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Fig. 1. We present a novel approach to create volumetric avatars using only a short phone capture as input. The resulting avatars produce high-fidelity
renderings from novel viewpoints in realtime (left), and can generate novel animations using a common latent space of expressions (right).

Creating photorealistic avatars of existing people currently requires exten-
sive person-specific data capture, which is usually only accessible to the VFX
industry and not the general public. Our work aims to address this drawback
by relying only on a short mobile phone capture to obtain a drivable 3D head
avatar that matches a person’s likeness faithfully. In contrast to existing ap-
proaches, our architecture avoids the complex task of directly modeling the
entire manifold of human appearance, aiming instead to generate an avatar
model that can be specialized to novel identities using only small amounts
of data. The model dispenses with low-dimensional latent spaces that are
commonly employed for hallucinating novel identities, and instead, uses a
conditional representation that can extract person-specific information at
multiple scales from a high resolution registered neutral phone scan. We
achieve high quality results through the use of a novel universal avatar prior
that has been trained on high resolution multi-view video captures of facial
performances of hundreds of human subjects. By fine-tuning the model us-
ing inverse rendering we achieve increased realism and personalize its range
of motion. The output of our approach is not only a high-fidelity 3D head
avatar that matches the person’s facial shape and appearance, but one that
can also be driven using a jointly discovered shared global expression space
with disentangled controls for gaze direction. Via a series of experiments
we demonstrate that our avatars are faithful representations of the subject’s
likeness. Compared to other state-of-the-art methods for lightweight avatar
creation, our approach exhibits superior visual quality and animateability.
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1 INTRODUCTION

More than any other attribute, a person’s face is their most impor-
tant marker of self-identification, what Kundera referred to as “the
serial number of a human specimen” [Kundera 1999]. Being the
primary social display, evolutionary pressures have made people
very sensitive to faces [Sheehan and Nachman 2014], especially
familiar ones This presents a significant challenge for digital avatar
creation, as even small deviations from a person’s real facial appear-
ance, structure or motion can result in an uncanny effect [Mori et al.
2012], greatly diminishing the avatar’s utility for facilitating com-
munication and perceived authenticity. Overcoming this difficulty
traditionally relies on extensive person-specific data captures as
well as artist-driven manual processing that is costly and time con-
suming. Automating the avatar creation process, with lightweight
data capture, low latency, and acceptable quality, is thus, highly
desirable, and is the subject of our work.

The core challenge of automatic avatar creation from limited data
lies in the trade-off between prior and evidence. A prior is required
to complement the limited information about a person’s appear-
ance, geometry, and motion that can be acquired in a lightweight
way (e.g., using a cellphone camera). However, despite significant
progress in recent years [Blanz and Vetter 1999; Booth et al. 2016;
Karras et al. 2021b, 2020], learning the manifold of human faces at
high resolution remains challenging. Modeling the long tail of the
distribution, necessary for capturing personal idiosyncrasies like
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specific freckles, tattoos, or scars, likely requires models with much
higher dimensional latent spaces, and consequently, much more
data than what is currently used to train such models. Modern ap-
proaches [Chan et al. 2021; Karras et al. 2021a,b, 2020] are capable of
hallucinating plausible non-existing faces, but fail to generate repre-
sentations of real people at a fidelity that makes them recognizable
as themselves. Recent approach achieve good inverse reconstruction
by optimizing outside of the latent space (e.g. W+ space in [Wu et al.
2021]), where there are no guarantees about the model behavior,
resulting in strong artifacts in their image translation results.

In this work, we break the trade-off between prior and evidence
by dispensing with the ability to hallucinate non-existing people,
and instead, specialize our representation for adaptation using eas-
ily acquired cellphone data of real people. Our approach comprises
three main elements; 1) a universal prior in the form of a hypernet-
work that is trained on a high quality corpus of multiview video of
hundreds of identities, 2) a registration technique for conditioning
the model on a phone scan of the user’s neutral expression, and 3)
an inverse rendering-based technique to fine-tune the personalized
model on additional expressive data.

Our prior’s architecture is based on the observation that long tail
aspects of facial appearance and structure lie in details that are best
extracted directly from conditioning data of a person, instead of re-
constructed from low-dimensional identity embeddings. In line with
prior work [Blanz and Vetter 1999; Gross et al. 2005], we find that
the performance of low-dimensional embeddings plateaus quickly,
failing to capture person-specific idiosyncrasies. Instead, we find
that augmenting existing approaches (e.g., [Lombardi et al. 2021])
with person-specific multi-scale ‘untied’ bias maps can faithfully
reconstruct the high level of detail specific to a person. These bias
maps can be generated from unwrapped texture and geometry of a
user’s neutral scan using a U-Net-style network. In this way, our
model is a kind of hypernetwork that takes in data of a user’s neutral
face and produces parameters for a personalized decoder in the form
of bias maps. Together, our universal prior and adaptation strategy
enable the creation of highly realistic avatars instantly from even a
single neutral scan, and can produce a model that spans a person’s
expressive range with additional frontal cellphone captures of only
a few expressions.

Our approach improves upon the state of the art in avatar gener-
ation from cellphone captures [Grassal et al. 2021; Ichim et al. 2015;
Luo et al. 2021; Nagano et al. 2018] without significantly increas-
ing requirements on the user end. Whereas existing methods can
produce plausible hallucinations of people, our approach produces
avatars that look and move like a specific person. Furthermore, our
model inherits the speed, resolution, and rendering quality of an
existing person-specific model [Lombardi et al. 2021], since it em-
ploys a similar architecture and rendering machinery. Thus, it is
well suited for interactive framerate-demanding applications such
as VR. This opens up the possibility for ubiquitous photorealistic
telepresence in VR that has thus far been hindered by the heavy
requirements for avatar creation, or the low quality of avatars pro-
duced by lightweight captures.

The technical contributions of our work are:
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e A system for producing a lifelike avatar of a person, with un-
precedented appearance, structure and motion quality com-
pared to existing approaches.

e A novel hypernetwork architecture that can produce high
quality expressive avatars of a person given their neutral tex-
ture and geometry that preserves person-specific details. The
resulting avatar has a consistent expression latent space with
disentangled controls for viewpoint, expression, and gaze di-
rection. The model is robust against real-world variations in
the conditioning signal, including variations due to lighting,
sensor noise, and limited resolution.

e An inverse-rendering strategy that specializes the avatar’s
expression space to the user given additional frontal cell-
phone captures, while ensuring viewpoints generalizability
and preserving the latent space’s semantics.

The remainder of this paper is structured as follows. We begin in
§2 with an overview of related work. Our method is then described
in §3, covering the model’s architecture, dataset, and finetuning
strategy. Experiments ablating our model and comparisons against
existing approaches are presented in §4. We discuss limitations and
future work in §5 and conclude in §6.

2 RELATED WORK

Our approach is related to several research domains in computer
graphics and vision. We summarize the most related domains, such
as face reconstruction, parametric 3D models, neural rendering, and
avatar creation in the following. For a detailed discussion, we refer
to the corresponding survey papers [Egger et al. 2020; Tewari et al.
2020, 2021; Zollhofer et al. 2018].

Classical 3D/4D Face Reconstruction. The reconstruction of high-
fidelity static and dynamic models of the human head based on
photometric measurements has a long standing history in com-
puter graphics and vision. Complex multi-view camera setups are
required to obtain detailed face geometry via triangulation, motion
via template tracking, and face appearance via the extraction of
textures. Some recent multi-view systems employ additional active
illumination, e.g., in the form of projected light patterns to help
with the reconstruction of featureless regions [Ghosh et al. 2011;
Klaudiny and Hilton 2012; Ma et al. 2007]. Obtaining high qual-
ity results requires multi-view capture systems [Beeler et al. 2011;
Bickel et al. 2007; Bradley et al. 2010; Furukawa and Ponce 2009;
Fyfte et al. 2014; Huang et al. 2004; Pighin and Lewis 2006; Zhang
et al. 2004] that are expensive to build, notoriously challenging to
operate, and require the participants to travel to the capture studio.
While classical face reconstruction techniques have enabled the
creation of the first photo-realistic actors [Alexander et al. 2013,
2010; Borshukov and Lewis 2003; Seymour et al. 2017], they do not
scale to the general public and are thus not directly applicable to
the creation of photo-realistic avatars for commodity applications.

