
VisionWand: Interaction Techniques for Large Displays
using a Passive Wand Tracked in 3D

Xiang Cao, Ravin Balakrishnan
Department of Computer Science

University of Toronto
caox | ravin @dgp.toronto.edu

www.dgp.toronto.edu

ABSTRACT
A passive wand tracked in 3D using computer vision
techniques is explored as a new input mechanism for
interacting with large displays. We demonstrate a variety of
interaction techniques that exploit the affordances of the
wand, resulting in an effective interface for large scale
interaction. The lack of any buttons or other electronics on
the wand presents a challenge that we address by
developing a set of postures and gestures to track state and
enable command input. We also describe the use of
multiple wands, and posit designs for more complex wands
in the future.
Keywords: vision tracking, large displays, gestures,
interaction techniques, input devices, buttonless input

INTRODUCTION
Large-format upright displays – ranging from 40” to 60”
plasma panels to very large scale (>8’) high-resolution
displays driven by multiple projectors – enable us to work
with very large quantities of simultaneously displayed
visual data, and give multiple people the ability to work
effectively together at a single display. Indeed, in recent
years many researchers have recognized the value of such
large scale displays and have explored a diverse set of
applications for them, including collaborative groupware
[12], electronic whiteboards [8, 21], and industrial design
[3, 13]. Others such as Guimbretière et al. [15] have
investigated more general interaction issues.
While the visual quality of commercially available large
displays is already very high and continues to further
improve, and the range of research applications available
are quite impressive, the question of what input technology
to utilize when interacting with displays of this scale
remains an open one. The most promising and widely
adopted input mechanism to date – single finger or pen
input using a variety of technologies [8],
[www.smarttech.com] – requires the user to stand up close
to the display and is limited to single point two
degree-of-freedom interaction much like when using a

standard mouse. While this constraint is fine for many
applications [12, 15, 21], others [3, 13] benefit from users
operating the interface with higher degree-of-freedom input
devices while standing further away from the display. Input
technologies that have been used for such “from afar”
interaction currently include a variety of 3D trackers [31],
laser pointers [20, 22, 23], custom wands [32, 33], and the
use of computer vision to track users’ hands [6, 10, 29]. All
these technologies, however, have a variety of limitations
which we will discuss later in this paper.
In this paper, we explore the idea of using a passive wand
that is tracked in 3D space using computer vision
techniques as an alternative input device for interaction
with large scale displays. This VisionWand is a simple
plastic rod with colored ends (Figure 1a), without any
embedded electronics, that is tracked by a pair of
commodity (<$100) cameras (Figure 1b). The negligible
cost of the wand allows for multiple versions to be
available, used, or discarded at any time. Since both
endpoints of the wand are tracked in 3D, the resulting input
is a 3D ray, allowing for a richer vocabulary of actions than
is possible with 2D point input. However, the lack of
electronics presents a challenge in that there are no buttons
or other means of directly providing state information from
the device itself. We address this challenge by developing a
set of gestures and postures to enable command input. The
use of a physical wand rather than free-hand gestures not
only simplifies the vision algorithms, but allows for
interaction techniques that take advantage of the
affordances of the physical tool, resulting in “rich-action”
input as defined by Rekimoto and Sciammarella [25]. We
present an exploratory set of interaction techniques that
take advantage of all these features.

Figure 1. (a) VisonWands, (b) System setup.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
UIST ’03 Vancouver, BC, Canada
© 2003 ACM 1-58113-636-6/03/0010 $5.00

Volume 5, Issue 2 173

http://www.smarttech.com/

RELATED WORK
The most common and commercially viable input
technique for large displays are systems that track a single
point of 2-dof input, either by direct touch, use of a pen, or
both. For example, the Liveboard system [8] used an
optical pen, the Stanford Interactive Mural uses a wireless
Ebeam pen [15], while the SmartBoard system
(www.smarttech.com) supports both finger and pen input.
The advantages of these systems are high resolution
tracking and the single point input is backward compatible
with existing GUI interfaces. Limitations include having
only single point 2-dof input, and requiring the user to
work up close to the display, reducing the user’s ability to
visualize the entire large display while interacting.
Another approach is to use optical, electromagnetic,
acoustic, inertial, or radio tracking technologies to track
one or more simultaneous points of input in 3D space. See
Welch et al. [31] for an excellent survey of the various
technologies. While these trackers enable us to prototype
advanced interaction techniques [13, 14], their cost has
remained rather high (ranging from a few thousand dollars
for the cheapest trackers to a few hundred thousand dollars
for more sophisticated motion tracking systems) for over a
decade. As such, they are not practical for widespread use.
Furthermore, the cheaper technologies are typically
tethered, reducing the user’s freedom of movement.
Recently, several researchers have explored the use of
standard laser pointers as input to large displays [20, 22,
23]. These have the advantage of low cost, but have a
fundamental limitation in that there are no buttons to
augment the single point of tracked input. As such, even
standard mouse operations are not possible. To overcome
this, Olsen and Nielsen [23] explored the use of dwell time
and other techniques to replace button presses. Oh and
Stuerzlinger [22] have augmented laser pointers with
buttons, resulting in a “from-afar” input technology that
can operate the entire range of interaction techniques found
in a standard GUI. Using clever multiplexing techniques,
they were even able to differentiate between and track
several laser pointers at the same time. However, the
additional electronics required reduces the main advantage
of laser pointers: low cost and ubiquity.
The use of computer vision in HCI has long been a goal of
the research community. Various excellent survey articles
[6, 10, 29] discuss progress to date. Much of the research in
this area that is relevant to large scale displays has focused
on the relatively difficult task of using vision techniques to
track freehand gestures. For example, Ringel et al. [26]
describe a clever system that integrates vision tracking of
hand poses with a SmartBoard to enable direct hands-on
interaction with a large display that goes beyond single
point input. Freeman et al. [11] describe a system for
controlling a television using freehand gestures, while
Segen and Kumar [28, 29] describe a VR system that uses
vision tracking of a small set of hand gestures for spatial
interaction.

