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Abstract

Atmospheric turbulence presents a significant challenge
in long-range imaging. Current restoration algorithms of-
ten struggle with temporal inconsistency, as well as lim-
ited generalization ability across varying turbulence lev-
els and scene content different than the training data. To
tackle these issues, we introduce a self-supervised method,
Consistent Video Restoration through Turbulence (Con-
VRT) a test-time optimization method featuring a neural
video representation designed to enhance temporal consis-
tency in restoration. A key innovation of ConVRT is the
integration of a pretrained vision-language model (CLIP)
for semantic-oriented supervision, which steers the restora-
tion towards sharp, photorealistic images in the CLIP latent
space. We further develop a principled selection strategy of
text prompts, based on their statistical correlation with a
perceptual metric. ConVRT’s test-time optimization allows
it to adapt to a wide range of real-world turbulence con-
ditions, effectively leveraging the insights gained from pre-
trained models on simulated data. ConVRT offers a com-
prehensive and effective solution for mitigating real-world
turbulence in dynamic videos.

1. Introduction

Atmospheric turbulence often occurs in aerial photography
and astronomical observations and significantly degrades
imaging quality, leading to blurred, warped, or otherwise
distorted imagery. Effective turbulence mitigation is not
only crucial for enhancing the clarity and reliability of vi-
sual information, but also plays a pivotal role in various ap-
plications ranging from remote sensing and security surveil-
lance to scientific research and environmental monitoring.

While turbulence mitigation on static scenes has seen re-
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Figure 1. Existing turbulence mitigation methods produce good
per-frame results but often fail to maintain consistency across
frames, which is vital for downstream tasks. Our work introduces
ConVRT, which effectively removes turbulence while preserving
temporal consistency in the restored video.

markable advancements, largely fueled by the availability
of extensive datasets, improved turbulence simulators, and
the development of more capable machine learning algo-
rithms, the domain of dynamic video restoration under tur-
bulence conditions lags behind. This lag can be attributed
to several unique challenges inherent to video processing.

A primary obstacle in video-based restoration is main-
taining high temporal consistency. Unlike static scenes,
video observations of dynamic scenes comprise a sequence
of frames where each frame is not only expected to be clear,
but also consistent with other frames in terms of quality and
continuity. This requirement for temporal coherence adds a
layer of complexity to the restoration process. Furthermore,
turbulence distortions vary not only spatially across a single
frame but also temporally across the sequence of frames,
making the restoration process significantly more intricate.

The prevailing approaches to video turbulence mitigation
typically involve either the iterative application of single-
image restoration methods to each frame or the use of
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Figure 2. Illustration of the proposed method : ConVRT decomposes a video into two fields: 3D Spatial-Temporal Deformation Field
Dfield and 2D Content Field Cfield. Low-rank decomposition in Dfield reduces parameters and preserves spatial-temporal details. The
predicted warp from Dfield shapes the spatial features in Cfield, affecting the RGB frame output.

video-based restoration networks trained on simulated data.
However, these strategies are not without significant draw-
backs. When single-image methods are applied indepen-
dently to each frame, they often fail to maintain inter-frame
continuity, resulting in jittery or inconsistent visual outputs.
Furthermore, the reliance on simulators for the develop-
ment and testing of these methods introduces a notable ac-
curacy gap. While simulators are useful for dataset gen-
eration, they may not accurately replicate the complex and
dynamic nature of real-world atmospheric turbulence. As
such, methods with good performance on simulated data do
not always perform effectively in real-world scenarios.

These challenges highlight an urgent need for more ro-
bust, adaptable, and specialized approaches in video-based
turbulence mitigation. A pivotal question arises: Is it possi-
ble to develop a method that not only leverages the valuable
insights gained from pre-trained methods using simulated
data, but also adapts to the constantly changing conditions
of real-world turbulence during test time?

This paper presents, Consistent Video Restoration
through Turbulence (ConVRT), a strategy which combines
the adaptability required for real-world application with the
foundational strengths of simulation-based training. Mov-
ing away from the conventional reliance on complex deep
learning models or intricate turbulence simulators for in-
verse rendering, ConVRT innovatively combines recent ad-
vances in machine learning with neural signal representa-
tions to address video-based turbulence mitigation.