Parametric Face Models. Given a large corpus of high-fidelity face
reconstructions, a low-dimensional prior of facial geometry and ap-
pearance can be learned to better enable reconstruction and tracking
based on light-weight sensing configurations, i.e., from monocular
captures with a phone. The seminal work on 3D Morphable Models



(3DMMs) [Blanz and Vetter 1999] employs principal component
analysis to extract a low-dimensional facial shape and appearance
space from a set of high-quality scans. Extensions build dedicated
models of higher fidelity for the complete head [Ploumpis et al.
2020], the eye region [Wood et al. 2016], learn 3DMMs from sig-
nificantly more data [Booth et al. 2016], or from internet photo
collections [Kemelmacher-Shlizerman 2013]. While the commonly
used linear expression basis [Garrido et al. 2016; Thies et al. 2016]
are independent of identity, multi-linear models learn an identity-
dependent facial expression space [Cao et al. 2014; Vlasic et al. 2005].
Light-weight reconstruction [Garrido et al. 2016; Romdhani and Vet-
ter 2005] and tracking approaches [Cao et al. 2015, 2016; Thies
et al. 2016] employ the learned shape and appearance space as a
prior to better constrain the ill-posed optimization problems they
are tackling. The blessing and curse of these approaches is the low-
dimensional global prior. While it provides ample regularization and
enables to overcome under-constrained reconstruction and track-
ing problems in the wild, it prevents modeling of person-specific
idiosyncrasies, such as wrinkle-level detail. In contrast, our UNet-
based latent encoding incorporates multi-resolution reasoning into
the prior, achieving high-fidelity reconstruction of avatars. Another
drawback of mesh-based 3DMMs is their incompleteness, since they
only model the facial skin region and thus disregard eyes, hair and
the mouth interior. Our approach, on the other hand, employs a
volumetric representation that enables learning of complete heads
via image-based supervision. A recent work similarly employs an
implicit surface representation based on coordinate-based neural
networks to jointly model the face as well as hair, but its fidelity
is far from photo-realistic [Yenamandra et al. 2021]. Generative
models learned from a facial image collection also demonstrate the
ability to synthesize photo-realistic faces of non-existing people
in 2D [Karras et al. 2021a,b, 2020] or 3D [Chan et al. 2020] with
low-dimensional latent codes. However, it remains difficult for such
models to represent real people with authentic expressions of the
person.

2D Neural Rendering of Human Heads. Reconstructing explicit
high-fidelity geometry and appearance for the entire human head
remains non-trivial even using state-of-the-art multi-view systems.
The promise of neural rendering is to learn the synthesis of realistic
imagery in an end-to-end manner from the captured data, while
conditioning the output on the required control signals, such as ex-
pression or view point. Early neural rendering techniques operated
in the 2D image domain and employed image-to-image translation
networks to learn a mapping from a rendered conditioning image to
photo-realistic output. For example, Deep Video Portraits [Kim et al.
2018] renders a deep feature buffer of conditioning information and
employs a U-Net [Ronneberger et al. 2015] as image-to-image trans-
lation network. Deferred Neural Rendering [Thies et al. 2019] jointly
learns a neural texture map that is attached to the face rig and is
rendered to create the deep feature buffer. While these approaches
are able to synthesize highly realistic images, they do not generalize
well to novel view points since the 2D network struggles to learn
about the underlying 3D transformations. Thus, the applicability
of such approaches for photo-realistic avatars that can be rendered
from any view point is limited.
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3D Neural Rendering of Human Heads. More recent neural render-
ing techniques explicitly incorporate the underlying 3D structure for
better generalization in terms of view point variation. For example,
Deep Appearance Models [Lombardi et al. 2018] employ a coarse
3D triangle mesh in combination with view-dependent texture map-
ping. The texture is regressed by a neural network conditioned on
view point and expression latent codes to account for view- and
expression-dependent variation as well as to compensate for the im-
perfect proxy geometry. Pixel Codec Avatars (PiCA) [Ma et al. 2021]
demonstrate that such models can be rendered efficiently, even on
mobile hardware platforms by leveraging efficient per-pixel pro-
cessing. If accurate surface geometry can be obtained, mesh-based
techniques produce impressive results, but they often struggle in
regions where tracking or 3D reconstruction is difficult such as for
hair or the inner mouth. Neural Volumes [Lombardi et al. 2019]
tackle this challenge by regressing a dense grid of appearance and
opacity values that are composited using volume rendering. Mixture
of Volumetric Primitives (MVP) [Lombardi et al. 2021] tackle the
cubic memory complexity of grid-based approaches, such as Neural
Volumes, based on a sparse 3D data structure. While the discussed
approaches achieve impressive results, they require multiple hours
of exhaustive data captures per user based on expensive and inac-
cessible multi-camera setups. In contrast, our approach regresses
a drivable avatars of comparable fidelity from data captured by a
phone scan, thus for the first time commoditizing the creation of
photo-realistic avatars.

Light-weight Avatar Generation. There already exist several ap-
proaches, even commercial, for generating 3D avatars from light-
weight sensing configurations. These approaches can be categorized
based on the used input modality, such as multi-view images cap-
tured with a single camera [Cao et al. 2016; Ichim et al. 2015], a
single monocular image [Hu et al. 2017; Lattas et al. 2020, 2021; Luo
et al. 2021; Nagano et al. 2018; Yamaguchi et al. 2018], video [Gras-
sal et al. 2021], depth images [Thies et al. 2018], or a high-quality
neutral mesh and texture map [Li et al. 2020]. Mesh-based avatars
can be reconstructed based on several color images captured by a
quick phone scan [Ichim et al. 2015] and multi-view stereo. Image-
based dynamic avatars [Cao et al. 2016] combine coarse face shape,
hair, and neck geometry with dynamic texture mapping. Monocu-
lar reconstruction approaches primarily focus on facial appearance
modeling, often leveraging learned (deep) priors. However, hair
modeling is either ignored [Lattas et al. 2020, 2021; Yamaguchi et al.
2018] or based on asset retrieval from a database [Hu et al. 2017;
Luo et al. 2021; Nagano et al. 2018], failing to model the user’s
hair style faithfully. Commercial solutions of similar technology
already exist, such as AvatarSDK ! or Pinscreen 2. Learning a person-
specific avatar is also possible using depth sensors [Thies et al. 2018]
or monocular video [Grassal et al. 2021] with the help of generic
3DMM priors. While such person specific approaches can synthe-
size plausible facial expressions of a person, it is difficult to model
the entire span of authentic facial expressions with limited capture
time. Other approaches employ a high quality scan and a texture
map as input to generate a dynamic facial rig [Li et al. 2020], but

Lhttps://avatarsdk.com/
Zhttps://www.pinscreen.com/
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Fig. 2. Method overview. (a) We employ a large corpus of multi-view facial performances to train a cross-identity hypernetwork that can generate volumetric
avatar representations. (b) The representation can be specialized to unseen individuals by conditioning on a lightweight capture of that person’s neutral

expression. (c) We can optionally refine the model using unstructured captures of an individual’s appearance using inverse rendering.

require a multi-view capture system to obtain this conditioning
data. The head avatars generated by all discussed techniques are
neither fully photo-realistic nor authentic in their range of motion.
In contrast, our approach enables photo-realistic modeling of the
complete head and faithfully synthesizes facial expressions of a
person from a phone scan that is only a few minutes long.

3 METHOD

An overview of our approach is shown in Fig. 2. We build upon the
mixture of volumetric primitives (MVP) avatar representation of
Lombardi et al. [2021]. However, instead of training person-specific
avatars from extensive captures of each individual, our architecture
trains a cross-identity hypernetwork as a prior for this represen-
tation (Fig. 2 (a)) that can be specialized to specific individuals by
conditioning on a lightweight capture of that person’s neutral ex-
pression (Fig. 2 (b)). The architecture for this prior and its training
regime are detailed in §3.1, the dataset used to build it in §3.2, the
training regime in §3.3, and the design and acquisition of the per-
sonalization data used for conditioning in §3.4. Finally, to account
for person-specific details that are difficult to model using a cross-
identity prior, we can optionally refine the model (Fig. 2 (c)) using
unstructured captures of an individual via the inverse rendering
method described in §3.6.

