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ABSTRACT 
A passive wand tracked in 3D using computer vision 
techniques is explored as a new input mechanism for 
interacting with large displays. We demonstrate a variety of 
interaction techniques that exploit the affordances of the 
wand, resulting in an effective interface for large scale 
interaction. The lack of any buttons or other electronics on 
the wand presents a challenge that we address by 
developing a set of postures and gestures to track state and 
enable command input. We also describe the use of 
multiple wands, and posit designs for more complex wands 
in the future.   
Keywords: vision tracking, large displays, gestures, 
interaction techniques, input devices, buttonless input 

INTRODUCTION 
Large-format upright displays – ranging from 40” to 60” 
plasma panels to very large scale (>8’) high-resolution 
displays driven by multiple projectors – enable us to work 
with very large quantities of simultaneously displayed 
visual data, and give multiple people the ability to work 
effectively together at a single display. Indeed, in recent 
years many researchers have recognized the value of such 
large scale displays and have explored a diverse set of 
applications for them, including collaborative groupware 
[12], electronic whiteboards [8, 21], and industrial design 
[3, 13]. Others such as Guimbretière et al. [15] have 
investigated more general interaction issues.  
While the visual quality of commercially available large 
displays is already very high and continues to further 
improve, and the range of research applications available 
are quite impressive, the question of what input technology 
to utilize when interacting with displays of this scale 
remains an open one. The most promising and widely 
adopted input mechanism to date – single finger or pen 
input using a variety of technologies [8],  
[www.smarttech.com] – requires the user to stand up close 
to the display and is limited to single point two 
degree-of-freedom interaction much like when using a  

 

standard mouse. While this constraint is fine for many 
applications [12, 15, 21], others [3, 13] benefit from users 
operating the interface with higher degree-of-freedom input 
devices while standing further away from the display. Input 
technologies that have been used for such “from afar” 
interaction currently include a variety of 3D trackers [31], 
laser pointers [20, 22, 23], custom wands [32, 33], and the 
use of computer vision to track users’ hands [6, 10, 29]. All 
these technologies, however, have a variety of limitations 
which we will discuss later in this paper.  
In this paper, we explore the idea of using a passive wand 
that is tracked in 3D space using computer vision 
techniques as an alternative input device for interaction 
with large scale displays. This VisionWand is a simple 
plastic rod with colored ends (Figure 1a), without any 
embedded electronics, that is tracked by a pair of 
commodity (<$100) cameras (Figure 1b). The negligible 
cost of the wand allows for multiple versions to be 
available, used, or discarded at any time. Since both 
endpoints of the wand are tracked in 3D, the resulting input 
is a 3D ray, allowing for a richer vocabulary of actions than 
is possible with 2D point input. However, the lack of 
electronics presents a challenge in that there are no buttons 
or other means of directly providing state information from 
the device itself. We address this challenge by developing a 
set of gestures and postures to enable command input. The 
use of a physical wand rather than free-hand gestures not 
only simplifies the vision algorithms, but allows for 
interaction techniques that take advantage of the 
affordances of the physical tool, resulting in “rich-action” 
input as defined by Rekimoto and Sciammarella [25]. We 
present an exploratory set of interaction techniques that 
take advantage of all these features. 
 

 

 
 
 