At the heart of ConVRT lies a neural video representa-
tion, which is composed of a 2D content field and a 3D
spatial-temporal deformation field. This dual-field repre-

sentation allows for a more nuanced and accurate restora-
tion of video content distorted by atmospheric turbulence.
We employ a test-time optimization framework to train
this video representation, effectively modeling both the dy-
namic scene and the turbulence distortions. After opti-
mization, the dynamic scene can decouple from the tur-
bulence distortion, resulting in a sharply restored video.
To further refine the reconstruction, ConVRT incorporates
semantic-oriented supervision using priors from the Con-
trastive Language-Image Pre-Training (CLIP) [41] model.
We propose a novel strategy that selects prompts based on
the statistical correlation between CLIP and the LPIPS [55]
metric, guiding the restoration process such that the output
is more closely aligned with the ideal prompt within the pro-
jected embedding space of CLIP. Additionally, a key focus
of ConVRT is on improving temporal consistency, achieved
through the careful design of the neural representation of
the deformation field. Crucially, our test-time optimization
framework circumvents the typical generalization issues of
deep-learning-based methods while retaining the flexibility
to incorporate pretrained knowledge from existing models.

ConVRT addresses the key challenges of restoring video
distorted by turbulence. The major contributions include:

• An innovative test-time optimization framework for
turbulence mitigation, improving per-frame restora-
tion fidelity and inter-frame temporal coherence.

• An efficient neural representation of videos tailored
specifically for turbulence mitigation, including a pair
of content field and deformation field.

• A novel, semantic-oriented enhancement module us-
ing the pretrained CLIP model, including developing



a principled strategy for prompt selection based on the
statistical correlation between CLIP and LPIPS.

• A comprehensive evaluation against existing methods,
showing it outperforming existing methods on visual
quality and coherence of the restored video content.

2. Related Work

Implicit neural representations. Our work leverages
a coordinate-based implicit neural representation (INRs),
which has been commonly adopted to model 2D images or
3D videos as multi-layer perceptions (MLPs). INRs take 2D
pixel coordinates (x, y), or 3D pixel coordinates with tem-
poral encoding, (x, y, t) and output the corresponding pixel
values. These INRs demonstrate exceptional performance
when fitting images [14–16, 35–37, 48], videos [3, 8, 9, 46],
and 3D shapes [18, 40, 46]. Not only they are able to repre-
sent these 2D or 3D signals, but they also show strong priors
for solving inverse problems, such as image super resolu-
tion [10], video inpainting [9], phase retrieval [49, 57], and
reducing optical aberration [5, 20, 30].
Neural video representation. Our work aligns closely with
the evolving field of neural video representation [19, 29, 39,
50]. While there are existing approaches [25, 28, 39, 54]
that seek to represent a video into decomposed layers, these
primarily focus on clean videos and are not applicable to
videos with severe degradation turbulence. Our work ex-
tends the application of neural video representation to sce-
narios heavily impacted by atmospheric turbulence. This
extension is not trivial, as it involves addressing the unique
challenges posed by the dynamic and unpredictable nature
of turbulence, which are not considered in conventional
video representations.
Atmospheric turbulence mitigation. Attempts to miti-
gate atmospheric turbulence [21, 38] have applied optical
flow [6, 32], B-spline grid [45], and diffeomorphism [22]
to unwarp each distorted image and then fuse and com-
bine these registered distorted images into a clean and
sharp image. The fusion is usually modeled as patch-
wise stitching [32] or blind deconvolution [2]. Recent
development of high-performance GPUs and fast turbu-
lence simulators leads to new progress in turbulence miti-
gation [11, 12, 17, 23, 33, 34, 56]. However, previous ef-
forts tend to overlook the importance of temporal consis-
tency on the reconstructed video. Our method, ConVRT, is
specifically designed to restore temporal consistency with
on test-time optimization of a neural video representation.

3. Method

This section describes the proposed design of a neural video
representation tailored to turbulence mitigation.

3.1. General Pipeline

The framework of our method, ConVRT, is presented in
Figure 2. During training, TurbNet’s output [34] serves
as the sole supervision signal for our ConVRT. ConVRT
is designed to adapt to future advancements in turbulence
mitigation algorithms. As for the pipeline design, ConVRT
employs a dual-field approach: a 3D Spatial-Temporal De-
formation Field Dfield for adapting to temporal variations,
and a 2D Content Field Cfield for canonical 2D content.
Dfield generates spatial-temporal features (x, y, t), which
are transformed into hidden features and a predicted warp.
This warp guides Cfield to produce warped spatial features,
which are then concatenated with hidden features for the
MLP in Cfield, creating RGB frames. An enhancement
module is applied to finalize the restoration, enhancing vi-
sual quality.