3.1 Universal Prior Model (UPM)

Our universal prior model (UPM) is a hypernetwork [Ha et al. 2017a]
that generates parameters for a person-specific MVP-based avatar
that can be animated following prior works [Wei et al. 2019]. A key
observation is that person-specific avatars achieve a high degree of
likeness to the target identity largely from the use of ‘untied’ bias
maps in their architecture [Lombardi et al. 2018, 2021]. The sim-
plest form of this is the base texture and geometry used in classical
avatar representations that capture static details such as freckles,
moles, wrinkles and even tattoos and small accessories like ear- and
nose-rings. Thus, the ability to generate bias maps for real unseen
identities is a necessary attribute of our hypernetwork. While recent
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advances in generative face modeling have been shown to plausi-
bly hallucinate detailed appearance of non-existing people [Karras
et al. 2021b, 2020], they can fail to span the detailed appearance of
a particular unseen real person [Abdal et al. 2019, 2020], possibly
stemming from the low-dimensional latent spaces they employ. The
result is a similar-looking, but recognizably different, identity. Since
our goal is to generate avatars of real people, we dispense with the
ability to hallucinate avatars for non-existing people, and instead
extract person-specific bias maps from conditioning data of real
people. Thus, we call our hypernetwork an identity encoder, Eiq,
and the person-specific avatar it generates, a decoder, D.

An illustration of our construction is shown in Figure 3. To enable
the extraction of person-specific details, ;4 takes conditioning
information in the form of a neutral texture map, Tpey, and a neutral
geometry image (an xyz-position map), Gpeyu, and produces bias
maps for each level of D via a set of skip connections, similar to
a U-Net architecture [Ronneberger et al. 2015]. We refer to §3.4
for a detailed description of how the conditioning information is
acquired. The model is trained to reconstruct a multiview dataset of
multiple identities with multiple expressions each. During training,
the expression codes, e, are generated using an expression encoder,
Eexp, that takes, for a particular expression frame, view-averaged
texture and geometry images, Texp and Gexp, as input. In summary,
our universal prior model can be written as:

€= 6exp(ATexp, AGexp; cI)exp)s (1)
®id = 8id (Tneu, Gneu; cI>id)s (2)
M= D(e, v, g Oig, Pec) - ®3)

where ATexp = Texp—Tneus AGexp = Gexp—Gneu, and M is the
output volumetric primitives for ray-marching, and ®eyp and ®iq
are trainable parameters for the expression and identity encoders,
respectively. The decoder is also conditioned on view- and gaze-
direction vectors, v and g, used for rendering, to allow explicit
control over gaze and view-dependent appearance changes. The
decoder parameters are comprised of two parts: 1) trainable network
weights, @4, that model identity independent information that
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denotes transposed convolution, and ‘L-ReLU’ denotes a LeakyReLU activation.

is shared across different identities, and 2) bias maps, ©;q, which
are regressed by the identity encoder and capture person specific
information.

The novelties of our hypernetwork design include: 1) We encode
person-specific details in the form of multi-scale bias maps, these
bias maps are identified as a key source of identity for face modeling,
enabling a compute-once-use-often setting for live facial animation.
Prior methods, e.g. StyleGAN [Karras et al. 2021b] entangles the
architecture for expression and identity, making it difficult to save
computation for animation purposes. 2) Our proposed hypernet-
work is the first effective U-net architecture from 2D conditioning
data to a volumetric slabs, which can be ray marched to generated
photorealistic avatar.

3.1.1  Architecture Details. In the following, we provide a more de-
tailed description of the encoder and decoder in our hypernetwork.

Upsampling with Bias Maps. The basic building block of our de-
coder is a convolutional upsampling layer with bias maps, i.e., one
bias per output activation. Let Cj, an Coyt be the number of input
and output channels of our upsampling layer, and let W and H be
the width and height of the input activations. Thus, the input to the
layer is a feature tensor of size (W X H X Cy, ), which is upsampled to
dimension (2W X 2H X Coyt). The upsampling is implemented by a
transpose convolution layer (no bias, 4 X 4 kernel, stride 2) and is fol-
lowed by an addition with a bias map of dimension (2W X 2H X Coyt)
produced by &;q. The result is the output features of our layer.

Decoder. Our decoder, D, closely resembles the architecture de-
scribed in Lombardi et al. [2021], comprising two deconvolutional
networks, Dgeo and Dapp, that produce opacity (1024 X 1024 x 8)
and appearance (1024 X 1024 x 24) slabs, as well as sparse guide
geometry and transformations that are used to place the volumetric
primitives in world space for ray-marching. We refer the reader
to Lombardi et al. [2021] for further details. We make two modifi-
cations to this architecture to enable the generation of avatars of
different subjects with consistent properties. First, we use a fully
convolutional expression latent space [Ma et al. 2021], e € R¥¥4x16,
to spatially localize the effects of each latent dimension. This pro-
motes semantic consistency of the expression latent space across
identities, which is important for some downstream tasks such as
expression transfer. Second, we explicitly disentangle gaze from
the expression latent space by replicating encodings of (2 X 3) gaze
direction into an (8% 8)-grid, masking these tensors to zero-out unre-
lated spatial regions, and conditioning the decoder by concatenating
with its features at the (8 x 8) layer before continuing to decode to
higher resolutions. Similar to view-disentanglement in prior meth-
ods, which aims to enable explicit control of view-dependent factors
based on a viewer’s vantage point in the scene, our construction
enables explicit estimates of gaze to be directly used to control the
avatar, which is well suited to VR applications where these estimates
may already be present to support other functions (e.g., varifocal
adjustments [Aksit et al. 2017] and foveated rendering [Patney et al.
2016]). An avatar representation that explicitly disentangles gaze
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controls from the rest of facial motion will be able to leverage those
in-built eye tracking systems more directly.

Identity Encoder. The identity encoder, &4, uses strided convolu-
tions to extract person-specific information from the conditioning
data in the form of (1024 X 1024) texture- and position-maps of a
subject’s neutral expression. First, these inputs are processed sep-
arately using (1 X 1)-convolution to increase the feature channels
to 8, followed by eight strided convolution layers with LeakyReLU
activations [Maas et al. 2013], increasing the channel size each time>.
At each resolution level, the intermediate features of the geometry
and texture branches are concatenated and further processed using
(1 X 1)-convolutions to produce the bias map for that level of the
decoder, D. When considering the pair ;g and D together, the
architecture resembles a U-Net [Ronneberger et al. 2015], which
provides a short-cut for transferring high resolution detail from the
conditioning data directly to the decoded output, without passing
through a low dimensional embedding space, allowing it to more
easily reproduce intricate person-specific detail.

Although the U-Net architecture promotes the preservation of
detail, the identity conditioning information may be insufficient
to fully describe a person’s idiosyncrasies. One example is how
a person’s teeth are not predictable from a closed-mouth neutral
expression alone. In §3.6, we show that to better capture a person’s
likeness, our model can be fine-tuned on additional expressive data
of the target subject.

Expression Encoder. The expression encoder, Eexp, extracts ex-
pression latent codes, e, for each sample in the training set. For
this we employ a fully convolutional variational network that takes
view-averaged expressive texture and position-maps as input. We
follow the input format of the original MVP avatar representation,
where the view-averaged input removes the view-dependent effects,
forcing the decoder to make use of the view-conditioning at the
bottleneck to enable explicit control. Since we use a (4 X 4 X 16)
latent code, we produce the mean and variances at that resolu-
tion instead of downsampling and reshaping to a vectorized latent
space. To further promote the formation of a semantically consis-
tent expression latent space, we subtract the neutral texture and
position-map from their expressive counterparts before inputting
them into the network. We will show in §4 that this simple scheme
avoids identity information leaking into the expression latent space
without the need for additional adversarial terms employed in other
works [Lample et al. 2017; Schwartz et al. 2020].

3.2 Dataset

In this section, we describe the generation of the tracked meshes
that are later on employed for supervision of the UPM training.
There are three key components: the capture dome, the capture
script, and the tracking pipeline.