Figure 1. (a) VisonWands, (b) System setup. 
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RELATED WORK 
The most common and commercially viable input 
technique for large displays are systems that track a single 
point of 2-dof input, either by direct touch, use of a pen, or 
both. For example, the Liveboard system [8] used an 
optical pen, the Stanford Interactive Mural uses a wireless 
Ebeam pen [15], while the SmartBoard system 
(www.smarttech.com) supports both finger and pen input. 
The advantages of these systems are high resolution 
tracking and the single point input is backward compatible 
with existing GUI interfaces. Limitations include having 
only single point 2-dof input, and requiring the user to 
work up close to the display, reducing the user’s ability to 
visualize the entire large display while interacting.  
Another approach is to use optical, electromagnetic, 
acoustic, inertial, or radio tracking technologies to track 
one or more simultaneous points of input in 3D space. See 
Welch et al. [31] for an excellent survey of the various 
technologies. While these trackers enable us to prototype 
advanced interaction techniques [13, 14], their cost has 
remained rather high (ranging from a few thousand dollars 
for the cheapest trackers to a few hundred thousand dollars 
for more sophisticated motion tracking systems) for over a 
decade. As such, they are not practical for widespread use. 
Furthermore, the cheaper technologies are typically 
tethered, reducing the user’s freedom of movement. 
Recently, several researchers have explored the use of 
standard laser pointers as input to large displays [20, 22, 
23]. These have the advantage of low cost, but have a 
fundamental limitation in that there are no buttons to 
augment the single point of tracked input. As such, even 
standard mouse operations are not possible. To overcome 
this, Olsen and Nielsen [23] explored the use of dwell time 
and other techniques to replace button presses. Oh and 
Stuerzlinger [22] have augmented laser pointers with 
buttons, resulting in a “from-afar” input technology that 
can operate the entire range of interaction techniques found 
in a standard GUI. Using clever multiplexing techniques, 
they were even able to differentiate between and track 
several laser pointers at the same time. However, the 
additional electronics required reduces the main advantage 
of laser pointers: low cost and ubiquity. 
The use of computer vision in HCI has long been a goal of 
the research community. Various excellent survey articles 
[6, 10, 29] discuss progress to date. Much of the research in 
this area that is relevant to large scale displays has focused 
on the relatively difficult task of using vision techniques to 
track freehand gestures. For example, Ringel et al. [26] 
describe a clever system that integrates vision tracking of 
hand poses with a SmartBoard to enable direct hands-on 
interaction with a large display that goes beyond single 
point input. Freeman et al. [11] describe a system for 
controlling a television using freehand gestures, while 
Segen and Kumar [28, 29] describe a VR system that uses 
vision tracking of a small set of hand gestures for spatial 
interaction.  

Early advocates of virtual reality systems [17] and others 
[1, 2] have also explored the use of gestural input for 
interacting with large displays, typically tracking the hand 
and fingers using instrumented gloves. This approach, 
however, is unlikely to succeed in the long term given the 
significant inconvenience of having to put on a glove to 
enable interaction.  
While interacting with computers with freehand gestures 
can appear appealing on the surface, upon deeper analysis it 
is apparent that they do not take advantage of inherent 
human abilities at using physical tools and the rich 
vocabulary of actions that are enabled by those tools, as 
discussed in Rekimoto and Sciammarella [25]. The 
physical form of the tools can often serve as haptic memory 
aids to the user as to what functions they can perform, 
whereas with freehand gestures the user has to rely 
completely on recall from memory. The sizeable literature 
on graspable [9] and tangible [16] interfaces provides 
further evidence of the value of physically manipulable 
entities in the user interface. While some researchers (e.g., 
Ringel et al. [26]) contend that their informal observations 
indicate a strong appeal towards implement-free 
interaction, we note that this preference is for direct touch, 
up-close, interaction on the display surface itself, and not to 
“from afar” interaction. 
Some researchers have investigated implement-based 
gestural interfaces. Clark [5] describes a 3D CAD interface 
using a 3D wand with a button. Deering [7] describes a 
sketching and animation system using a 3D wand. Shaw 
and Green [30] describe a system for two-handed design 
using two 3D trackers with buttons, while Schkolne et al. 
[27] take a hybrid approach: combining hand gestures and 
instrumented physical tools for surface drawing. Note that 
all these systems used some form of tethered tracking 
technology to track the wands and other implements used. 
Wilson et al. describe the XWand [33] and WorldCursor 
[32] systems, which use a wireless wand with buttons and 
sensors to control multiple electrical devices in a complex 
environment. However, their wand is used mainly as a 
pointing and command invocation tool, not for 
screen-based multi degree-of-freedom interactions. 
In short, our analysis of the literature indicates that while a 
variety of different techniques for interacting with large 
displays have been investigated, they all have some 
drawbacks and none has yet emerged as the standard input 
mechanism. The second author and colleagues’ previous 
experience in developing interaction techniques for large 
displays [3, 13, 14] also points to the need for more facile 
input techniques. A promising direction to explore is the 
use of computer vision tracking, which to date has focused 
on tracking freehand gestures. We believe that a more 
fruitful use of computer vision in this domain is to enable 
the tracking of simple, passive, physical tools around which 
sophisticated interaction techniques can be built. Our 
VisionWand is one attempt in this direction. 
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SYSTEM IMPLEMENTATION 
Hardware 
The VisionWand is a simple cylindrical piece of plastic 
with different colored ends (Figure 1a). Different wands 
can be distinguished by different colors of the bodies, the 
ends, or additional markers, allowing for different wands to 
be tracked using our camera setup. No buttons or wheels 
are attached to the wand. A pair of Logitech QuickCam Pro 
3000 cameras are used for tracking. The cameras face a 
back-projected display. The user interacts with the display 
using the wand. (Figure 1b). 
Tracking procedure 
Standard stereo vision techniques are applied to track the 
wand in 3D. The camera pair is calibrated by projecting a 
calibration image on the display. Calibration needs to be 
done only once as long as the cameras, the projector and 
the screen are fixed. At each frame, the body of the wand, 
as well as the two ends, are detected by color in both of the 
images captured: a straight line is fitted to the wand body 
and the colored ends are searched for in the neighborhood 
of the line. A 3D ray, including the spatial coordinates of 
the two ends, is reconstructed from these observations, as 
illustrated in Figure 2. 