3.2. 3D Spatial-Temporal Deformation Field

We construct a spatial-temporal feature space
V ∈ RQ×M×N×T , storing Q-channel feature vectors
Vxn,yn,tn = {Vq}Qq=1 at each location. The spatial dimen-
sions xn and yn correspond to the video frame’s height and
width. A compact MLP transforms these feature vectors
into predicted warp and hidden spatial-temporal features at
(xn, yn, tn).

Adopting a low-rank-decomposed representation similar
to TensoRF [7], V is modeled using a 1D vector u for tem-
poral variation and a full-rank matrix M for spatial varia-
tions in x and y. The Q-channel feature vectors in u and M
are dynamically updated during optimization.

To extract Vxn,yn,tn at tn, we project (xn, yn) onto M
and tn onto u, resulting in Mxn,yn and utn . The final fea-
ture vector is the Hadamard product:

Vxn,yn,tn = Mxn,yn
⊙ utn , (1)

where ⊙ is the Hadamard product. This efficiently approx-
imates a 3D feature as a tensor product of a 2D matrix
and 1D vector, reducing parameters while capturing spatial-
temporal details. In the subsequent MLP, Layer normaliza-
tion is enable to promote stable training.

3.3. 2D Content Field

Within the 2D Content Field Cfield, we obtain spatial fea-
ture vectors Mxn,yn with the spatial coordinates (xn, yn).
These vectors used to warped the grid points used to sam-
ple from Dfield, resulting in warped spatial features. Sub-
sequently, each warped vector is concatenated with hidden
spatial-temporal features derived from Dfield. These con-
catenated features are then fed into the MLP and the subse-
quent enhancement module to produce the final RGB frame.



(a) Ground Truth (b) Input (c) TurbNet (c) TSR-WGAN (d) Ours

Figure 3. Comparing single-frame restoration in synthetic turbulence videos with TurbNet[34] and TSR-WGAN[24]: Our results are the
sharpest and most accurate.

(a) Input (b) TurbNet (c) TSR-WGAN (d) Ours

Figure 4. Comparison of single-frame restoration quality on real-world turbulence videos: TurbNet[34] results are with distorted boundaries
and artficts; TSR-WGAN[24] results do not really remove the turbulence blur as shown on zoom-in views.

3.4. Semantic Enhancement

In our approach, the output from TurbNet [34] serves as a
solitary supervisory signal, which may inadvertently intro-
duce artifacts into our results if relied upon exclusively. To
enhance the quality of the visual output and imbue it with
semantic depth, we utilize text-driven models, specifically
CLIP, known for their proficiency in aligning visual content
with textual descriptions. The Semantic Enhancement step
is crucial for transcending mere fidelity, aiming instead for
semantically enriched and contextually nuanced outputs.

Nevertheless, the arbitrary selection of text prompts
could yield suboptimal results. To address this, we present
a principled prompt-selection methodology, which employs
statistical correlation between the Learned Perceptual Im-
age Patch Similarity (LPIPS) and CLIP scores to select the

most appropriate prompts. As demonstrated in Figure 8, we
conduct a comparative analysis of various degraded images
using the same sequence of frames. We observe the rela-
tionship between LPIPS scores and CLIP losses, alongside
a correlation study illustrated by the Kendall Rank Correla-
tion Coefficient (KRCC) and Spearman’s Rank Correlation
Coefficient (SRCC) in the right figure of Figure 8.

The selection process yields “a degraded image with
noise and turbulence distortion” as the negative text prompt
and “a clean and sharp natural image” as the positive text
prompt, which have shown the highest relevance in our
tests. These prompts, meticulously chosen, are then inte-
grated into our training as a new loss term:
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Figure 5. Histogram of TV for optical flow between frames in a
video sequence with real-world turbulence. ConVRT obtains more
defined optical flow, leading to lower total variation.

Ltext =−
(

⟨Enci(I), Enct(Tpos)⟩
∥Enci(I)∥∥Enct(Tpos)∥

− ⟨Enci(I), Enct(Tneg)⟩
∥Enci(I)∥∥Enct(Tneg)∥

)
.