Capture Dome. To capture synchronized multiview videos of a fa-
cial performance, we built a multiple video-camera capture dome as
shown in Figure 4 (left). The dome has 40 color and 50 monochrome
cameras that are placed on a spherical structure with a 1.2 meter

3In this work we use a channel progression of (8, 16, 32, 64, 64, 128, 128, 256, 256) for
all encoders.
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Fig. 5. Snapshot of various expressions captured during a performance.

radius. The cameras are pointed towards the center of the spherical
structure where the participant’s head is situated. Figure 4 (right)
shows an example of captured multi-view images. We captured at
a resolution of 4096 X 2668 with a shutter speed of 2.222 ms at 90
frames per second. 350 point light sources are evenly distributed
across the structure to uniformly illuminate the participant. To com-
pute the intrinsic and extrinsic camera parameters of each camera,
we use a 3D calibration target [Ha et al. 2017b] mounted on a robot
arm to perform automatic geometric camera calibration.

Capture Script. The goal of the capture script is to systematically
guide the participant through a wide range of facial expressions
in the shortest amount of time. The participants are asked to go
through the following exercises: 1) mimic 65 distinct facial expres-
sions, 2) perform a free-form facial range-of-motion segment, 3)
look in 25 different directions to represent various gaze angles, and
4) read 50 phonetically balanced sentences. Examples of captured
expressions are shown in Figure 5. In total, 255 participants were
captured using this capture script, and an average of 12k subsampled
frames were recorded per participant to be used in the subsequent
tracking stage. This leads to a total of 3.1 million frames to be pro-
cessed.

Tracking Pipeline. In order to efficiently generate tracked meshes
for over 3.1M frames, we implemented a highly scalable two phase
approach, similar to that of Laine et al. [2017]. Our approach can
process each frame independently and thus fully in parallel. In the
first phase, we train a high-coverage landmark detector [Newell
et al. 2016] that produces a set of 320 landmarks that are uniformly
distributed across the face, covering both salient features (such as
eye corners) as well as more uniform regions (such as the cheeks



and forehead). We leveraged two sources to generate training data
for the high-coverage landmark detector: 1) for 30 participants, we
first ran dense tracking [Wu et al. 2018] on ~ 6k frames to cover
a variety of expressions followed by sampling landmark locations
from the dense tracking results, and 2) for all 255 participants, we
ran non-rigid Iterative-Closest-Point-based face mesh fitting similar
to [Bradley et al. 2010] on 65 expressions, and sampled landmark
locations from the fitted meshes. The first source of data provides
good expression coverage, but only on a limited set of identities,
hence we added the second source to expand identity coverage. In
the second phase, we run the high-coverage landmark detector on
multiple views of each frame. The detected landmarks are then used
to initialize a Principal Component Analysis (PCA) model-based
tracking method [Tena et al. 2011; Wu et al. 2016] to produce the
final tracked mesh.

3.3 Training and Losses

The UPM parameters, ® = [@exp, Pid, Pgec], are optimized using:

o* = arg;)nin Z Z Z Liotal (®; Ifi’c) ) )

ieNT feNF ceNg

over Ny different identities, N, frames and N different camera
views from the dataset described in §3.2. We abuse notation slightly
and use 72° to denote both the ground truth camera image as well
as the set of training data associated with this frame f, namely:
the tracked geometry and corresponding geometry image Gexp,
the view-averaged texture Texp, camera calibration, tracked gaze
direction g, and a segmentation image (described below). Our loss
function comprises three main components:

Liotal (D3 I}',c) = Lrec(®; I}’C) + -Emvp((bi IJZ’C) + Lseg(q)) )

Here, Livyp are the losses introduced by Lombardi et al. [2021] (ex-
cept their photometric £2-loss), whereas Lyec and Lgeg are additions
specific to our use case, which we elaborate on below. We optimize
Equation (4) using stochastic gradient descent with ADAM [Kingma
and Ba 2014] using a learning rate of 1e—3 and all other parameters
set to their default values.

Reconstruction Losses. The purpose of the reconstruction loss is
to ensure that the synthesized images match ground truth. It can be
split into three different parts:

Lree(®:7p) = Lpno(®: 17 + Lugg (17 + Laan (®: 1) . (6)

The pixel-wise photometric reconstruction loss, Ly}, compares the
synthesized images with the ground truth, pixel-by-pixel:

Lono(@®Tp) = hynai 3 10 - T, @)
pEP

Here, P is a random sample of pixels and we set the weight of this
term to A, = 1. We employ the £;-norm for sharper reconstruction
results. We also estimate per-camera background images and color
transformations for each identity, and sample pixels over the entire
image. The next energy term, Lygg, is the VGG-loss of Johnson et
al. [2016] which uses a VGG network [Simonyan and Zisserman
2015]. It penalizes the difference between the low-level VGG feature
maps of the synthesized and ground truth images. In particular, it is
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more sensitive to low-level perceptual features, such as edges, and
thus leads to sharper reconstruction results. We set the weight of
this term to Aygg = 1. The final reconstruction loss is an adversarial
loss, Lean, based on a patch-based discriminator [Isola et al. 2017]
for sharper reconstruction results and reduced hole-artifacts that
can occur in MVP representations. We set the weight of this term
to Agan = 0.1.

Unlike Lpp,, the other two losses use a spatial receptive field to
compute their values via convolutional architectures. As such, each
pixel can not be independently evaluated of all others. Since memory
limitations prohibit training on full resolution images, instead of
randomly sampling each pixel of £ independently, we randomly
sample scaled and translated patches of (384 X 250) in resolution.
We employ antialiased sampling on the full resolution images to
generate the ground truth patches, but sample rays corresponding to
pixels in those patches from our model in the usual way during ray-
marching to reduce computation. We find this step to be necessary
for the Lygg and Lgay losses to effectively capture detail while
avoiding overfitting to features at a specific scale.

Segmentation Losses. To promote better coverage of the subject
in the scene, we employ a loss penalizing the difference between a
pre-computed foreground-background segmentation mask and the
integrated opacity field of the rendered avatar along pixel rays:

1 ic ic
Lig( @ L) = kg D, [OF ) =Sl @)
peP

where S are the segmentation maps and O is the integrated opacity
computed during ray marching. We do not observe hazy reconstruc-
tions commonly observed in static or person-specific volumetric
models [Lombardi et al. 2019], however, without this loss, we ob-
serve the model sometimes misses parts that are not well modeled
by the guide geometry, such as a protruding tongue or hair structure
that was not reconstructed accurately. Setting Aseq = 0.1 initially
and linearly reducing it to Aseg = 0.01 effectively overcomes these
limitations.

3.4 Conditioning Data Acquisition

To reconstruct a photo-realistic avatar for a user, we first acquire
the conditioning data that is required by the UPM. To allow for
broad adoption, our approach relies on an easily accessible device
for capture and a simple script that a user can follow by themselves.
For the device, we use an iPhone 12, which incorporates a depth
sensor that can be used to extract better geometry of the user’s face.
For the capture script, the user is asked to maintain a fixed neutral
expression while moving the phone around the user’s head, left
to right, then up and down, to acquire a complete capture of the
entire head, including hair. We found that when performing this task
with non-neutral expressions, maintaining a static expression was
challenging for untrained participants. So, we capture additional
expressions with a frontal camera only, without the need to maintain
a static expression.

