accuracy for this sort of
image alignment task [LYT11, SRB14]. Eisemann et al.’s
floating textures [EDDM∗08] explored the use of optical
flow to remove the ghosting artifacts caused by blending mis-
aligned view-dependent projective textures on meshes. Zhou
et al. [ZK14] follow a similar approach and jointly optimize
camera positions as well as image-based warps to make pro-
jective textures align well on an coarse and imperfect static
geometry obtained with an RGB-D camera and KinectFusion.

These approaches are inherently limited to be used for
the acquired geometric proxy and can not be applied for
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Figure 2: 4D video interpolation results between small jumps (top) and large jumps (bottom), for two different datasets (left/right).
Rows 2–4 use different interpolation factors w∈{0.2,0.5,0.8}, where each model is interpolated accordingly between the
corresponding input models in the first and last row. Note how the body pose changes between the rows. For better visualization,
we normalized the length of input sequences (i.e number of frames) and show only a selection of frames. All frames are rendered
individually from the same viewpoint, not considering any global translation resulting from the jumping motion itself.

appearance alignment between different 4D models. Casas
et al. introduced 4D video textures [CVCH14] to address
this issue by blending the 4D video appearance of differ-
ent 4D videos at run time, which complements earlier work
on blending 4D mesh geometry only [CTGH13]. In their
work, optical flow alignment is used to interpolate between
view-dependent textures across sequences. Texture alignment
is determined at render time using free-viewpoint projec-
tion of the source multi-view videos. Recently, Volino et
al. [VCCH14] presented a novel efficient representation to
alleviate the bottleneck of streaming and storing multi-view
videos on graphics hardware, which combined with previ-
ous work [CVCH14] opens up the opportunity for interac-
tive character animation from 4D video performance capture.
However, interpolation across 4D video sequences remains
limited by computationally expensive dense optical flow esti-
mation at run time, hindering the practical uses of 4D video
in heavily resource-contended applications such as computer
games. This paper addresses this shortcoming by parametriz-
ing and encoding appearance alignment in multi-view videos
using precomputed 4D model flows.

Our proposed 4D model flow might at first seem simi-
lar to 3D scene flow, “the 3D motion field describing the
motion of every visible 3D point between two time steps”
[QBDC14]. Like our 4D model flow, scene flow is usually

computed from multiple optical flows, for example using
voxel coloring [VBR∗05], within a variational framework
[PKF07, VBZ∗10, WBV∗11], or with piecewise rigid motion
priors [VSR13]. However, while scene flow expresses the
motion within a scene over time, i.e. aims to recover purely
geometric correspondence, model flow expresses the “appear-
ance motion” between different scenes over time. Specifically,
our 4D model flow is the 3D motion field describing the ap-
pearance correspondence of every visible 3D point between
two 4D video models (hence “4D” in the name).

3. Overview

This paper introduces the concept of 4D model flow, the dense
correspondence across 4D video models, for aligning varying
appearances (Section 4). Precomputed 4D model flows can
be stored efficiently and enable real-time interpolation of 4D
video models from arbitrary viewpoints. For the first time, this
allows interactive rendering of parametric, view-dependent
and video-realistic animations from a sparse set of captured
4D video models, without the need for texture alignment
computations at run time.

Our computational approach comprises two main steps
(see Figure 3). First, we compute the 4D model flow for each
frame of the output interpolated animation. We map the ap-
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Figure 3: The full pipeline of our proposed approach, shown here using sample walk and jog videos: (Left, Section 4) Given
two input 4D video models with geometry and multi-view images (a, b), we project the images onto the same proxy geometry
(c), and render them from multiple views (d, e), to compute appearance correspondences in each view (f ), which we encode as
4D model flow in a UV map on the mesh surface (g). (Right, Section 5) This enables real-time view-dependent video-realistic
rendering of a parametric 4D model (h) using the interpolation parameter w.

pearances of the two source 4D video models onto a common
4D model geometry, and then use image-based correspon-
dences in a number of viewpoints to align the appearances
(Section 4). The resulting 3D flow vectors are stored effi-
ciently in terms of the mesh’s UV domain. The second step,
described in Section 5, exploits the precomputed 4D model
flows to enable real-time interpolation of 4D video models
on the fly.