 
Figure 2. 3D reconstruction of wand from two cameras. 

The tracking result is shown in Figure 3. The system 
displays the red and blue circles, which show the 
orthogonal projections of the wand ends on the screen. The 
black cross displayed by the system indicates the 
intersection of the 3D ray and the screen. This intersection 
denotes the screen position that the wand is pointing to. We 
display both colored circles simply to give the user an idea 
of how the wand is being tracked, while the black cross 
serves as a pointer. In addition to the spatial positions, we 
make use of the information of two angles: orientation, 
defined as the obliquity of the orthogonal projection of the 
3D ray on the screen, and tilt, defined as the inclination 
between the 3D ray and the screen. 
The tracking is achieved at approximately 20 Hz for a 
single wand. In our current system setup the user’s actions 
are restricted in the space between the cameras and the 
screen, and the tracking works well when the majority of 
the wand body and at least one end can be seen by both 
cameras. We note that different camera configurations 
could be experimented with to reduce occlusions, for 
example, cameras from the top facing down towards the 
user. While our system can recognize different wands, this 
slows down the tracking speed with our current algorithm, 
mainly because we do all image processing on the main 

CPU. Dedicated image processing hardware would 
improve the tracking speed significantly. To maintain high 
update rates when doing our user tests, we use a keyboard 
switch to manually tell the system which wand to track.  

 
Figure 3. Mapping of wand to screen. 

DESIGN PRINCIPLES 
In designing a passive, buttonless, 3D wand input system, 
we have considered several important design issues: 
Inferred actions: the lack of any buttons or other 
electronics on the wand itself implies that the device cannot 
actively communicate any information about its state to the 
computer. Rather, state and action information will have to 
be indirectly inferred by the system. We infer a set of 
postures based on the position and orientation of the wand 
in space, while a set of gestures are determined based on 
the dynamic characteristics of the wand’s movement. 
Figure 4 defines these postures and gestures. The system 
actions associated with these postures and gestures will be 
described as we progress through the paper explaining the 
various interaction techniques and interface widgets. 
Easily understandable actions: one could conceivably use 
the VisionWand to perform a huge set of functions by 
assigning meaning to every permutation of the sensed 3D 
ray’s positions, orientations, and movements. However, 
unless users can easily understand and form a suitable 
mental model of the possible set of actions, the device will 
be essentially useless. To address this issue, we limit the 
number of possible actions to a small set, and provide 
appropriate visual feedback to aid in the comprehension of 
those actions. Where more complex interface behaviour is 
required than is afforded by this set of actions, we either 
compose a sequence of basic actions and/or use appropriate 
visual interface widgets operable by those basic actions. 
Leveraging haptic memory: the literature on tangible 
interfaces [9, 16, 25] indicates that users can take 
significant advantage of haptic memory when using 
physical implements. As such, when selecting which 
postures and gestures of the myriad different possibilities 
afforded by the VisionWand to use, we have deliberately 
chosen those that have very different haptic profiles. These 
are more likely to be easily committed to the user’s haptic 
memory, allowing for essentially eyes-free operation after 
sufficient practice. 
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We note that many standard GUI interaction techniques 
operated by a 2-dof cursor could also be directly used with 
the VisionWand. However, controlling a cursor requires a 
certain amount of precision, which can be difficult to 
perform with a wand operating in unconstrained 3D space. 
As such, we have deliberately attempted to use coarser 
granularity gestures where possible in the designs of the 
following techniques. 
While we demonstrate these techniques and widgets within 
a picture manipulation and navigation application, our 
designs are clearly applicable to a broader set of large 
display applications. The present application is used merely 
as an illustrative example. In this application, the objects 
are pictures scattered on a canvas, and the screen displays a 
part of the canvas. We can move the objects around, 
scale/rotate them, change object properties, navigate around 
the canvas, etc. 
We now describe the basic interactions and widgets 
associated with the VisionWand, followed by a discussion 
of additional functionality that can be achieved by using 
other wands. 
Basic Interactions 
Selection, Moving & Scaling, Deselection 
An object has three possible states: selected, captured, and 
unselected. The captured state is similar to an object being 
dragged by mouse in a standard GUI. Because we do not 
have any buttons to indicate the state of the VisionWand 
itself, we switch between these object states using the tap 
gesture. 