Early advocates of virtual reality systems [17] and others
[1, 2] have also explored the use of gestural input for
interacting with large displays, typically tracking the hand
and fingers using instrumented gloves. This approach,
however, is unlikely to succeed in the long term given the
significant inconvenience of having to put on a glove to
enable interaction.
While interacting with computers with freehand gestures
can appear appealing on the surface, upon deeper analysis it
is apparent that they do not take advantage of inherent
human abilities at using physical tools and the rich
vocabulary of actions that are enabled by those tools, as
discussed in Rekimoto and Sciammarella [25]. The
physical form of the tools can often serve as haptic memory
aids to the user as to what functions they can perform,
whereas with freehand gestures the user has to rely
completely on recall from memory. The sizeable literature
on graspable [9] and tangible [16] interfaces provides
further evidence of the value of physically manipulable
entities in the user interface. While some researchers (e.g.,
Ringel et al. [26]) contend that their informal observations
indicate a strong appeal towards implement-free
interaction, we note that this preference is for direct touch,
up-close, interaction on the display surface itself, and not to
“from afar” interaction.
Some researchers have investigated implement-based
gestural interfaces. Clark [5] describes a 3D CAD interface
using a 3D wand with a button. Deering [7] describes a
sketching and animation system using a 3D wand. Shaw
and Green [30] describe a system for two-handed design
using two 3D trackers with buttons, while Schkolne et al.
[27] take a hybrid approach: combining hand gestures and
instrumented physical tools for surface drawing. Note that
all these systems used some form of tethered tracking
technology to track the wands and other implements used.
Wilson et al. describe the XWand [33] and WorldCursor
[32] systems, which use a wireless wand with buttons and
sensors to control multiple electrical devices in a complex
environment. However, their wand is used mainly as a
pointing and command invocation tool, not for
screen-based multi degree-of-freedom interactions.
In short, our analysis of the literature indicates that while a
variety of different techniques for interacting with large
displays have been investigated, they all have some
drawbacks and none has yet emerged as the standard input
mechanism. The second author and colleagues’ previous
experience in developing interaction techniques for large
displays [3, 13, 14] also points to the need for more facile
input techniques. A promising direction to explore is the
use of computer vision tracking, which to date has focused
on tracking freehand gestures. We believe that a more
fruitful use of computer vision in this domain is to enable
the tracking of simple, passive, physical tools around which
sophisticated interaction techniques can be built. Our
VisionWand is one attempt in this direction.

Volume 5, Issue 2 174

http://www.smarttech.com/

SYSTEM IMPLEMENTATION
Hardware
The VisionWand is a simple cylindrical piece of plastic
with different colored ends (Figure 1a). Different wands
can be distinguished by different colors of the bodies, the
ends, or additional markers, allowing for different wands to
be tracked using our camera setup. No buttons or wheels
are attached to the wand. A pair of Logitech QuickCam Pro
3000 cameras are used for tracking. The cameras face a
back-projected display. The user interacts with the display
using the wand. (Figure 1b).
Tracking procedure
Standard stereo vision techniques are applied to track the
wand in 3D. The camera pair is calibrated by projecting a
calibration image on the display. Calibration needs to be
done only once as long as the cameras, the projector and
the screen are fixed. At each frame, the body of the wand,
as well as the two ends, are detected by color in both of the
images captured: a straight line is fitted to the wand body
and the colored ends are searched for in the neighborhood
of the line. A 3D ray, including the spatial coordinates of
the two ends, is reconstructed from these observations, as
illustrated in Figure 2.

Figure 2. 3D reconstruction of wand from two cameras.

The tracking result is shown in Figure 3. The system
displays the red and blue circles, which show the
orthogonal projections of the wand ends on the screen. The
black cross displayed by the system indicates the
intersection of the 3D ray and the screen. This intersection
denotes the screen position that the wand is pointing to. We
display both colored circles simply to give the user an idea
of how the wand is being tracked, while the black cross
serves as a pointer. In addition to the spatial positions, we
make use of the information of two angles: orientation,
defined as the obliquity of the orthogonal projection of the
3D ray on the screen, and tilt, defined as the inclination
between the 3D ray and the screen.
The tracking is achieved at approximately 20 Hz for a
single wand. In our current system setup the user’s actions
are restricted in the space between the cameras and the
screen, and the tracking works well when the majority of
the wand body and at least one end can be seen by both
cameras. We note that different camera configurations
could be experimented with to reduce occlusions, for
example, cameras from the top facing down towards the
user. While our system can recognize different wands, this
slows down the tracking speed with our current algorithm,
mainly because we do all image processing on the main

CPU. Dedicated image processing hardware would
improve the tracking speed significantly. To maintain high
update rates when doing our user tests, we use a keyboard
switch to manually tell the system which wand to track.