With the cellphone data acquired, it is processed as summarized
in Fig. 6. First, the RGB-D camera of the iPhone 12 is employed
to scan the user’s neutral face from different perspectives (Fig. 6
(a)). For each captured image, we run a detector similar to [Newell
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(a) (b) (©) (d) (e)
Fig. 6. Conditioning data acquisition. From left to right: (a) input image, (b)
detected face landmarks, (c) portrait segmentation and traced silhouette,
(d) reconstructed mesh and unwrapped texture, (e) rendered 3D face with
aggregated texture.

et al. 2016] to obtain a set of landmarks (Fig. 6 (b)). In addition, we
run portrait segmentation [Lin et al. 2021] to obtain segmentation
masks, and trace the silhouette (Fig. 6 (c)). Using a neutral face
PCA model with 150 dimensions built from our dataset in §3.2, we
register a face mesh with fixed topology to the observations by
solving a non-linear optimization problem. To this end, we optimize
for the PCA coefficients, a, as well as the rigid head rotation, r;, and
translation, t;, for each frame, 7;, by minimizing a combination of a
landmark, segmentation, depth, and coefficient regularization loss:

Lega(a i, ti) = 4gLig + Asin Lsin + A4 La + Areg Lreg - (9)

Here, the landmark loss, L4, is defined by the #;-distance between
the detected 2D landmarks and the projected corresponding 3D
landmark locations of the corresponding mesh vertices. For the
segmentation silhouette loss, L, we measure the ¢;-distance in
screen space between the vertices at the silhouette of the projected
mesh and their closest points on the boundary of the portrait seg-
mentation (see red points in Fig. 6 (c)). To compute the depth loss Lg,
we trace rays from each vertex in the normal and inverse normal
direction, which we then intersect with triangle meshes generated
from the depth maps. We define the ¢;-distance between the mesh
vertices and the intersections as the depth loss. Finally, we regularize
the PCA coefficients using Tikhonov regularization as Lyeg. We set
Ad = 5.0, Agih = 0.5, g = 1.0 and Areg = 0.01, and keep them fixed
for all identities.

Due to the coarseness of the employed PCA model, the initial fit
is only a rough approximation of the actual shape of the user’s face.
To further improve reconstruction quality, we employ free-form
mesh deformation with Laplacian regularization [Huang et al. 2006]
to minimize the aforementioned losses. This process produces a
reconstructed face mesh that aligns with the input image well, see
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(@) (b) (© (d)
Fig. 7. Personalized decoders. From left to right: (a) example input image,
(b) reconstructed mesh, (c) aggregated texture, (d) rendered avatar.

Fig. 6 (c). We use this mesh to unwrap the texture from each image
(see inset of Fig. 6 (c)) and aggregate them to obtain the complete face
texture. The textures are aggregated [Cao et al. 2016] by weighted
averaging, where the weight of each texel is a function of the viewing
angle, surface normal, and visibility. The final rendered meshes with
the aggregated textures are shown in Fig. 6 (e).

3.5 Personalized Decoder Generation

After acquiring the personalized mesh (Fig. 7 (b)), we transform
it to the neutral geometry image, Gpey. Together with the neutral
texture Tpey (Fig. 7 (c)), both are taken as the conditioning data
that is fed into the UPM to create a personalized decoder (Fig. 7
(d)). However, there exists a domain gap between the data used to
train the UPM and the data acquired from the cellphone. First, the
lighting environment used to build our training corpus in §3.2 is
static and uniformly lit, whereas natural illumination conditions
tend to exhibit more variations. Secondly, the cellphone capture data
only covers the frontal half hemisphere of the head due to physical
limitations.

We bridge the domain gap between cellphone and capture studio
data in two steps. First, we apply the neutral face fitting algorithm
in §3.4 to the capture studio data, where handheld camera motion
is substituted by a discrete selection of cameras following a simi-
lar trajectory. The UPM is then trained with neutral conditioning
data generated from this process, while keeping the high quality
mesh tracking described in 3.2 for supervising the guide mesh and



per-frame headpose in §3.3. This process significantly improves
the quality of our generated avatars, as the UPM learns to inpaint
regions that tend to be unobserved when following the cellphone
capture script.

To account for the lighting and color transforms between the
cellphone and studio data, we apply texture normalization, where
we exhaustively search over our dataset of 255 identities, estimating
optimal per-channel gains to match each, and pick the one with
the minimal error. This normalized texture, together with the per-
sonalized mesh, are fed into the identity encoder, &4, to generate
person-specific bias maps, which together with the decoder, D,
constitute the personalized decoder. Fig. 7 (d) shows the resulting
avatars.

3.6 Finetuning a Personalized Decoder

Given a set of frames with arbitrary facial expression, we run an
RGB-D based 3D face tracker [Weise et al. 2011]. We then unwrap
the texture from the image, normalize it using the same strategy
as for the neutral texture, and fill-in unobserved parts with the
neutral texture. The tracked 3D face mesh and texture is used as
the expression data input to the expression encoder, Eexp, which
along with the bias maps and D, can be used to generate volumetric
primitives that can be ray-marched to produce an image.

While the personalized decoder generates reasonable likeness
with a hallucinated expression span, it often misses transient detail,
such as wrinkles that are not apparent while the user’s face is in a
neutral expression. To build a more authentic avatar, we leverage
data of the 65 facial expressions described in §3.2, which we capture
using the cellphone from a frontal view. This capture takes 3.5
minutes on average and none of our participants experienced any
difficulty in following the script.

With these expression frames, {7}, we perform an analysis-by-
synthesis to finetune the network parameters of the personalized
avatar by minimizing:

Lot (D If) = Lrec(®; If) + Lhole(q)§[f) + LSeg(q); -Z'f)’ (10)

where Ly is the reconstruction loss in Eq. 6 and Lseg is the seg-
mentation loss in Eq. 8 applied to all expression frames. The hole
loss is defined as:

Lhole (3 If) = Anole||max (75 — OF, 0) - T7|

N C5))

where 77 is a rendered mask that covers the face region and Of
is the integrated opacity computed during ray marching. Ly, pe-
nalizes holes that can emerge during finetuning as a result of the
MVP surface primitives separating from each other. To ensure gen-
eralization to expressions not in the captured data, we also evaluate
this loss on samples from the training corpus with a proportion
of 1%. Fig. 16 shows the effects of the different error terms. We set
}'pho =1, Aygg =3, Agan = 0.1, Aseg = 0.1, and Apgle = 100 and fix
them for all finetuning experiments.

4 EXPERIMENTS

In this section, we present our experiments to evaluate the UPM
and its use in our cellphone-based avatar generation pipeline. We
ablate a number of design choices, presenting both qualitative and
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Fig. 8. The design of the reconstruction loss has a significant effect on the
amount of detail that is reconstructed by the decoder. As can be seen, our
complete loss function produces the highest fidelity avatars.

quantitative results. We also compare our method against several
state-of-the-art approaches.

4.1 Universal Prior Model Experiments

We use the dataset described in §3.2 to build a UPM. To evaluate
the different aspects of our construction, we group our experiments
into four parts: 1) design of the loss function, 2) disentanglement
and consistency of the expression latent space, 3) regularization
of the identity encoder and fine-tuning, as well as 4) the effects of
training corpus size on the model’s performance.

4.1.1 Loss Function. Our person-specific decoder is based on Lom-
bardi et al. [2021], which demonstrated good reconstruction quality
after 500k training iterations (5 days on a single NVIDIA Tesla V100),
when using the #; reconstruction loss. Since our training corpus is
much larger than the person-specific data used in that work, we
found that even increasing the number of iterations to 800k (ap-
prox. 1 week processing time) did not achieve an acceptable level
of detail. We found that using an #¢;-loss, a VGG-loss [Johnson et al.
2016], and a Patch-GAN loss [Isola et al. 2017] each add an addi-
tional level of detail to the reconstructions, enabling the model to
achieve good qualitative results without greatly extending training
time beyond that of the original method * .

Some qualitative comparisons of results after 800k iterations of
training with a batch size of 384 X 250 rays are shown in Figure 8.
As other work has previously found [Zhao et al. 2016], the #,-loss
produces blurry images with limited detail. Switching to the #; loss
produces a small improvement, but detail is still lacking. Adding a
VGG-loss significantly adds detail, but introduces additional high-
frequency artifacts. Finally, the patch-GAN loss increases detail
further, while removing the artifacts introduced by the VGG-loss.

4To reach a level of person-specific detail comparable to Lombardi et al. [2021] using
our corpus, presuming each subject needs to be visited a comparable number of epochs
during optimization, and presuming capacity is not the limiting factor, training with
an £;-loss would take 5 days X 235 identities = 3.2 years on a single V100 GPU.
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Fig. 9. Visualization of the expression consistent latent space discovered by
the UPM. Left-most column: images of the source identity. Second-from-
left column: UPM reconstructions. Other columns: retargeting results by
decoding with our model based on different identity conditioning data.