  
Figure 4. VisionWand postures and gestures. (a) Pointing 
posture: point to a position on screen; the end that is nearer 
to the screen is defined as the active end. (b) Parallel 
posture: keep the wand approximately parallel to the screen, 
in any orientation. (c) Tilt gesture: starting from a parallel 
posture, tilt the wand in either direction. (d) Tap gesture: 
quickly move the active end away from the screen and back 
again. (e) Parallel tap gesture: from parallel posture, quickly 
move the entire wand away from the screen and back again. 
(f) Flip gesture: quickly flip the wand end to end, keeping the 
orientation and tilt approximately the same as before the 
gesture. (g, h) Push and Pull gestures: change the distance 
between the wand and the screen. (i) Rotate gesture: 
change the orientation of the wand while keeping it in a 
parallel posture. 

The blue end of the VisionWand performs the basic 
manipulations. While pointing at an object with the blue 
end, a tap gesture captures it (i.e. switches it into captured 
state). The captured object can be moved around by 
pointing the VisionWand at different positions on the 
screen.  
In addition, the scale factor of the object is controlled by 
the distance between the wand and the screen. We can pull 
back the wand to enlarge the object, and push forward to 
shrink it (Figure 5). Since the wand is tracked in 3D, 
moving and scaling can be performed simultaneously. INTERACTION TECHNIQUES and INTERFACE WIDGETS 

 

In the following sections we describe a variety of 
interaction techniques and interface widgets we have 
developed for the VisionWand. We stress that this is an 
exploratory set of techniques intended to investigate as 
thoroughly as possible the design space of VisionWand 
interactions. In some cases our techniques intentionally 
push at the extremes of the VisionWand’s capabilities, 
allowing us to determine the limits of this new approach to 
interaction. We recognize that any real application for large 
displays that seeks to use the VisionWand will have to 
carefully select the most promising of these techniques, and 
perhaps iterate further on them. Initial user feedback 
presented at the end of this paper provides some direction 
in this respect.  

Figure 5. Scaling objects. (a) moving wand towards screen 
shrinks selected object, (b) moving away enlarges object. 
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A second tap gesture releases the object (i.e. switches it 
from captured to selected). A tap gesture in any blank area 
of the screen deselects all currently selected objects. 

A context-sensitive pie menu is triggered by keeping the 
wand in the parallel posture for a short duration. After the 
menu is displayed, we perform rotation of the wand while 
keeping it parallel to the screen to move between different 
items. The current item, which is visually highlighted, 
corresponds to the orientation of the wand. Figure 7 
illustrates. A parallel tap gesture selects the current item.  