4. 4D Model Flow for Appearance Alignment

The goal of the 4D model flow is to minimize the visual
discrepancy between the appearances of any two 4D models,
at all interpolated positions, and for all viewpoints. In this
section, we first develop this intuition into a general energy
formulation, and then propose an image-based algorithm for
estimating dense appearance correspondences. In particular,
we exploit a common class of 4D videos with geometric
correspondence across 4D models, but with differences in
character pose and camera views in each motion [BHKH13].
Finally, we show how to store the precomputed 4D model
flows efficiently in 2D UV maps that enable interactive con-
trol of both motion and viewpoint in real time (see Section 5).

4.1. Definition of 4D Model Flow

4D performance capture techniques reconstruct 4D videos
that are sequences of 4D models V (t)=(M(t), I(t)) compris-
ing the 3D mesh M(t), with mesh vertices corresponding to
the same geometric surface points over time [BHKH13], and
the set of video frames I(t)= {Ic(t)}c∈C captured from a

set C of cameras [dAST∗08]; both meshes and video frames
vary over time t. In the following, we consider a generic
image-based rendering process IBR(X,π,M, I) [DYB98] that
computes the color of a 3D point X from the viewpoint deter-
mined by the projection matrix π, using the mesh M and set
of video frames I of a given 4D model V =(M, I).

We define the 4D model flow to be the flow that minimizes
appearance differences when interpolating between two 4D
models V1=(M1, I1) and V2=(M2, I2) on a common geome-
try proxy M̂. This proxy geometry can in principle be freely
chosen, as long as it maintains per-vertex geometric corre-
spondence to both input meshes (M1 and M2), and it therefore
acts as a common reference frame. However, even with per-
fect geometric correspondences between the 4D models, their
appearance (I1 and I2) need not agree when projected onto
the same geometry proxy M̂, because of dynamic appearance
effects like moving clothes, wrinkles and shading differences.
This is visible in the highlighted close-up views in Figure 3
(d and e).

The 4D model flow seeks to minimize this appearance dis-
crepancy using a flow field F that aligns appearances on the
surface of the common proxy geometry M̂ (using the forward
and backward flows F1,2 and F2,1, respectively). Specifically,
the 4D model flow F is the minimizer of∫

π

∫
X

max
w∈[0,1]

∥∥∥IBR
(

X+w ·F1,2(X),π,M̂, I1

)
−IBR

(
X+(1−w)F2,1(X),π,M̂, I2

)∥∥∥
2

,
(1)

which minimizes the maximum visual discrepancy between
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the rendered appearances (wrapped in ‖ · ‖2), across the pose
interpolation range w∈[0,1], integrated over all visible points
X on the mesh M̂, and over projection matrices π. In this
most general form, this expression is infeasible to minimize
exactly because of the highly non-linear nature of the involved
image-based rendering process. However, by making a few
practical assumptions – such as restricting the optimization to
a small number of canonical viewpoints instead of all possible
viewpoints – we can simplify this problem and estimate the
4D model flow with an image-based approach, as explained
in the next section.

4.2. Image-Based Estimation of 4D Model Flow

Free-viewpoint video rendering maintains the visual realism
of the captured videos, but is limited to playback of recorded
4D models [BBM∗01]. 4D video textures lift this limitation
by interpolating both the geometries and the textures of a set
of captured 4D video sequences, allowing the synthesis of
parametric 4D videos. However, this requires online texture
alignment from the camera viewpoint, which results in a
significant computational overhead at run time. To overcome
this limitation, we present a novel approach for 4D model
flow estimation and storage.

Starting from two input 4D video sequences, V1(t) and
V2(t), where Vi(t)=(Mi(t), Ii(t)) as before, we aim to find
and store dense appearance correspondences for each pair of
4D models {V1(t),V2(t)}. However, solving this correspon-
dence problem directly on the input images is non-trivial due
to significant differences in the captured pose and appearance.
As an example, consider the images in Figure 3 (a, b), and
note the different positions of the right leg. Standard optical-
flow-based methods fail to find the correct correspondences
in such a challenging scenario.