SOUTCE ——

Fig. 10. Expression retargeting without neutral-subtracted input into Sexp
results in an entangled expression space that fails to generalize. Top row from
left to right (similarly bottom row from right to left): image, reconstruction,
retargeting results.
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Eexp input D output

Fig. 11. Our expression latent space is identity invariant, even with respect
to information that is not directly observable in the input to &;4. Given
expression encodings from multiple identities, the decoded results always
exhibit consistent teeth.

4.1.2  Expression Space Consistency. An important element of an
avatar generation system is the consistency of the controls they ex-
pose for downstream tasks. Our construction achieves this through
the combination of bias maps for personalization, a fully convolu-
tional 4 X4 X 16 expression latent space, and neutral-differencing the
input to the expression encoder. We demonstrate this in Figure 9,
where we re-target one training subject’s expression to another
by inputting the source identity’s expression data into Eexp and
the target identity’s neutral conditioning data into ;4. The model
retains the semantics of the expression space even across identities
with significantly different facial shape and appearance, despite the
fact that we did not explicitly define expression correspondences
during training.

In Figure 10 we show the result of training without the neutral-
difference input to Eeyp. Although the source image was recon-
structed reasonably well, identity information leaks into the expres-
sion latent space, which manifests as a perturbation to the decoded
avatar’s identity and other visual artifacts.

Since the identity conditioning data we use to specialize our
decoders are only comprised of the neutral texture and coarse ge-
ometry, some information regarding a person’s expression span are
not directly observed, such as expression-dependent wrinkles and
the internals of the mouth. On the other hand, the input to Eexp
contains identity-specific information that is not expression specific,
such as the shape of teeth. A natural question to ask is whether our
construction ends up encoding this information in the expression
latent space. Figure 11 shows the results of expression retargeting
between different identities in our training set. If information about



Fig. 12. Examples of explicit gaze control via a disentangled representation.

a subject’s teeth are encoded into the expression latent space, we
can expect the retargeted avatars to exhibit the source target’s teeth.
To the contrary, we find that the source identity’s overall expression
is successfully transferred to the target identities, but the decoded
teeth remain those of each target’s identity. This implies that &;4
learns to correlate neutral facial appearance and geometry with
teeth. However, since this correlation is weak, the model can only
do so approximately, it fails to completely capture unusual appear-
ances such as missing teeth. One possible solution is to enrich the
conditioning information set with additional expressions, however,
since our representation already disentangles expression from iden-
tity, we choose to instead rely on the fine-tuning strategy described
in §3.6, which has more flexibility in leveraging the expressions
that are available at test time, instead of requiring the set to be
predefined a-priori.

Finally, the consistency of cross-identity expression transfer is
difficult to evaluate empirically, due to challenges in defining a
suitable metric (i.e. how different is one person’s expression from
another person’s). However, for those attributes with a physical
meaning, such as gaze direction, our model can disentangle their
effects from the rest of the expression space, enabling their direct
control from external sensors (e.g. eye tracking) without disturbing
the rest of the expression. Some examples of this are shown in
Figure 12, where expression retargeting is performed as above, but
the gaze direction is modified.

4.1.3 ldentity Latent Spaces. One of our key design choices is to
dispense with the ability to hallucinate non-humans that requires a
latent space of identities. However, since our model relies on finetun-
ing to capture the last-mile of a person’s idiosyncracies, one might
expect that catastrophic forgetting [French 1994] is more likely,
where the model’s weights specialize to reconstruct the finetuning
data, but fail to generalize to other expressions and viewpoints of
the same person. The regularization provided by an identity latent
space avoids this phenomena since fintuning only involves travers-
ing a latent space of identities instead of weights of the neural
network [Abdal et al. 2020].

To evaluate the sensitivity of our approach to this, we excluded
22 identities and trained models with and without an identity latent
space on data from the remaining identities. To make the compar-
isons meaningful, we keep all components of the model, the loss,
and training regime the same across all experiments, and only add a
fully-convolutional Gaussian VAE [Pu et al. 2016] to the input of Ei4;
effectively a generative model over the identity conditioning. We
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Fig. 13. Effects of finetuning models with and without an identity latent
space of different spatial resolutions. Although the absence of a latent space
leads to slight overfitting when finetuned for too long (>1k iterations) on a
neutral frame, it is superior to the models using a latent space which fail
to reconstruct fine detail. Top row: Reconstructions of an unseen identity
using models with increasing latent space resolution. Bottom row: average
reconstruction errors on range-of-motion sequences of 22 unseen subjects.
On the x-axis, none refers to results without finetuning, enc finetunes Eexp,
and id(x) finetunes the identity latent codes (or &;q for models without a
latent space) for x iterations.

experiment with compressing the conditioning data to a fully convo-
lutional latent code at different spatial resolutions, before decoding
back up to 1024 x 1024 for input into E;q. We add a KL-divergence
loss on the posterior distribution with weight § = 0.01, but do not
add any reconstruction error on the conditioning data, freeing up
&ig’s input to take on richer representations than the original color
and position maps.

Figure 13 shows results of our experiments for different settings
of the latent space, ranging from 4 X 4 up to 128 x 128 in spatial
resolution. To remove the effects of generalization errors from Eexp,
we further finetune it on the test set, while keeping all elements of
Eiq and D fixed®. From there, we further finetune &;4 on the neutral
images of the test subjects, where all weights of &;4 are optimized
for our standard model, whereas only the identity latent codes are
optimized otherwise.

Our experiments show that as the identity latent space increases
in spatial resolution, so does reconstruction performance, but the
standard model without a latent space performs the best. Although
it does exhibit slight overfitting, with small degradation in ¢;, MSE
and SSIM metrics when finetuned for more than 1000 iterations, it
still outperforms all other models. In a sense, increasing the spatial
resolution of the identity latent space enables more flexibility to
model unseen variations due to each latent code’s localized spatial
footprint on the output, at the expense of producing worse samples
where long range dependencies are not modeled [Bagautdinov et al.
2018]. Comparing the qualitative results of the different models in

5The purpose of the universal prior model is to generate personalized decoders. Down-
stream tasks will not use Eexp, which is specific to our multi-view system. So long as the
expression latent space is disentangled from identity information, how an expression
code is arrived at during test time has no bearing on the quality of the decoder itself.
At the limit, directly optimizing the expression code for each test image has been used
to evaluate the quality of generative face models [Blanz and Vetter 1999].
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Fig. 14. Performance of UPM models trained with different numbers of
subjects in the corpus (16-235) for varying amounts of available finetuning
expressions (1-65). ‘0 denotes no finetuning.

Figure 13, the ones with an identity latent space lack detail and
specificity, especially for those with lower resolution latent spaces,
despite being fairly high dimensional (i.e. 4 X 4 X 128 = 2048), and
produce avatars with a similar, but recognizably different, identity.
We notice the VGG scores trend higher on these results since VGG
scores are sensitive to the similarity in details between the avatar
and image. The proposed model, on the other hand, captures fine
details like the mole on the neck and stubble, and achieves smaller
VGG scores. On the downside, without the identity latent space,
our model does not support identity interpolation and relies on
conditioning data of a specific individual to generate an avatar.

4.1.4 Corpus Size. Personalized avatar creation requires person-
specific data, but the acquisition of such data is a major friction point
for general use. The role of a UPM is to reduce the amount of person-
specific data required to generate a personalized avatar. The quality
of the UPM plays a critical role here, with the amount of data used
to train the prior model being a key factor. To evaluate the interplay
between the amount of training and person-specific data, we trained
a UPM using increasing amounts of data; 16, 32, 64, 128 and 230
subjects. On the remaining subjects, we finetuned each model’s
Sexp and &;q on increasing amounts of expression data; 1, 3, 5, 9,
17, 33 and 65 expression frames, with five cameras each. To avoid
biasing our results based on the selection of expressions that are
incrementally added to the finetuning set, we ran the experiment five
times, randomizing the selection each time, but keeping it consistent
across the models we tested. After finetuning for 1k iterations, the
models were evaluated on a held-out range-of-motion sequence for
the remaining subjects from five held-out cameras. The results of
this experiment are shown in Figure 14.