Note that individual deselection is not achieved here. A 
straightforward idea of implementing this is to let the 
object cycle through the three states by tap and tap again. 
But this will significantly reduce the efficiency of 
manipulating objects, since it takes more actions to enter 
the desired state. A possible solution to this trade-off is to 
define more gestures than we currently have. For example, 
a quick push for capture and a quick pull for release. 

 

Undo 
A flip gesture acts as an undo command. The most recent 
action is reversed. 
Query 
The red end of the wand acts as a query lens. Figure 6 
illustrates. When the red end points at an object, a property 
sheet is displayed showing some information about the 
object. When the wand is pulled back from the screen, a 
spotlight is cast. All objects inside the spotlight show their 
property sheets. Again, the distance between the wand and 
the screen controls the scale factor (i.e. the radius of the 
spotlight).  

Figure 7. Wand orientation specifies active item in pie menu. 

Note that the selection of menu items makes use of only 
one dimension of information: the wand’s orientation. The 
spatial position and the tilt of the wand are still free for us 
to use for other functionality. With the basic pie menu, the 
menu itself can be moved around by following the spatial 
position of the wand. This allows us to position the menu 
such that it does not occlude objects of interest, while at the 
same time using the rotation of the wand to select items. 
This combination of menu positioning and selection cannot 
be achieved with more traditional 2-dof input techniques. 

Incidentally, the spotlight can also be used as a group 
selection tool. A tap gesture selects all objects inside the 
spotlight. 

 

The wand’s affordances can result in some interesting 
examples of smooth sequencing of several actions in a row, 
with similar but quite distinct types of movements. For 
example, a user can select an object by a tap gesture using 
the blue end of the wand, then use a parallel posture to pop 
up the pie menu, rotate the wand to the “rotate” menu item, 
select it by a parallel tap gesture, and then proceed to rotate 
the selected object by rotating the wand. The object will be 
rotated by the same relative angle as the wand’s rotation. In 
this example, all the steps involved can be performed in a 
continuous, fluid, manner without requiring a pause or 
numerous button clicks. Guimbretière et al. [15] have also 
explored similar fluid techniques using pen input. 

Figure 6. Querying. (a) pointing at object displays properties 
(b) pulling wand back casts query lens spotlight with radius 
proportional to distance of wand from screen. 

Because the menu item selected depends on the orientation 
of the wand, muscle memory can play an important role 
here. We expect that after some practice, the users will 
memorize the hand posture they are in with the most 
commonly used items. This will reduce the burden of visual 
attention, or even improve the efficiency of the interaction. 
The users would put the wand in the expected orientation 
before they actually trigger the menu, thus avoiding the 
necessity of a further rotation to switch to the desired item. 
Marking menus [18] similarly exploit repetitive practice to 
create a menuing system that is operable very quickly by 
expert users. 

Widgets 
Defining a large set of gestures for a large set of functions 
is a burden not only to the system, but also to the users. 
Instead, we deliberately kept our gesture set small but 
designed a set of widgets which help users perform 
complicated tasks with the basic gestures, while still 
exploiting the rich 3D manipulation afforded by the wand. 
Pie Menu 
Menus are the standard widget for selecting from a large set 
of commands. In particular, pie menus [4, 18] with items 
arranged uniformly within a circle are especially suitable 
for our interface because it enables us to exploit the 
inherent orientation capabilities of the wand. 
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Tilt Widgets 
The pie menu interaction described previously only makes 
use of the wand’s spatial position and orientation 
information. The wand’s tilt information can also be used 
advantageously within a pie menu. We have designed two 
tilt widgets that enable tilt to be used either continuously to 
adjust a parameter: tilt dial, or discretely to select from a 
set of values in a sub-menu: tilt menu.  
In our implementation, a tilt widget is associated with an 
item in a pie menu. If we keep the wand within a particular 
menu item for a short while, the associated tilt widget 
appears. We can then tilt the wand in either direction to 
change the widget’s value. Rotating the wand out of that 
pie menu item dismisses the tilt widget and locks its value.  
Figure 8 shows an example of a tilt menu, used to change 
the picture border’s color, and Figure 9 shows an example 
of a tilt dial, used to adjust the picture border’s width. 

 
Figure 8. Tilt menu. 

 
Figure 9. Tilt dial. 