Figure 3. Mapping of wand to screen.

DESIGN PRINCIPLES
In designing a passive, buttonless, 3D wand input system,
we have considered several important design issues:
Inferred actions: the lack of any buttons or other
electronics on the wand itself implies that the device cannot
actively communicate any information about its state to the
computer. Rather, state and action information will have to
be indirectly inferred by the system. We infer a set of
postures based on the position and orientation of the wand
in space, while a set of gestures are determined based on
the dynamic characteristics of the wand’s movement.
Figure 4 defines these postures and gestures. The system
actions associated with these postures and gestures will be
described as we progress through the paper explaining the
various interaction techniques and interface widgets.
Easily understandable actions: one could conceivably use
the VisionWand to perform a huge set of functions by
assigning meaning to every permutation of the sensed 3D
ray’s positions, orientations, and movements. However,
unless users can easily understand and form a suitable
mental model of the possible set of actions, the device will
be essentially useless. To address this issue, we limit the
number of possible actions to a small set, and provide
appropriate visual feedback to aid in the comprehension of
those actions. Where more complex interface behaviour is
required than is afforded by this set of actions, we either
compose a sequence of basic actions and/or use appropriate
visual interface widgets operable by those basic actions.
Leveraging haptic memory: the literature on tangible
interfaces [9, 16, 25] indicates that users can take
significant advantage of haptic memory when using
physical implements. As such, when selecting which
postures and gestures of the myriad different possibilities
afforded by the VisionWand to use, we have deliberately
chosen those that have very different haptic profiles. These
are more likely to be easily committed to the user’s haptic
memory, allowing for essentially eyes-free operation after
sufficient practice.

Volume 5, Issue 2 175

We note that many standard GUI interaction techniques
operated by a 2-dof cursor could also be directly used with
the VisionWand. However, controlling a cursor requires a
certain amount of precision, which can be difficult to
perform with a wand operating in unconstrained 3D space.
As such, we have deliberately attempted to use coarser
granularity gestures where possible in the designs of the
following techniques.
While we demonstrate these techniques and widgets within
a picture manipulation and navigation application, our
designs are clearly applicable to a broader set of large
display applications. The present application is used merely
as an illustrative example. In this application, the objects
are pictures scattered on a canvas, and the screen displays a
part of the canvas. We can move the objects around,
scale/rotate them, change object properties, navigate around
the canvas, etc.
We now describe the basic interactions and widgets
associated with the VisionWand, followed by a discussion
of additional functionality that can be achieved by using
other wands.
Basic Interactions
Selection, Moving & Scaling, Deselection
An object has three possible states: selected, captured, and
unselected. The captured state is similar to an object being
dragged by mouse in a standard GUI. Because we do not
have any buttons to indicate the state of the VisionWand
itself, we switch between these object states using the tap
gesture.

Figure 4. VisionWand postures and gestures. (a) Pointing
posture: point to a position on screen; the end that is nearer
to the screen is defined as the active end. (b) Parallel
posture: keep the wand approximately parallel to the screen,
in any orientation. (c) Tilt gesture: starting from a parallel
posture, tilt the wand in either direction. (d) Tap gesture:
quickly move the active end away from the screen and back
again. (e) Parallel tap gesture: from parallel posture, quickly
move the entire wand away from the screen and back again.
(f) Flip gesture: quickly flip the wand end to end, keeping the
orientation and tilt approximately the same as before the
gesture. (g, h) Push and Pull gestures: change the distance
between the wand and the screen. (i) Rotate gesture:
change the orientation of the wand while keeping it in a
parallel posture.

The blue end of the VisionWand performs the basic
manipulations. While pointing at an object with the blue
end, a tap gesture captures it (i.e. switches it into captured
state). The captured object can be moved around by
pointing the VisionWand at different positions on the
screen.
In addition, the scale factor of the object is controlled by
the distance between the wand and the screen. We can pull
back the wand to enlarge the object, and push forward to
shrink it (Figure 5). Since the wand is tracked in 3D,
moving and scaling can be performed simultaneously. INTERACTION TECHNIQUES and INTERFACE WIDGETS

In the following sections we describe a variety of
interaction techniques and interface widgets we have
developed for the VisionWand. We stress that this is an
exploratory set of techniques intended to investigate as
thoroughly as possible the design space of VisionWand
interactions. In some cases our techniques intentionally
push at the extremes of the VisionWand’s capabilities,
allowing us to determine the limits of this new approach to
interaction. We recognize that any real application for large
displays that seeks to use the VisionWand will have to
carefully select the most promising of these techniques, and
perhaps iterate further on them. Initial user feedback
presented at the end of this paper provides some direction
in this respect.