To solve this problem, we exploit the known per-vertex
geometric correspondence across 4D models [BHKH13] by
projecting the different input textures onto a common geome-
try proxy, which facilitates the solution of the correspondence
problem. For simplicity, we use the geometry of the first 4D
video model as proxy geometry, i.e. M̂=M1(t), because it
ensures perfect appearance reproduction of the first 4D model
when interpolating between the models. As we compute the
4D model flow independently for each time step t, we sim-
plify our notation by making the time argument implicit from
now on, and thus simply write Vi for Vi(t), for example.

We project the images I1 and I2, extracted from different
multi-view videos, onto the proxy geometry M̂ using the
image-based renderer IBR introduced in the previous section
(using Volino et al.’s technique [VCCH14]), to produce the
corresponding rendered images Ri(π) for the view given by
the projection matrix π. The synthesized rendered images
result in matching poses, as well as silhouettes, for any given
view π, in contrast to the original silhouettes in the input
images I1 and I2. We then generate a set of renderingsRi=

{Ri(πk)}k∈K for a canonical set of viewpoints K (5–10 in
this paper, see Table 1). These viewpoints can be chosen
freely, although equidistant viewpoints along a circle tend to
provide a uniform evaluation for rendering. In our experience,
the original camera positions of one of the input multi-view
sequences work well, and we used them for all results in this
paper. This process is depicted in Figure 3 (a–e), showing
the original images for the walking and jogging sequences
(notice the difference in silhouettes in a and b), in contrast to
the reprojected appearance (d and e), where both sequences
share the same silhouettes.

We use the pairs of corresponding camera renderings,
R1(πk) and R2(πk), for each viewpoint k∈K, to compute the
2D projections of the 4D model flow in image space using
off-the-shelf optical flow [Far03]. The resulting flow fields
{Ok}k∈K contain dense appearance correspondences across
the 4D models and can already be used for texture align-
ment. However, they are specific for each of the viewpoints
in K (see Figure 3f). This viewpoint dependency forced pre-
vious work to recompute the flow fields at run time for each
requested viewpoint. In contrast, we parametrize the view-
dependent flow fields directly on the mesh surface in the next
section. This is more efficient, but most importantly it makes
the 4D model flow independent of the viewpoint used at run
time.

4.3. Efficient Storage of 4D Model Flow

Parametrizing the 4D model flow on the 2D mesh surface
eliminates the viewpoint dependence and allows for efficient
storage using a single texture on graphics hardware. Here,
we exploit the known surface parametrization (UV map) of
our 4D models to convert and store the computed flow fields
{Ok}k∈K as follows (see also the outline in Figure 4).

We first define a “base UV map” B that maps pixels to
themselves for valid UV coordinates, and to (0,0) otherwise:

B(a) =

{
a if a is a valid UV coordinate for M̂,

(0,0) otherwise,
(2)

for a∈ [0,1]2. Figure 5a shows a visualization of the base UV
map for the character used in Figures 1 and 3, using the red
and green color channels to encode the u and v components,
respectively.

We then define a “flow UV map” F that will encode the
correspondences currently stored in the flows {Ok}k∈K. Re-
call that each flow field Ok contains the correspondences
between the rendered images R1(πk) and R2(πk) as 2D vec-
tors observed from viewpoint πk such that Ok(x)=∆x is the
flow vector of the pixel x in R1(πk). For each pixel a in the
flow UV map, we first obtain its corresponding 3D point P
on the mesh M̂ to identify the camera viewpoint in K with
the optimal, most direct view using

k̂ = argmin
k∈K

N(P) ·Lk, (3)
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(a) Base UV map B (b) Camera selection
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(c) Flow vector look up in O3
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(d) Backprojection of q
to mesh surface

(e) Flow UV map F

F(a)=b

Figure 4: The main steps of encoding the 4D model flow in
the flow UV map F . See Section 4.3 for details.

where N(P) is the unit surface normal at P, and Lk the unit
look vector of camera k; these directions should be near-
opposite for the optimal camera, and hence result in a large
negative dot product. We then project the point P to the screen-
space position p=πk̂P in the optimal view, and look up its
flow vector ∆p=Ok̂(p). We parametrize the screen-space
flow ∆p on the mesh surface M̂ by first backprojecting the
point q=p+∆p onto the mesh surface to a point Q, and then
storing its UV coordinates b in the flow UV map F :

F(a) =

{
b if a is a valid UV coordinate for M̂,

(0,0) otherwise.
(4)

The synthesized flow UV map F encapsulates the 4D model
flow, i.e. the appearance correspondences between the input
images I1 and I2 for all surface points of M̂. See Figure 5b
for an example. In practice, we render the base UV map B
on the mesh M̂ from viewpoint πk̂ to easily look up the UV
coordinate b corresponding to the image pixel position q,
without computing the point Q.