Given that the parent pie menu is always active when 
interacting with tilt widgets, we can modify several 
different parameters in a single continuous sequence of 
actions. For example, we can pop up the pie menu, adjust 
picture border width using the tilt dial associated with the 
“border width” menu item, and then change the color of the 
picture border using the tilt menu associated with the 
“border color” menu item. 
The combination of pie menu and tilt widgets results in a 
unified compound widget for menu selection and parameter 
adjustment. Other researchers have also recently explored 
the idea of combining menu selection and parameter 

adjustment, resulting in several techniques such as 
FlowMenus [15], Control menus [24], and FaST sliders 
[19] that are operable using standard 2-dof input. However, 
we believe that ours is the first to use different input 
modalities – rotation for menu selection and tilt for 
parameter adjustment – for the two actions. It is also 
interesting to note that while many digitizing tablets on the 
market (e.g., Wacom tablets www.wacom.com) have long 
provided information about the tilt of the pen, as far as we 
know no significant exploration of the use of tilt in the 
interface has been conducted. As such, our work 
contributes in this regard as well. 
We also note that these tilt widgets could be used 
independently from a menu, should such functionality be 
desirable within a particular application. 
Dial Panel 
Although tilt widgets can be used to adjust continuous 
parameters, the valid range of tilt is relatively small (about 
-60° to 60°), thus making it unsuitable for delicate 
adjustment of parameters with a large range. We have 
designed a dial panel to address this issue.  
Rotation of the wand while keeping it parallel to the screen 
dials the arm in the panel, thus modifying the parameters. 
Unlike the fixed mapping between tilt angle and parameter 
value in tilt widgets, the parameter controlled by a dial 
panel is modified according to the relative change of 
orientation angle. In this way, we can rotate the wand cycle 
after cycle, and reach an infinite range of value in theory. 
Even so, there is trade-off between the efficiency and 
precision of the adjustment of parameters. Again, we 
exploit the distance between the wand and the screen to 
switch between different granularities of adjustment. When 
the wand is farther from the screen, a larger panel is 
displayed, and the adjustment is faster and coarser. When 
the wand is nearer, a smaller panel is displayed, and the 
adjustment is slower and finer. We can start from the 
coarsest scale, then push forward the wand a little to enter a 
finer scale, and so forth. This results in a very facile 
technique, allowing the user to simultaneously adjust the 
parameter and pick the optimal tradeoff between speed and 
precision in a single fluid interaction. Figure 10 
demonstrates using a dial panel to adjust picture brightness. 
 

 
Figure 10. Dial panel. Granularity is controlled by distance of 
wand from screen; wand orientation dials the value. (a) 
Wand is farthest away from screen, resulting in coarse grain 
adjustment, (b) mid-grain, (c) fine-grain. 
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One concern that arises when utilizing several different 
gestures – tilting, rotating, pulling back – for the various 
widgets is that users may be confused as to which gesture 
to use at any given time. To mitigate this concern, we 
deliberately provided very different visual feedback cues 
(e.g., “+” symbol in layered menus to indicate the presence 
of sub-menus; section-shaped sub-widget with clearly 
demarcated sections for tilt menus) to indicate the 
appropriate gesture to use for the given context. In practice, 
we found that these cues were effective in enabling users to 
employ the correct gesture. 

While the granularity of the dial panel could be controlled 
in a continuous manner, in practice we have found this 
difficult to use. As such, we use a discrete set of possible 
granularities. Again, there’s a tradeoff: too small a set 
cannot provide the expected efficiency, while too large a 
set will increase the difficulty of selecting a granularity and 
staying in it. Preliminary experiments indicate that a set of 
three to four different granularities works well. 
Layered Menu 
When dealing with complicated tasks that require a large 
set of functions, a single level pie menu may not be 
sufficient. Simply increasing the number of items in the pie 
menu will result in increasing the difficulty of positioning 
the wand in the desired orientation. Our solution is a 
layered menu that increases the number of available menu 
items. Similar to the different layers of sub-menus in 
standard GUI, the layered menu organizes the items in a 
tree-structure. Using the distance between the wand and the 
screen again, the layered menu uses the metaphor of several 
layers of menus stacked perpendicular to the screen. Thus, 
we first pop up the root menu, switch to the desired item, 
pull back the wand a little to enter a deeper layer (if the 
current item has sub-menus, marked with “+”), and so 
forth. We can also go back to higher layers by simply 
pushing forward the wand to the proper depth. A parallel 
tap gesture executes the current item if it is a leaf in the 
tree. Figure 11 shows an example of the layered menu. We 
also apply transparency and perspective when drawing the 
menus, in order to reinforce the perception of layering. 
Note that we explored this notion of pushing and pulling in 
depth to activate different layers, rather than simply 
moving the pointer an appropriate distance from the centre 
of the menu as is done in traditional multi-level pie menus, 
because we have already used the X-Y position of the wand 
to control the spatial position of the menu. In other words, 
our VisionWand and layered menu combination affords 
more functionality in a single gestural action than is 
possible with regular 2-dof input techniques. 