(2)

Enci(I) is the feature vector extracted from the predicted
image I using CLIP’s image encoder. Enct(Tpos) is the
feature vector obtained from the positive prompt Tpos using
CLIP’s text encoder, and Enct(Tneg) is derived similarly
from the negative prompt Tneg . With this term, we guide
the learning process toward the direction of positive prompt
semantics and away from the negative prompt semantics.

3.5. Training Objectives

Temporal Consistency Regularization. To ensure tem-
poral stability across video frames, we employ a disparity
estimation network (MiDas [42]) and calculate pixel-wise
disparities as weight for the predicted warp (one of Dfield’s
output) to maintain spatial consistency over time. The loss
is defined as:

Ltemp = (1− Disparity(I)) · ∥Predicted Warp∥1 (3)

where Disparity(I) measures the pixel-level disparity, and
∥Predicted Warp∥1 enforces sparsity in the grid changes.
The design of Ltemp minimizes the L1 norm of the pre-
dicted warp, conditioned by 1 − Disparity(I), to priori-
tize consistency in far regions based on the depth informa-
tion. This focused approach on temporal consistency signif-
icantly reduces the propagation of turbulence-induced dis-
tortions, ensuring a smooth transition between frames.

Similarity Loss. The Similarity Loss Term is given by:

Lsim = λmseLmse + λssimLssim + λlpipsLlpips (4)

where λmse, λssim, and λlpips are weights for each
term. This loss term assesses the fidelity of the predicted
output compared to TurbNet output, incorporating Mean
Squared Error (MSE), Structural Similarity Index Measure

Table 1. Evaluation metrics tested on video with synthetic turbu-
lence. ↑: higher is better, ↓: lower is better.

Method PSNRImg ↑ SSIM ↑ LPIPS ↓ Ewarp ↓ PSNRx−t ↑
TSRWGAN [24] 23.58 0.739 0.230 0.0026 23.77

TurbNet [34] 23.44 0.732 0.228 0.0057 23.54
TurbNet+Real-ESRGAN [51] 22.48 0.713 0.213 0.0074 22.67

ConVRT (Ours) 24.90 0.787 0.189 0.0014 25.73

(SSIM) [52], and Learned Perceptual Image Patch Similar-
ity (LPIPS). This multifaceted approach ensures a compre-
hensive evaluation of reconstruction quality.

Overall Loss The overall loss combines the similarity
loss with temporal consistency and semantic enhancement:

Ltotal = Lsim + λtempLtemp + λtextLtext. (5)

4. Experiments
In this section, we provide the experimental details and re-
sults which validate the performance improvement enabled
by our method. Additional experimental results are pro-
vided in the supplementary file.

4.1. Datasets and Training Details

We adopt subsets of the standard datasets, BVI-CLEAR
dataset [1] and the TSR-WGAN dataset [24], for fair com-
parison since baselines are trained among them. These
datasets feature real-world turbulence and clean videos. To
generate synthetic turbulence videos, we use the P2S at-
mospheric turbulence simulator [33] on clean real-world
videos, producing our synthetic distorted video sequences.
We employ turbulence parameters D/r0 = 2 and corr = 1.
Overall, this subset includes 8 sequences of real-world and
synthetic videos with turbulence. We train the ConVRT
model for 6000 iterations with a learning rate of 2 × 10−3.
The Adam optimizer [26] is employed. The enhancement
module is Real-ESRGAN [51], which remains fixed during
the training of ConVRT.

4.2. Evaluation Strategy

Two state-of-the-art methods of Turbulence Mitigation are
used for fair comparison : TurbNet and TSRW-GAN. TMT
[56], the only video-based turbulence mitigation method,
is skipped because the well-trained weight is inaccessi-
ble. To evaluate the consistent removal of turbulence in
video, we use four metrics for qualitative evaluation and
two interframe-related methods for qualitative evaluation.

Per-frame Quality and Temporal Consistency. We use
PSNR and SSIM to measure the per-frame quality of recon-
struction. LPIPS is used to measure the perceptual quality.



(a) Ground Truth (b) Input (c) TurbNet (d) TSR-WGAN (e) Ours

Figure 6. A comparison of synthetic turbulence video consistency: Two scenes are shown, each with two rows. The first row shows the
KLT tracking trajectories, and the second shows an x-t slice with a blue line indicating the slice’s position. The “zig-zag” patterns in
TurbNet[34] and TSR-WGAN[24] trajectories show temporal inconsistency, and TSR-WGAN produces fewer trajectories, like the blurry
input. In contrast, our method produces a smooth and reasonable number of trajectories. The x-t slices from TurbNet and TSR-WGAN
are non-smooth, whereas ours are smooth.