Figures 5a and 5b illustrate the base and flow UV maps
generated from Equations 2 and 4, respectively. The differ-
ence between the base and flow UV maps is visualized in
Figure 5c, with a brighter version at the bottom to reveal
more flow detail. Notice how some border areas in Figure 5b
present significant changes in color compared to Figure 5a.
This occurs where UV pixel correspondences move across a
texture seam. Such across-patch mapping usually appears in
non-rigid areas divided by texture seams, which are necessary
to parametrize a 3D model in a 2D domain. However, as de-
scribed in detail in the next section, this does not cause visible
artifacts in the final rendering because UV correspondences
are projected back into the 3D domain at run time, where
flow vectors do not suffer from discontinuous mapping.

(a) Base UV map B (2) (b) Flow UV map F (4) (c) Relative flow
UV map (B−F)

Figure 5: Visualization of the UV maps encoding the dense
appearance correspondences across two 4D models: (a) the
base UV map B, and (b) the flow UV map F . For better
visualization, the relative flow (c) is repeated with increased
brightness (×8) below. The red and green color channels
encode the UV components, respectively. Note the wrap-
around at patch boundaries in (b), at which flow vectors map
across texture seams in the UV map.

5. Real-time 4D Video Interpolation

The 4D model flow computed in the previous section encodes
the surface correspondences that minimize appearance dif-
ferences when interpolating between two 4D models. In this
section, we describe how we can use this precomputed 4D
model flow to enable view-independent appearance align-
ment for parametric 4D models in real time, more than an
order of magnitude faster than previous work yet with similar
visual quality. Without such alignment, any residual misalign-
ment in the underlying geometric correspondences, or any
appearance deformation that cannot be reproduced tempo-
rally coherently by geometry only (i.e. wrinkles and hair),
produces blurring and ghosting artifacts, as visible in Figures
1b and 7a.

5.1. 4D Model Flow for 4D Video Interpolation

Given two 4D video frames V1 and V2, where Vi = (Mi, Ii) as
before, and a user-specified interpolation weight w, we first
compute a parametric geometry proxy M̂w by interpolating
the meshes M1 and M2. We use a non-linear mesh blending
approach that interpolates the rotation and change in shape
independently per each triangle of the mesh according to the
weight w, and performs a least-squares solution to obtain the
resulting mesh M̂w [CTGH13]. Our aim is to synthesize a
parametric texture for M̂w that not only maintains the visual
fidelity of the acquired images but also changes dynamically
to fit to the current pose, by exploiting the precomputed flow
UV map F , and the input images I1 and I2.

We start by projecting the images I1 and I2 onto the proxy
geometry M̂w using the image-based renderer IBR, to gen-
erate images Ri(π) using the current viewpoint’s projection

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



D. Casas, C. Richardt, J. Collomosse, C. Theobalt & A. Hilton / 4D Model Flow

(a) Input 4D model V1 (b) w = 0.2 (c) w = 0.4 (d) w = 0.6 (e) w = 0.8 (f) Input 4D model V2

Figure 6: Interpolation between two input expressions (a) and (e). Intermediate parametric models (b–e) synthesized using our
4D model flow for dense appearance correspondence between inputs. Dataset from Klaudiny et al. [KBH12].

(a) Linear blending (b) 4D video textures (c) 4D model flow (our approach)

– 20 mm

– 0 mm

– 5 mm

– 10 mm

– 15 mm

Figure 7: Evaluation of the interpolation in Figure 6, for half-way interpolation (w=0.5). (a) Linear blending of appearances
results in severe ghosting artifacts. (b) 4D video textures mitigate ghosting artifacts by computing appearance alignment in screen
space. (c) Our proposed approach achieves results comparable to (b), without requiring online optical flow computation.

matrix π. The simple linear blending of these renderings,
Rout =(1−w)·R1(π)+w·R2(π), results in blurring artifacts
due to residual misalignments in the underlying geometry as
well as inherent appearance changes in non-rigid surfaces. To
correct such ghosting artifacts, we use the precomputed flow
UV map F to warp the the rendered frames R1(π) and R2(π)
to find the alignment that minimizes visual discrepancies
(Equation 1), as follows.