Our results show a clear trend where increasing the amount of
training identities improves results. Similarly, additional finetuning
data also leads to better results. However, improvements exhibit
diminishing returns as a function of additional data. For example,
the model with 16 training identities and the full finetuning set of 65
expressions is no better than the model with 230 training identities
that was finetuned only on a single neutral frame. The trade-off
between what can be acquired as part of the training set versus
what can be acquired at the user’s end will be application specific,
however, our experiments suggest that improved performance may
continue beyond a corpus size of 230 even when employing 65
finetuning expressions.

4.2 Finetuning Personalized Models

With the pre-trained UPM, we can generate user’s personalized
avatar based on the cellphone data. On a machine with 4 GPUs, cost
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Fig. 15. Personalized avatar generated using cellphone conditioning data
with a UPM that is trained with an increasing number of identities.

time without finetuning is 10 minutes (mostly consumed by neutral
face reconstruction, avatar generation is a single forward pass of
the network), and with finetuning is about 6 hours.

In the following of this section, we perform an ablation study
on different components of the personalized model refinement step
when using cellphone data captured in indoor environments with
natural illumination using the iPhone 12’s frontal camera.

4.2.1 Corpus Size. We first evaluate the effect the number of train-
ing identities has on building a personalized avatar using the models
and procedures described in § 4.1.4 above. However, this time we
use the reconstructed neutral face geometry and texture from a
cellphone scan of subjects in natural indoor environments acquired
as described in §3.4. Fig. 15 shows the reconstruction results using
a universal prior model trained with different numbers of identities.
As in §4.1.4, avatar generation from captures in real world condi-
tions also benefit from larger corpus sizes, even as it is comprised
entirely of a single lighting condition with uniform illumination.

4.2.2  Finetuning Loss Functions. Fig. 16 shows reconstruction re-
sults for a cellphone personalized avatar finetuned with different
losses. As in UPM training (see §4.1.1), employing only an #;-norm
as the photometric loss in Equations (10) and (6) results in blurry
reconstructions, as shown in Fig. 16 (b). Incorporating the VGG-
loss helps to enhance sharpness of the resulting image (Fig. 16 (c)).
However, it also introduces some hole-like artifacts, where the fine-
tuned model’s primitives are perturbed in a way that separates them,
which results in rays missing the surface during raymaching. (Fig. 16
(b)(c) bottom row). Adding the hole-loss in Equation 11 significantly
reduces such artifacts (Fig. 16 (d)). Finally, adding the GAN-loss only
slightly improves quality of the result (Fig. 16 (e)) and is unable to
completely remove some of the other artifacts that VGG introduces,
possibly due to the limited number of iterations the discriminator
is trained for during finetuning compared to during UPM training.

4.2.3  Finetuning Data Size. To build a personalized avatar, we cap-
ture two sets of user data using a cellphone: 1) a multi-view scan of
the user’s neutral face used to condition the universal prior model,
and 2) frontal views of 65 facial expressions. We follow the same pro-
cedure described in §4.1.3 to generate different subsets for finetuning
and evaluate the finetuned models on a held-out range-of-motion
sequence. The results are summarized in Figure 17 and Table 1.
Without any finetuning, the avatar does not reconstruct the user’s



(a) Input image ~ (b) {1 loss (c) +VGG (d) +Hole (e) +GAN

Fig. 16. Ablation study on losses used in finetuning. From left to right: (a)
input image, (b) £; reconstruction loss only, (c) + VGG loss, (d) + hole loss, (e) +
GAN loss. The generated avatar is blurry with only the £ reconstruction loss,
while adding the VGG loss will improves detail, but introduces some artifacts.
The hole-loss removes the artifacts and the GAN loss adds additional fine-
scale detail.

(a) Input image -

(b) No finetuning (c) Frontal  (d) Multi-views +(2<;:::sti?)|ns () Full data
Fig. 17. Ablation study on data used for finetuning. From left to right: (a)
input image, (b) no finetuning, (c) frontal neutral only, (d) multi-view neutral
only, (e) frontal neutral + expressions, (f) full data. Top row: rendered in the
original view, bottom row: rendered from a side view.

expression correctly (Fig. 17 (b)), resulting in large reconstruction
errors (Table 1 None/None). Finetuning on neutral frontal images
alone results in overfitting, where performance degrades on the
held-out set. For example, when only frontal views of the neutral
scan data are used, obvious artifacts at the sides of head which are
not observed (Fig. 17 (c)) are produced, resulting in an even larger
reconstruction error than the model without finetuning (Table 1
Frontal/None). Using all frames of the neutral multi-view scan helps
to reduce overfitting, however the model still can not accurately
reconstruct expressions faithfully (Fig. 17 (d)). Finetuning on the full
expression set without the multiview-neutral frames can effectively
reduce the reconstruction error (Table 17 Frontal/All), however since
the evaluation set comprises only frontal camera views, it does not
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Table 1. Ablation study on data used for finetuning.
Neutral | Expr. | # (]) | MSE(]) | SSIM (T) | LPIPS (]) | VGG (])

None | None | 14.55 | 137.79 0.9398 0.1226 0.2309
Frontal | None | 15.40 | 173.31 0.9208 0.1290 0.2526

All None | 13.47 | 142.72 0.9359 0.1104 0.2340
Frontal All 9.55 78.21 0.9435 0.1011 0.2304

All 2 12.26 | 124.44 0.9361 0.1100 0.2369
All 4 11.46 | 111.61 0.9395 0.1061 0.2329
All 8 10.56 | 96.86 0.9435 0.1019 0.2284
All 16 10.01 88.42 0.9459 0.0991 0.2254
All 32 9.72 82.82 0.9467 0.0983 0.2249

All All 9.18 | 74.33 0.9477 0.0966 0.2238

Table 2. Ablation study on finetuning different parts of the model.
Components | # (|) | MSE(]) | SSIM (T) | LPIPS () | VGG ({)

Eexp 13.48 | 123.84 0.9401 0.1231 0.2329
Eid 10.33 | 88.98 0.9485 0.1125 0.2236
Eid + Eexp 9.70 82.65 0.9504 0.1081 0.2221

D 9.29 76.57 0.9471 0.0974 0.2244
Eag+D 9.27 76.59 0.9472 0.0975 0.2254
Full method | 9.18 | 74.33 0.9477 0.0966 0.2238

L1 MSE VGG SssIiM
O N o.05
120 0.95
12 0.23
100 0.94
10
80 0.94

3 5 9 17 33 65 3 5 9 17 33 650'Z 3 5 9 17 33 65 3 5 9 17 33 65

# of expressions

—— exp —— idtexp —— dec —— all

Fig. 18. The effects of finetuning dataset size on performance when fine-
tuning different parts of the model.

capture generalization errors to non-frontal views. In (Fig 17 (e)), we
can see that significant artifacts on the side of the head are present
when finetuning using frontal data alone. Finally, when finetuning
using the complete set of expression and multiview data, the person-
alized avatar produces accurate expression reconstructions without
any artifacts when rendered in non-frontal views (Fig 17 (f)). Simi-
lar to the results in §4.1.4, Table 1 also shows a trend of improving
performance as the finetuning set of expressions increases.

4.2.4  Finetuning different parts of the model. There are three major
parts in our model: the decoder, D, the identity encoder, &4 and
the expression encoder, Eexp. We finetune these different parts of
the model on all frames of the neutral scan and the expression
data, and then calculate the errors on a held-out dataset, shown
in Table 2. Finetuning all parts (D, Eiq and Eexp) gives the lowest
f1-error, mean square error (MSE) and LPIPS metric [Zhang et al.
2018]. Finetuning only the encoder (E;q + Eexp) Will achieve the best
SSIM score and lowest VGG score.

To further evaluate the effects of refining different components
of the model. We use the same strategy in evaluating the finetuning
data size. We perform 5-fold cross-validation on different sets of
expression data, finetune the different components of the model on
each, and calculate the loss on the held-out set, see Fig. 18. We can
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(a) input image (b) Ir=1e* (c) Ir=1e? (d) Ir=1e?

Fig. 19. The effect of learning rate on finetuning. A learning that is too small
does not capture sufficient detail. If the learning rate is too high, the model
looses its expression-consistent latent space. A good learning rate selection
results in both high accuracy and good generalization.

see that when the finetuning dataset is small (Expression number
< 10), refining D results in overfitting, with larger ¢;-error and
MSE. However, with more finetuning data (Expression number >
10), refining the decoder together with the encoders help the model
achieve the best results.