Figure 5. Scaling objects. (a) moving wand towards screen
shrinks selected object, (b) moving away enlarges object.

Volume 5, Issue 2 176

A second tap gesture releases the object (i.e. switches it
from captured to selected). A tap gesture in any blank area
of the screen deselects all currently selected objects.

A context-sensitive pie menu is triggered by keeping the
wand in the parallel posture for a short duration. After the
menu is displayed, we perform rotation of the wand while
keeping it parallel to the screen to move between different
items. The current item, which is visually highlighted,
corresponds to the orientation of the wand. Figure 7
illustrates. A parallel tap gesture selects the current item.

Note that individual deselection is not achieved here. A
straightforward idea of implementing this is to let the
object cycle through the three states by tap and tap again.
But this will significantly reduce the efficiency of
manipulating objects, since it takes more actions to enter
the desired state. A possible solution to this trade-off is to
define more gestures than we currently have. For example,
a quick push for capture and a quick pull for release.

Undo
A flip gesture acts as an undo command. The most recent
action is reversed.
Query
The red end of the wand acts as a query lens. Figure 6
illustrates. When the red end points at an object, a property
sheet is displayed showing some information about the
object. When the wand is pulled back from the screen, a
spotlight is cast. All objects inside the spotlight show their
property sheets. Again, the distance between the wand and
the screen controls the scale factor (i.e. the radius of the
spotlight).

Figure 7. Wand orientation specifies active item in pie menu.

Note that the selection of menu items makes use of only
one dimension of information: the wand’s orientation. The
spatial position and the tilt of the wand are still free for us
to use for other functionality. With the basic pie menu, the
menu itself can be moved around by following the spatial
position of the wand. This allows us to position the menu
such that it does not occlude objects of interest, while at the
same time using the rotation of the wand to select items.
This combination of menu positioning and selection cannot
be achieved with more traditional 2-dof input techniques.

Incidentally, the spotlight can also be used as a group
selection tool. A tap gesture selects all objects inside the
spotlight.

The wand’s affordances can result in some interesting
examples of smooth sequencing of several actions in a row,
with similar but quite distinct types of movements. For
example, a user can select an object by a tap gesture using
the blue end of the wand, then use a parallel posture to pop
up the pie menu, rotate the wand to the “rotate” menu item,
select it by a parallel tap gesture, and then proceed to rotate
the selected object by rotating the wand. The object will be
rotated by the same relative angle as the wand’s rotation. In
this example, all the steps involved can be performed in a
continuous, fluid, manner without requiring a pause or
numerous button clicks. Guimbretière et al. [15] have also
explored similar fluid techniques using pen input.

Figure 6. Querying. (a) pointing at object displays properties
(b) pulling wand back casts query lens spotlight with radius
proportional to distance of wand from screen.

Because the menu item selected depends on the orientation
of the wand, muscle memory can play an important role
here. We expect that after some practice, the users will
memorize the hand posture they are in with the most
commonly used items. This will reduce the burden of visual
attention, or even improve the efficiency of the interaction.
The users would put the wand in the expected orientation
before they actually trigger the menu, thus avoiding the
necessity of a further rotation to switch to the desired item.
Marking menus [18] similarly exploit repetitive practice to
create a menuing system that is operable very quickly by
expert users.

Widgets
Defining a large set of gestures for a large set of functions
is a burden not only to the system, but also to the users.
Instead, we deliberately kept our gesture set small but
designed a set of widgets which help users perform
complicated tasks with the basic gestures, while still
exploiting the rich 3D manipulation afforded by the wand.
Pie Menu
Menus are the standard widget for selecting from a large set
of commands. In particular, pie menus [4, 18] with items
arranged uniformly within a circle are especially suitable
for our interface because it enables us to exploit the
inherent orientation capabilities of the wand.

Volume 5, Issue 2 177

Tilt Widgets
The pie menu interaction described previously only makes
use of the wand’s spatial position and orientation
information. The wand’s tilt information can also be used
advantageously within a pie menu. We have designed two
tilt widgets that enable tilt to be used either continuously to
adjust a parameter: tilt dial, or discretely to select from a
set of values in a sub-menu: tilt menu.
In our implementation, a tilt widget is associated with an
item in a pie menu. If we keep the wand within a particular
menu item for a short while, the associated tilt widget
appears. We can then tilt the wand in either direction to
change the widget’s value. Rotating the wand out of that
pie menu item dismisses the tilt widget and locks its value.
Figure 8 shows an example of a tilt menu, used to change
the picture border’s color, and Figure 9 shows an example
of a tilt dial, used to adjust the picture border’s width.

Figure 8. Tilt menu.

Figure 9. Tilt dial.