Using the same notation as in Section 4.3, we convert each
pixel position a in the flow UV map F , and its value b=F(a),
to points P and Q on the mesh M̂w, as in Section 4.3. We then
scale their difference vector by the interpolation weight w to
obtain displacement vectors in world space, J=w·(Q−P),
and in screen space, j=w·(q−p), where p=πP and q=πQ
are the projections of P and Q in the rendered view. We use
the screen-space displacement vector j to warp the pixel p in
R1(π) to p′=p+j. Analogously, we obtain the screen-space
vector k = (1−w) · (p− q) to warp the pixel q in R2(π)
to q′=q+k. The final interpolated appearance is obtained
by linearly blending between the warped renderings Ui(π)
obtained from Ri(π):

Rout = (1−w) ·U1(π)+w ·U2(π). (5)

5.2. Implementation Details

Our approach for appearance alignment is based on online
interpolation of corresponding 3D surface points that origi-

nate as UV coordinates. Specifically, we need to compute the
world-space point Q from the UV coordinate b within a pixel
shader – a feature that is currently unavailable in modern
graphics pipelines.

We therefore use the following approach: in a preprocess,
we first render a triangle ID buffer of the mesh in its UV
domain. This allows us to easily identify the triangle that
contains the UV coordinate b by looking up b’s location
in the ID buffer. The pixel shader then computes the 3D
position of Q by barycentric interpolation from the triangle’s
vertices, which are looked up by the shader in a texture buffer
encoding all triangles in the mesh. This approach computes
Q in a single rendering pass, even when the world-space
positions of triangle vertices change during an animation.

6. Results

We implemented our approach using OpenGL 4.3 and C++11.
We store each 4D model flow as a 512×512 texture, which
provides sufficient resolution for all results shown in this
paper, while only requiring 1 MB of memory. The UV mesh
parametrization of each character is found by automatically
unwrapping the 3D mesh given a set of manually provided
surface seams. Note that the quality of our results is not
affected by how the UV parametrization is obtained because
stored correspondences are projected to the 3D space before
appearance warping and blending.

c© 2015 The Author(s)
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We applied our appearance alignment approach to a variety
of publicly available 4D video datasets. Figures 1, 2 and 9
show interpolation results for the full-body models of Casas
et al. [CTGH13], and Figures 6 to 8 show interpolation results
for the face models of Klaudiny et al. [KBH12]. Please refer
to our supplementary video to see animations of our results as
well as additional results. Figures 2, 6, 8 and 9 show multiple
interpolation results using our approach. All datasets have an
image resolution of 1920×1080, but use different numbers
of cameras, as listed in Table 1. The output resolution is a
1280×720 animation. We disable texture filtering for lookups
in the UV flow map to avoid mixing discontinuous values,
which comes at the cost of small inaccuracies caused by the
nearest-neighbor sampling, when required.

6.1. Performance

We compare the results of our approach qualitatively and
quantitatively against a simple linear blending approach, and
the state of the art in dynamic appearance interpolation for 4D
models [CVCH14]. Our results achieve similar visual quality
but with real-time rendering speeds close to the simple linear
blending, which is why we compare against these approaches.
We show visual comparisons between these approaches in
Figures 1, 7 and 8. Our 4D model flow approach mitigates
the blending artifacts of the linear approach (see for example
Figures 1b and 7a), and generates results comparable to online
screen-space alignment.