4.2.5 Learning rate. Another key factor that affects the quality of
the avatar is the learning rate. Our universal prior model is trained
on multiview data of 235 identities, while we finetune this model on
a single identity with much reduced expression and viewpoints. To
keep the expression space consistent and preserve view-dependent
properties, we find that it is crucial to select the learning rate during
finetuning carefully. Fig. 19 shows the comparison of different learn-
ing rates during the refinement of the personalized avatar. When
the learning rate is too small 1, we fail to recover sufficient facial
detail, such as the wrinkles around the eyelids. If the learning rate is
too large (1e72), the model easily overfits and performance degrades
on held-out data. In our experiments, we found that a learning rate
of 1e73 produces detailed reconstructions while also generalizing
to new expressions.

4.3 Qualitative Results

We show examples of finetuned personalized avatars in Fig. 25. Our
finetuning process improves both the avatar’s appearance (Fig. 25
(b)) and geometry (Fig. 25 (c)) when compared with the input images
(Fig. 25 (a)). Although we only finetune on frontal view expression
images, the view-dependent property of face expression is well
preserved, which allows us to render the avatar from different view-
points (Fig. 25 (d)).

Our avatars share the same global expression space. Fig. 1 right
and Fig. 26 show some retargeting examples. Here, we choose one
identity from our dataset (1st column in Fig. 26), pass the tracked
mesh and texture into the expression encoder, to obtain the expres-
sion code, and feed it into the decoder of each personalized avatar.
These results show that the expression of the source identity is
transferred to the different avatars, while details such as teeth and
wrinkles are preserved. In 3rd and 4th columns of Fig. 26 we show
the same identity captured at different times in different environ-
ments. The recovered avatar’s identity is consistent between the two
captures. In building our training dataset, we designed the capture

ACM Trans. Graph., Vol. 41, No. 4, Article 163. Publication date: July 2022.

(a) Drive image  (b) Avatar from multi-view images  (

Fig. 20. Comparison of an avatar that has been produced from multi-view
images and one that has been produced from cellphone data.

scripts to span the range of facial expressions as much as possible.
Our model has satisfying results on most expressions but can exhibit
artifacts, for some rare or extreme expressions (7th row of Fig. 26).
The identification of these expressions and their incorporation into
a more complete capture script we leave for future work.

We also compare our generated personalized avatar with one
from our training dataset from the same person, see Fig. 20. Com-
pared to the avatar generated from the multi-view capture system,
the personalized avatar generated from cellphone data has compa-
rable quality, showing similar amounts of facial details in different
expressions.

4.4 Comparisons

We compare our method against other state-of-the-art avatar cre-
ation methods. First, we compare with the stylized avatar creation
method in [Luo et al. 2021]. It takes a single face image as input to a
GAN-based framework that generates a normalized 3D avatar, see
Fig. 21 (b). While this method generates a high-quality normalized
face avatar, our method produce an authentic representation with
higher realism.

We also compare our method to paGAN [Nagano et al. 2018],
which takes a single face image as input and modifies the image by
synthesizing different facial expressions, including the eyes and the
mouth interior. Fig. 22 (b) shows their synthesized smile based on
the input in (Fig. 22 (a)). We note that this method only produces
the face region with a modified expression, and blends it with the
original image. As a comparison, in Fig. 22 we show our results
generating the same expression, based on the personalized avatar
before finetuning in Fig. 22 (c), and after finetuning in Fig. 22 (d).



(c) Our results

(b) [Luo et al. 2021]

(a) Input image

Fig. 21. Comparison of our approach to the state-of-the-art stylized avatar
creation method of Luo et al. [2021]. Our approach produces photo-realistic
avatars, while theirs produces a stylized representation.

(d) Our result after
finetuning

(c) Our result before
finetuning

(a) Input image (b) [Nagano et al. 2018]
Fig. 22. Comparison of our approach to paGAN [Nagano et al. 2018]. Our
approach produces more realistic avatars. Note, our avatar is a full 3D model,
while paGAN is restricted to the face region, which is overlaid on top of the
input image.

Although paGAN produces plausible facial images, our results bet-
ter preserve the user’s likeness with semantically more consistent
expressions.

Finally we compare our method with the RGB video-based avatar
creation approaches of Grassal et al. [2021] and Gafni et al. [2021].
Given a user’s monocular RGB video as input, Grassal et al. [2021]
explicitly models face geometry and appearance of the user. Gafni
et al. [2021] builds dynamic neural radiance fields for modeling the
appearance and dynamics of a human face.

We take the RGB images from our captured data as input to both
methods to train the models, and apply them to held-out data of the
same user. Fig. 23 (b)(c) shows the results. Using the same frames
in our method produces the results in Fig 23 (d). Our method is
advantaged here, as it uses RGB-D instead of only the color images.
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() Input image  (b) [Grassal et al. 2021] ~ (d) Our result a) Input image (b) [Grassal et al. 2021] ~ (d) Our result

() Input image  (c) [Gafni et al. 2021]  (d) Our result a) Input image  (c) [Gafni et al. 2021 (d) Our result

Fig. 23. Comparison to the approach of Grassal et al. [2021] and Gafni et
al. [2021]. Our approach produces higher-fidelity results that exhibit more
fine-scale detail.

(b) Avatar

(a) Input image

(c) Avatar left view  (d) Avatar right view

Fig. 24. Limitations of our approach. Our approach does not explicitly model
glasses or long hair, results in artifacts of these parts in the generated avatar.
Due to the limited lighting conditions in our training dataset, our approach
cannot model challenging lighting well.

Nonetheless, our approach produces significantly better results,
with more fine-scale detail, especially in dynamic areas like the
mouth.

5 LIMITATIONS

While we have demonstrated state-of-the-art results for the genera-
tion of photo-realistic avatars from a cellphone scan, our approach
is still subject to a few limitations that can be addressed in follow-up
work.

Our proposed approach requires hours of processing time to
finetune our model on additional expression data in order to create
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Fig. 25. Examples of refined personalized avatars. From left to right: input image, avatar, avatar depth by ray marching, avatar 3/4 left view and 3/4 right view.

a fully authentic representation of a user. It also exhibits overfitting
behavior when the amount of finetuning data is deficient. One way
to address this is to train a UPM that anticipates the finetuning
process later. Some recent approaches have used meta-learning to
do this [Zakharov et al. 2019], and employing similar strategies
may reduce the number of finetuning iterations required as well as
resolve the overfitting problem when finetuning data is sparse.
Another limitation of our approach stems from the domain gap

between the data used to build our UPM and the real world settings.

More specifically, our dataset is limited in terms of illumination
and clothing variations (Fig. 24 2nd row), which can be seen in
the pre-finetuned avatars we generate, where the teeth can appear
unnaturally bright and the standard garment the subjects in our
corpus wear is ‘baked in’. This domain gap makes finetuning more
challenging, possibly leading to increased data requirements and the
overfitting issues described above. Collecting a corpus with more
variation in terms of illumination and clothing would help alleviate
this problem.

Finally, our avatars still lack completeness, without the ability
to create full bodies, hands or even challenging hair styles that are
not easily captured and reconstructed (Fig. 24). We cannot handle
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the glasses either (Fig. 24 1st and 2nd rows). Developing an easy-
to-follow script to capture conditioning data for these elements is a
necessary first step. With the inclusion of loose clothing and long
hair, secondary dynamics and interpenetration become challenges
that our proposed approach does not handle.

6 CONCLUSION

We have presented a system for generating an authentic and pho-
torealistic avatar of a person from a short self-captured cellphone
scan. Our volumetric avatars achieve an unprecedented level of
realism compared to existing works and the individual’s likeness is
preserved throughout their avatar’s range-of-motion. We performed
experiments to characterize the effects of different components of
our model, and also identified opportunities for further improve-
ments. Our approach is designed for ease of use to encourage the
proliferation of authentic avatar creation. In the future, such tech-
nology will given everyone the ability to create a digital version of
their “serial number of a human specimen” [Kundera 1999].
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N

Fig. 26. Driving personalized avatars using expressions from an identity in our dataset (left column).
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