Additional Wands 
By having a set of wands that can be tracked and 
distinguished by the system, we can significantly enlarge 
the interaction possibilities. One application is to give 
different wands different privileges, which is a natural 
requirement in supporting collaborative applications. For 
example, we may have a teacher’s wand which has more 
privileges than a students’ wand. Or we can assign the 
objects in the system ownership by different wands. 
Another application is to assign a different set of functions 
to different wands, thus enriching the tasks that can be 
achieved. In this way the wands themselves act as different 
physical widgets. In our current system we have partly 
implemented the latter idea. In addition to the basic wand 
that achieved the interactions we have talked about, we 
have another two wands with more specific functions: the 
navigation wand and the drawing wand. 
Navigation Wand 
In our application, the screen displays only part of a larger 
canvas. A navigation window displayed in the bottom-right 
of the screen shows a thumbnail of the whole canvas, and 
indicates the region that is being displayed by a blue 
rectangle. Using the navigation wand, we can navigate 
through the whole canvas in two ways: using direct 
manipulation, and via a compass widget.  
Direct Manipulation: Pointing to the screen, a tap gesture 
grasps the canvas (the black cross changes to a hand icon). 
Then the whole canvas can be moved and zoomed, similar 
to how we manipulate an object with the basic wand. A 
second tap gesture releases the canvas.  

 

Compass Widget: To achieve more smooth and precise 
navigation, we designed a compass widget (Figure 12). By 
keeping the navigation wand in parallel posture for a short 
while, the compass widget is triggered. Instead of being 
directly dragged by the user, here the canvas moves 
according to the posture of the wand. The orientation of the 
movement is the same as the orientation of the wand, and 
the velocity of the movement is proportional to the tilt of 
the wand. Thus we can navigate throughout the canvas by 
only rotating and tilting the wand. Moving the wand out of 
the screen dismisses the compass widget and locks the 
canvas. 

Figure 11. Layered menus. (a) Single menu, (b) If the 
current active menu item has a sub-menu, which is indicated 
by a “+” symbol, pulling the wand back from the screen 
activates the relevant second layer, (c) Similarly, pulling 
even further back activates a third layer. The wand’s 
orientation determines the active menu item. 

As with the basic wand, a flip gesture restores the canvas to 
the initial position and scale. 
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Figure 12. Compass widget allows navigation by tilting and 
orienting the wand 