Given that the parent pie menu is always active when
interacting with tilt widgets, we can modify several
different parameters in a single continuous sequence of
actions. For example, we can pop up the pie menu, adjust
picture border width using the tilt dial associated with the
“border width” menu item, and then change the color of the
picture border using the tilt menu associated with the
“border color” menu item.
The combination of pie menu and tilt widgets results in a
unified compound widget for menu selection and parameter
adjustment. Other researchers have also recently explored
the idea of combining menu selection and parameter

adjustment, resulting in several techniques such as
FlowMenus [15], Control menus [24], and FaST sliders
[19] that are operable using standard 2-dof input. However,
we believe that ours is the first to use different input
modalities – rotation for menu selection and tilt for
parameter adjustment – for the two actions. It is also
interesting to note that while many digitizing tablets on the
market (e.g., Wacom tablets www.wacom.com) have long
provided information about the tilt of the pen, as far as we
know no significant exploration of the use of tilt in the
interface has been conducted. As such, our work
contributes in this regard as well.
We also note that these tilt widgets could be used
independently from a menu, should such functionality be
desirable within a particular application.
Dial Panel
Although tilt widgets can be used to adjust continuous
parameters, the valid range of tilt is relatively small (about
-60° to 60°), thus making it unsuitable for delicate
adjustment of parameters with a large range. We have
designed a dial panel to address this issue.
Rotation of the wand while keeping it parallel to the screen
dials the arm in the panel, thus modifying the parameters.
Unlike the fixed mapping between tilt angle and parameter
value in tilt widgets, the parameter controlled by a dial
panel is modified according to the relative change of
orientation angle. In this way, we can rotate the wand cycle
after cycle, and reach an infinite range of value in theory.
Even so, there is trade-off between the efficiency and
precision of the adjustment of parameters. Again, we
exploit the distance between the wand and the screen to
switch between different granularities of adjustment. When
the wand is farther from the screen, a larger panel is
displayed, and the adjustment is faster and coarser. When
the wand is nearer, a smaller panel is displayed, and the
adjustment is slower and finer. We can start from the
coarsest scale, then push forward the wand a little to enter a
finer scale, and so forth. This results in a very facile
technique, allowing the user to simultaneously adjust the
parameter and pick the optimal tradeoff between speed and
precision in a single fluid interaction. Figure 10
demonstrates using a dial panel to adjust picture brightness.

Figure 10. Dial panel. Granularity is controlled by distance of
wand from screen; wand orientation dials the value. (a)
Wand is farthest away from screen, resulting in coarse grain
adjustment, (b) mid-grain, (c) fine-grain.

Volume 5, Issue 2 178

http://www.wacom.com/

One concern that arises when utilizing several different
gestures – tilting, rotating, pulling back – for the various
widgets is that users may be confused as to which gesture
to use at any given time. To mitigate this concern, we
deliberately provided very different visual feedback cues
(e.g., “+” symbol in layered menus to indicate the presence
of sub-menus; section-shaped sub-widget with clearly
demarcated sections for tilt menus) to indicate the
appropriate gesture to use for the given context. In practice,
we found that these cues were effective in enabling users to
employ the correct gesture.

While the granularity of the dial panel could be controlled
in a continuous manner, in practice we have found this
difficult to use. As such, we use a discrete set of possible
granularities. Again, there’s a tradeoff: too small a set
cannot provide the expected efficiency, while too large a
set will increase the difficulty of selecting a granularity and
staying in it. Preliminary experiments indicate that a set of
three to four different granularities works well.
Layered Menu
When dealing with complicated tasks that require a large
set of functions, a single level pie menu may not be
sufficient. Simply increasing the number of items in the pie
menu will result in increasing the difficulty of positioning
the wand in the desired orientation. Our solution is a
layered menu that increases the number of available menu
items. Similar to the different layers of sub-menus in
standard GUI, the layered menu organizes the items in a
tree-structure. Using the distance between the wand and the
screen again, the layered menu uses the metaphor of several
layers of menus stacked perpendicular to the screen. Thus,
we first pop up the root menu, switch to the desired item,
pull back the wand a little to enter a deeper layer (if the
current item has sub-menus, marked with “+”), and so
forth. We can also go back to higher layers by simply
pushing forward the wand to the proper depth. A parallel
tap gesture executes the current item if it is a leaf in the
tree. Figure 11 shows an example of the layered menu. We
also apply transparency and perspective when drawing the
menus, in order to reinforce the perception of layering.
Note that we explored this notion of pushing and pulling in
depth to activate different layers, rather than simply
moving the pointer an appropriate distance from the centre
of the menu as is done in traditional multi-level pie menus,
because we have already used the X-Y position of the wand
to control the spatial position of the menu. In other words,
our VisionWand and layered menu combination affords
more functionality in a single gestural action than is
possible with regular 2-dof input techniques.

Additional Wands
By having a set of wands that can be tracked and
distinguished by the system, we can significantly enlarge
the interaction possibilities. One application is to give
different wands different privileges, which is a natural
requirement in supporting collaborative applications. For
example, we may have a teacher’s wand which has more
privileges than a students’ wand. Or we can assign the
objects in the system ownership by different wands.
Another application is to assign a different set of functions
to different wands, thus enriching the tasks that can be
achieved. In this way the wands themselves act as different
physical widgets. In our current system we have partly
implemented the latter idea. In addition to the basic wand
that achieved the interactions we have talked about, we
have another two wands with more specific functions: the
navigation wand and the drawing wand.
Navigation Wand
In our application, the screen displays only part of a larger
canvas. A navigation window displayed in the bottom-right
of the screen shows a thumbnail of the whole canvas, and
indicates the region that is being displayed by a blue
rectangle. Using the navigation wand, we can navigate
through the whole canvas in two ways: using direct
manipulation, and via a compass widget.
Direct Manipulation: Pointing to the screen, a tap gesture
grasps the canvas (the black cross changes to a hand icon).
Then the whole canvas can be moved and zoomed, similar
to how we manipulate an object with the basic wand. A
second tap gesture releases the canvas.