Approach Figure 1 Figure 6 Figure 8 Figure 9

Average
Alignment
Error (mm)

Linear 18.7 8.7 6.5 15.5
4DVT 1.2 0.5 0.6 1.7
Ours 1.5 0.7 0.6 2.2

Maximum
Alignment
Error (mm)

Linear 22.3 18.7 15.6 28.7
4DVT 5.2 3.2 4.5 3.2
Ours 4.8 4.1 5.3 3.8

Time (s)
Linear 0.003 0.008 0.007 0.003
4DVT 0.093 0.125 0.152 0.072
Ours 0.007 0.015 0.015 0.009

Number of cameras 8 5 5 10
Number of vertices 2667 2689 2689 4052

Table 1: Quantitative evaluation of our proposed approach
compared to linear texture blending and 4D video textures
(4DVT) for the figures presented in this paper.

Table 1 presents a quantitative evaluation of performance
in terms of alignment error and run time, for a number of
datasets. We compute the alignment error using the mag-
nitude of the optical flow vectors between the warped ap-
pearances for w ∈ {0.0,0.1, . . . ,1.0}, as observed from the
viewpoint used in each figure. For perfect alignment, the flow
magnitude is zero. We also visualize the alignment error as
heat maps in Figures 1, 7 and 8. Our approach reduces the
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Linear blending 4D video textures Our approach

Figure 8: Close-up of the interpolation between the two face
4D models at the top, for multiple interpolation weights w.

rendering costs compared to 4D video textures by an order of
magnitude while maintaining similar visual quality.

The precomputation of each 4D model flow (i.e. one time
step of a 4D animation) takes about 1 minute for a resolution
of 512×512 pixels on a 3 GHz dual-core processor with 8 GB
memory and an NVIDIA GeForce GT 640M GPU.

6.2. Discussion

Our appearance alignment approach uses the same optical
flow algorithm [Far03] as 4D video textures, but we apply it
to the canonical viewpoints and not the rendered viewpoints.
This results in a small increase in alignment errors in our
approach due to the requirement for reprojecting the flows
from the rendered viewpoint. However, this quality gap could
be closed in different ways. The 4D model flow computation
could be improved with recent further enhanced optical flow
techniques [SRB14], which may increase the precomputa-
tion time, but the rendering times would be unchanged. One
could also improve the multi-view camera coverage of the 4D
videos using additional canonical viewpoints or by optimiz-
ing the locations of the existing canonical viewpoints. Lastly,
one could refine the geometric proxy for each 4D model flow
to reduce occluded regions.

Similarly, the selection of which camera is chosen to evalu-
ate the alignment for a given mesh fragment could also be

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



D. Casas, C. Richardt, J. Collomosse, C. Theobalt & A. Hilton / 4D Model Flow

Input A w = 1/9 w = 2/9 w = 3/9 w = 4/9 w = 5/9 w = 6/9 w = 7/9 w = 8/9 Input B

Figure 9: Interpolation results between two 4D video models (left and right) from different sequences.

improved in the future. We currently use the most direct cam-
era to each fragment, however, this can lead to a fragmented
assignment map. Optimizing such camera assignment could
provide a more uniform flow UV map.

An important limitation of the proposed approach is the
need for a flow UV map for each pair of input models. Each
computed flow UV map requires 1 MB of memory to store a
two-component 16-bit image with 512×512 pixels. However,
it is important to remark that we do not need a 4D model flow
for all possible pairs of frames in a dataset, only between
the frames which we want to interpolate. For example, the
walk to jog motion presented in the supplementary video only
requires 28 flow maps to be computed. Animations used for
Figures 2a and 2b required 26 and 32 flow maps, respectively.

We believe that the 4D model flow can help in better evalu-
ating how the space-time appearance changes in multi-camera
captured datasets. Current approaches for surface tracking
techniques that rely on texture cues could benefit from our
proposed representation.

7. Conclusion

4D model flow enables the precomputation and storage of
dense correspondences across a multi-view dataset, which is
shown to allow fast accurate appearance alignment at run time.
Our results demonstrate that aligned 4D models exploiting the
proposed representation achieve equivalent results to previous
work for appearance alignment, with an order of magnitude
reduction in computational cost at render time. This allows
real-time rendering of interpolated 4D video sequences.

As our results show, the 4D model flow clearly and consis-
tently improves the visual quality of renderings of parametric
4D models over purely geometry-driven blended textures
(“linear blending”), for any given quality of geometric cor-
respondences, irrespective the mesh resolution. By precom-
puting 4D model flows and storing them compactly, they
can be used for real-time rendering of 4D video textures for
parametrically controlled surface animation.
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