Drawing Wand 
The drawing wand simulates the standard function of a 
pencil. The blue end acts as the tip, and the red end act as 
the eraser. When the blue end is touching the screen, a 
stroke can be drawn. Pointing the red end at a stroke for a 
short while deletes that stroke. 
Simultaneous Tracking of Multiple Wands 
Currently our system tracks only one wand at a time, but 
conceptually there is no reason why multiple wands could 
not be tracked simultaneously, further enriching the 
interaction space. A straightforward application of this 
information is to use two hands to work cooperatively. For 
example, use one wand to indicate the current function and 
state, and use another wand to perform the real 
manipulation. Or, use two hands jointly to manipulate large 
objects. Cooperative work by more than one user is also a 
potential area for exploration, especially for large displays. 
INFORMAL USER FEEDBACK 
While our system is still in an exploratory stage, we asked 
five graduate students in our department to try it out for 
some informal early feedback. Each participant was given a 
10 minute demo of how the system and interaction 
techniques work. Then they had 20 minutes to practice the 
gestures and try out all the system functions. The practical 
restriction of the tracking system was explained to them, 
thus they were cooperative users. For example, they knew 
not to block the cameras during the test. 
All users got used to the system in the given 20 minutes of 
practice. They did not have difficulties in learning the basic 
gestures within a few tries. The idea that they can interact 
with the system without necessarily touching the screen 
was found to be appealing. They also found the relationship 
between depth (distance between the wand and the screen) 
and scaling factor easy to grasp. They all became skilled in 
basic manipulation of the pictures in the first few minutes. 
The pie menu used in the system was easily understood 
even by those who had never seen pie menus before. As we 
expected, the users began to remember the menu items 
even in the short 20 minutes’ trial. For the most commonly 
used functions, they tended to put the wand in the correct 
orientation before the menu was actually triggered. While 
many of them expressed the need for the most commonly 
used functions be placed in the most comfortable 

orientations, they were not unanimous in what orientations 
are most comfortable. This may be an interesting topic for 
more extensive user testing. One participant felt it a little 
awkward to rotate the wand with one hand. He suggested 
adding a small handle perpendicular to the wand, with 
which the user could rotate the wand by very small finger 
movements.  
All the participants felt comfortable when using the tilt to 
adjust parameters or select items using our tilt widgets. 
They also liked the different granularities provided by the 
dial panel to do very delicate adjustment of parameters. 
One of them even suggested having different scales of gain 
as well when rotating the pictures, although this may seem 
less obvious. With regards to the layered menu, participants 
were observed easily navigating between different layers 
by simply moving the wand forward or backward. 
The compass widget used with the navigation wand was 
also well received, partly due to familiarity with similar 
widgets in standard GUI interfaces. Due to the noise in the 
tracking system, the drawing functionality is not yet 
satisfactory. The subjects suggested a list of possible 
widgets that may help to improve the drawing, however we 
feel that simply improving the tracking quality would 
obviate the need for these additional widgets. 
Based on our observations of participants using our system, 
we suspect that the size of the gesture set we defined is 
appropriate. The participants all easily memorized the basic 
gestures, and were also able to perform the more 
complicated tasks as well. 
DISCUSSION 
An interesting property of the VisionWand is that when the 
wand is held in different ways, it generates different 
functionality. For example, pointing with the different ends 
of the wand invokes manipulation and query actions 
respectively, while a parallel posture of the wand activates 
a menu. With sufficient practice, users can begin to commit 
these different postures and gestures to haptic memory, 
allowing for very rapid execution. Rekimoto and 
Sciammarella [25] have argued that such “rich action” tools 
can significantly enhance our interaction with 
computational systems. 
The distance between the wand and the screen is a very 
important dimension of information. In our design, we 
make a consistent association between the distance and a 
scaling factor. This consistency is important for the user to 
easily understand the interaction. 
In a basic pie menu, only the orientation is used to select 
the item. In our tilt widgets, we demonstrated the use of 
both orientation and tilt, while in the dial panel and layered 
menu we used orientation and distance. While these dual 
combinations have already increased the input bandwidth 
as compared to standard 2-dof devices, we could go further. 
Given that the wand has 5 degrees-of-freedom: 2-dof 
position, distance, orientation and tilt, theoretically this 
provides the possibility of a 5-dof widget. However, we 
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VIDEOS In our system, gesture recognition occurs continuously 

without the user having to explicitly enter a “recognition” 
mode. This continuous recognition may raise the concern 
of misrecognizing ordinary movement of the wand as 
commands, often referred to as the “clutching problem” in 
virtual reality systems. However, we deliberately kept our 
gesture/posture set small and simple, and the interactions 
are highly dependent on context. Thus the clutching 
problem is to some extent reduced. Although in a 
production system, having a button would be an “easy” 
solution for the user to control when recognition is 
occurring, this would require that the wand have some 
active components. Our insistence on a buttonless wand for 
our research system allowed us to push on the boundaries 
of the design space of passive wands. 

A video demonstrating this system can be downloaded 
from www.dgp.toronto.edu/research/visionwand 
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