Compass Widget: To achieve more smooth and precise
navigation, we designed a compass widget (Figure 12). By
keeping the navigation wand in parallel posture for a short
while, the compass widget is triggered. Instead of being
directly dragged by the user, here the canvas moves
according to the posture of the wand. The orientation of the
movement is the same as the orientation of the wand, and
the velocity of the movement is proportional to the tilt of
the wand. Thus we can navigate throughout the canvas by
only rotating and tilting the wand. Moving the wand out of
the screen dismisses the compass widget and locks the
canvas.

Figure 11. Layered menus. (a) Single menu, (b) If the
current active menu item has a sub-menu, which is indicated
by a “+” symbol, pulling the wand back from the screen
activates the relevant second layer, (c) Similarly, pulling
even further back activates a third layer. The wand’s
orientation determines the active menu item.

As with the basic wand, a flip gesture restores the canvas to
the initial position and scale.

Volume 5, Issue 2 179

Figure 12. Compass widget allows navigation by tilting and
orienting the wand

Drawing Wand
The drawing wand simulates the standard function of a
pencil. The blue end acts as the tip, and the red end act as
the eraser. When the blue end is touching the screen, a
stroke can be drawn. Pointing the red end at a stroke for a
short while deletes that stroke.
Simultaneous Tracking of Multiple Wands
Currently our system tracks only one wand at a time, but
conceptually there is no reason why multiple wands could
not be tracked simultaneously, further enriching the
interaction space. A straightforward application of this
information is to use two hands to work cooperatively. For
example, use one wand to indicate the current function and
state, and use another wand to perform the real
manipulation. Or, use two hands jointly to manipulate large
objects. Cooperative work by more than one user is also a
potential area for exploration, especially for large displays.
INFORMAL USER FEEDBACK
While our system is still in an exploratory stage, we asked
five graduate students in our department to try it out for
some informal early feedback. Each participant was given a
10 minute demo of how the system and interaction
techniques work. Then they had 20 minutes to practice the
gestures and try out all the system functions. The practical
restriction of the tracking system was explained to them,
thus they were cooperative users. For example, they knew
not to block the cameras during the test.
All users got used to the system in the given 20 minutes of
practice. They did not have difficulties in learning the basic
gestures within a few tries. The idea that they can interact
with the system without necessarily touching the screen
was found to be appealing. They also found the relationship
between depth (distance between the wand and the screen)
and scaling factor easy to grasp. They all became skilled in
basic manipulation of the pictures in the first few minutes.
The pie menu used in the system was easily understood
even by those who had never seen pie menus before. As we
expected, the users began to remember the menu items
even in the short 20 minutes’ trial. For the most commonly
used functions, they tended to put the wand in the correct
orientation before the menu was actually triggered. While
many of them expressed the need for the most commonly
used functions be placed in the most comfortable

orientations, they were not unanimous in what orientations
are most comfortable. This may be an interesting topic for
more extensive user testing. One participant felt it a little
awkward to rotate the wand with one hand. He suggested
adding a small handle perpendicular to the wand, with
which the user could rotate the wand by very small finger
movements.
All the participants felt comfortable when using the tilt to
adjust parameters or select items using our tilt widgets.
They also liked the different granularities provided by the
dial panel to do very delicate adjustment of parameters.
One of them even suggested having different scales of gain
as well when rotating the pictures, although this may seem
less obvious. With regards to the layered menu, participants
were observed easily navigating between different layers
by simply moving the wand forward or backward.
The compass widget used with the navigation wand was
also well received, partly due to familiarity with similar
widgets in standard GUI interfaces. Due to the noise in the
tracking system, the drawing functionality is not yet
satisfactory. The subjects suggested a list of possible
widgets that may help to improve the drawing, however we
feel that simply improving the tracking quality would
obviate the need for these additional widgets.
Based on our observations of participants using our system,
we suspect that the size of the gesture set we defined is
appropriate. The participants all easily memorized the basic
gestures, and were also able to perform the more
complicated tasks as well.
DISCUSSION
An interesting property of the VisionWand is that when the
wand is held in different ways, it generates different
functionality. For example, pointing with the different ends
of the wand invokes manipulation and query actions
respectively, while a parallel posture of the wand activates
a menu. With sufficient practice, users can begin to commit
these different postures and gestures to haptic memory,
allowing for very rapid execution. Rekimoto and
Sciammarella [25] have argued that such “rich action” tools
can significantly enhance our interaction with
computational systems.
The distance between the wand and the screen is a very
important dimension of information. In our design, we
make a consistent association between the distance and a
scaling factor. This consistency is important for the user to
easily understand the interaction.
In a basic pie menu, only the orientation is used to select
the item. In our tilt widgets, we demonstrated the use of
both orientation and tilt, while in the dial panel and layered
menu we used orientation and distance. While these dual
combinations have already increased the input bandwidth
as compared to standard 2-dof devices, we could go further.
Given that the wand has 5 degrees-of-freedom: 2-dof
position, distance, orientation and tilt, theoretically this
provides the possibility of a 5-dof widget. However, we

Volume 5, Issue 2 180

ACKNOWLEDGEMENTS suspect that there is some limit beyond which the
complexity of the widget will overcome the advantages of
simultaneously using multiple degrees-of-freedom of the
wand. It would be interesting to experimentally evaluate
the limits to which we can push the complexity of our
wands.

We thank Michael Wu and Gonzalo Ramos for help with
image and video production; Allan Jepson, Joe Laszlo and
members of the Dynamic Graphics Project laboratory
(www.dgp.toronto.edu) at the University of Toronto for
valuable ideas and discussions.
VIDEOS In our system, gesture recognition occurs continuously

without the user having to explicitly enter a “recognition”
mode. This continuous recognition may raise the concern
of misrecognizing ordinary movement of the wand as
commands, often referred to as the “clutching problem” in
virtual reality systems. However, we deliberately kept our
gesture/posture set small and simple, and the interactions
are highly dependent on context. Thus the clutching
problem is to some extent reduced. Although in a
production system, having a button would be an “easy”
solution for the user to control when recognition is
occurring, this would require that the wand have some
active components. Our insistence on a buttonless wand for
our research system allowed us to push on the boundaries
of the design space of passive wands.

A video demonstrating this system can be downloaded
from www.dgp.toronto.edu/research/visionwand
REFERENCES
1. Baudel, T., & Beaudoin-Lafon, M. (1993). Charade:

remote control of objects using free-hand gestures.
Communications of the ACM, 36(7). p. 28-35.

2. Bolt, R. (1980). Put-that-there: Voice and gesture at
the graphics interface. ACM SIGGRAPH Computer
Graphics, 14(3). p. 262-270.

3. Buxton, W., Fitzmaurice, G., Balakrishnan, R., &
Kurtenbach, G. (2000). Large displays in automotive
design. IEEE Computer Graphics and Applications,
July/Aug 2000. p. 68-75.

4. Callahan, J., Hopkins, D., Weiser, M., &
Shneiderman, B. (1988). A comparative analysis of
pie menu performance. ACM CHI Conference on
Human Factors in Computing Systems.

In addition to a standard pen-shaped wand, wands of other
shapes may also provide different possibilities of
interactions. A cross-shaped wand that has more than two
ends may be assigned more functions, each function to one
end. Alternatively, more than one end may be used
simultaneously. Wands with manipulable elements, such as
foldable arms, or spring-loaded barrels within wands could
also be interesting possibilities for future exploration.

5. Clark, J.H. (1976). Designing surfaces in 3D.
Communications of the ACM, 19(8). p. 454-460.

6. Crowley, J., Coutaz, J., & Bérard, F. (2000).
Perceptual user interfaces: things that see.
Communications of the ACM, 43(3). p. 54-64. Finally, one could imagine designing wands with more

dramatic haptic features. For example, we could make one
half of the wand have a rough texture or be thicker. This
would allow the user to determine the wand’s orientation
by tactile feel alone. We caution, however, that one of the
nice features of the wands used in our system is its very
low cost. Adding additional physical properties may
increase the cost, another trade-off to consider.

7. Deering, M. (1995). HoloSketch: a virtual reality
sketching/animation tool. ACM Transactions on
Computer-Human Interaction, 2(3). p. 220-238.

8. Elrod, S., et al. (1991). Liveboard: a large interactive
display supporting group meetings, presentations, and
remote collaboration. ACM CHI Conference on
Human Factors in Computing Systems. p. 599-607. CONCLUSIONS

9. Fitzmaurice, G.W., Ishii, H., & Buxton, W. (1995).
Bricks: Laying the foundations for graspable user
interfaces. ACM CHI Conference on Human Factors
in Computing Systems. p. 442-449.

Our work has explored a variety of techniques and interface
widgets for interacting with large scale displays using a
buttonless passive wand tracked in 3D. While our tracking
implementation could be improved, it was more than
sufficient to explore a wide range of alternatives. Our own
experience with using the system, and observations during
our informal user study, indicate that the gestures and
postures of wand based interaction is easily understood and
used, particularly when the set of such actions is kept
reasonably small. As our interaction with computers
increasingly moves away from the standard desktop to
other form factors, including large displays, it is critical
that we continue to explore alternative input and interaction
modalities that are well suited to the new media, rather than
relying by default on techniques designed for the previous
generation of technology. The work presented here is one
step in this exploration.

10. Freeman, W., Beardsley, P., Kage, H., Tanaka, K.-I.,
Kyuma, K., & Weissman, C. (2000). Computer vision
for computer interaction. ACM SIGGRAPH Computer
Graphics, 33(4). p. 65-68.

11. Freeman, W., & Weissman, C. (1995). Television
control by hand gestures. International Workshop on
Automatic Face and Gesture Recognition. p. 179-183.

12. Greenberg, S., & Rounding, M. (2001). The
notification collage: posting information to public and
personal displays. ACM CHI Conference on Human
Factors in Computing Systems. p. 514-521.

13. Grossman, T., Balakrishnan, R., Kurtenbach, G.,
Fitzmaurice, G., Khan, A., & Buxton, B. (2001).

Volume 5, Issue 2 181

http://www.dgp.toronto.edu/
http://www.dgp.toronto.edu/research/visionwand

Interaction techniques for 3D modeling on large
displays. ACM I3DG 1999 Symposium on Interactive
3D Graphics. p. 17-23.

14. Grossman, T., Balakrishnan, R., Kurtenbach, G.,
Fitzmaurice, G., Khan, A., & Buxton, B. (2002).
Creating principal 3D curves with digital tape
drawing. ACM CHI Conference on Human Factors in
Computing Systems. p. 121-128.

15. Guimbretière, F., Stone, M., & Winograd, T. (2001).
Fluid interaction with high-resolution wall-size
displays. ACM UIST Symposium on User Interface
Software and Technology.

16. Ishii, H., & Ullmer, B. (1997). Tangible bits: towards
seamless interfaces between people, bits and atoms.
ACM CHI Conference on Human Factors in
Computing Systems. p. 234-241.

17. Krueger, M., Artificial Reality II. 1991:
Addison-Wesley.

18. Kurtenbach, G., & Buxton, W. (1993). The limits of
expert performance using hierarchical marking menus.
ACM CHI Conference on Human Factors in
Computing Systems. p. 35-42.

19. McGuffin, M., Burtnyk, N., & Kurtenbach, G. (2002).
FaST Sliders: Integrating marking menus and the
adjustment of continuous values. Graphics Interface.

20. Myers, B., Bhatnagar, R., Nichols, J., Peck, C.H.,
Kong, D., Miller, R., & Long, C. (2002). Interacting at
a distance: measuring the performance of laser
pointers and other devices. ACM CHI Conference on
Human Factors in Computing Systems. p. 33-40.

21. Mynatt, E., Igarashi, T., Edwards, W., & LaMarca, A.
(1999). Flatland: New dimensions in office
whiteboards. ACM CHI Conference on Human
Factors in Computing Systems. p. 346-353.

22. Oh, J.-Y., & Stuerzlinger, W. (2002). Laser pointers
as collaborative pointing devices. Graphics Interface.
p. 141-149.

23. Olsen, D.R., & Nielsen, T. (2001). Laser pointer
interaction. ACM CHI Conference on Human Factors
in Computing Systems. p. 17-22.

24. Pook, S., Lecolinet, E., Vaysseix, G., & Barillot, E.
(2000). Control menus: Execution and control in a
single interactor. ACM CHI Conference on Human
Factors in Computing Systems (Extended Abstracts).
p. 263-264.

25. Rekimoto, J., & Sciammarella, E. (2000). ToolStone:
Effective use of the physical manipulation
vocabularies of input devices. ACM UIST Symposium
on User Interface Software and Technology. p.
109-117.

26. Ringel, M., Berg, H., Jin, Y., & Winograd, T. (2001).
Barehands: implement-free interaction with a
wall-mounted display. ACM CHI Conference on
Human Factors in Computing Systems (Extended
Abstracts). p. 367-368.

27. Schkolne, S., Pruett, M., & Schroeder, P. (2001).
Surface drawing: Creating organic 3D shapes with the
hand and tangible tools. ACM CHI Conference on
Human Factors in Computing Systems. p. 261-268.

28. Segen, J., & Kumar, S. (1998). Gesture VR:
Vision-based 3D hand interface for spatial interaction.
ACM International Conference on Multimedia. p.
455-464.

29. Segen, J., & Kumar, S. (2000). Look ma, no mouse!
Communications of the ACM, 43(7). p. 102-109.

30. Shaw, C., & Green, M. (1994). Two handed polygonal
surface design. ACM UIST ACM Symposium on User
Interface Software and Technology. p. 205-212.

31. Welch, G., & Foxlin, E. (2002). Motion tracking: No
silver bullet, but a respectable arsenal. IEEE
Computer Graphics and Applications, special issue on
“Tracking", 22(6). p. 24-38.

32. Wilson, A., & Pham, H. (2003). Pointing in intelligent
environments with the World Cursor. INTERACT
International Conference on Human-Computer
Interaction.

33. Wilson, A., & Shafer, S. (2003). XWand: UI for
intelligent spaces. ACM CHI Conference on Human
Factors in Computing Systems. p. 545-522.

Volume 5, Issue 2 182

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	SYSTEM IMPLEMENTATION
	Hardware
	Tracking procedure

	DESIGN PRINCIPLES
	INTERACTION TECHNIQUES and INTERFACE WIDGETS
	Basic Interactions
	Selection, Moving & Scaling, Deselection
	Undo
	Query

	Widgets
	Pie Menu
	Tilt Widgets
	Dial Panel
	Layered Menu

	Additional Wands
	Navigation Wand
	Drawing Wand
	Simultaneous Tracking of Multiple Wands

	INFORMAL USER FEEDBACK
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	VIDEOS
	REFERENCES