Following [27], we use the average warp error to measure
the temporal consistency for the restored video. For the
warp error between two consecutive frames, it can be de-
fined as following:

Ewarp(Vt, Vt+1) =
1∑N

i=1 M
(i)
t

N∑
i=1

M
(i)
t

∥∥∥V (i)
t − V̂

(i)
t+1

∥∥∥2
2
,

(6)

where V̂ (i)
t+1 is the warped frame by optical flow at time t+1

and M
(i)
t ∈ {0, 1} is the occlusion mask estimated by the

methods proposed in [43]. The average warp error is:

Ewarp(V ) =
1

T − 1

T−1∑
t=1

Ewarp(Vt, Vt+1) (7)

which is the average of consecutive warp errors across the
entire video sequence.

KLT Trajectories. We use the KLT tracker [31] to track
the feature points, and then plot their trajectories as shown
in Figure 7. KLT tracking is directly based on the image
gradient information such that the common issues in turbu-
lence restoration, i.e., blurriness, artifacts, temporal incon-
sistency, will be reflected in the tracked trajectories.

x-t Slice. We plot x-t slices to show the motion of a row
of pixels as shown in Figure 7. If the video restoration is
temporally inconsistent, the x-t slice plot will show the non-
smooth shape for curves.

4.3. Comparison on Synthetic Turbulence Videos

Our method achieves high temporal consistency while
maintaining fidelity. As observed in Figure 3, ConVRT sur-
passes other approaches in both turbulence removal and tex-
ture detail restoration. Figure 6 demonstrates that the video
dynamics generated by our method closely resemble those
in the corresponding ground-truth videos (first column).



(a) Input (b) TurbNet (c) TSR-WGAN (d) Ours

Figure 7. A comparison of temporal consistency in real-world turbulence videos with TurbNet[34] and TSR-WGAN[24]: Demonstrated
in two scenes, each scene is represented by KLT tracking trajectories and an x-t slice, indicated by a blue line. Our method shows the
best temporal consistency in these real-world scenarios. Notably, in the first penguin scene with a stationary background, only our method
accurately reflects stationary tracking trajectories (single-dot trajectories on the rock).

Table 2. Evaluation Text Prompts for Turbulence Mitigation Learning Guidance

Text Index Positive Prompts Negative Prompt
1 “a sharp image” “a blur image”
2 “a sharp image” “a image with blur and turbulence distortion”
3 “a clean and sharp natural image” “a degraded image with noise and turbulence distortion”
4 “a clean and sharp natural image” “a degraded image with mosaic and turbulence distortion”
5 “a clean and sharp natural image” “a low-resolution image with mosaic and turbulence distortion”
6 “a clean and sharp natural image with table and alarm clock and books” “a low-resolution image with mosaic and turbulence distortion”

ConVRT uniquely captures the scene dynamics, effectively
smoothing out atmospheric turbulence, a distinction not
seen in other methods for turbulence mitigation. The KLT
trajectories further substantiate this temporal consistency.
In contrast, TurbNet and TSR-WGAN produce “zig-zag”
tracking trajectories, indicative of temporally inconsistent
video restoration. Notably, the KLT tracker generates only
a few trajectories for TSR-WGAN’s restoration and frame
with turbulence (second column). This scarcity of trajecto-
ries might be attributed to this GAN-based method’s gener-

ation of inconsistent content and failure to adequately de-
blur the scene across the video. Table 1 presents these fi-
delity and temporal consistency metrics. With the best per-
frame quality, ConVRT outperforms all baseline methods in
the temporal consistency metrics Ewarp and PSNR(x-t).

4.4. Comparison on Real-world Turbulence Videos

Real-world atmospheric turbulence presents a significant
and challenging domain gap compared to simulations.
However, our method achieves outstanding fidelity and tem-



Figure 8. CLIP text prompt selection. Left: LPIPS against CLIP
loss during optimization. Right: correlation scores between CLIP
loss and LPIPS sequences for each text prompt. Text 3 is the final
choice due to its highest correlation scores.

poral consistency in various video sequences distorted by
real atmospheric turbulence, as demonstrated in the follow-
ing figures. Figure 4 showcases the comparison of fidelity,
where ConVRT restores outlines with sharper edge.

As in Figure 7, while the original turbulence and baseline
methods result in “zig-zag” tracking trajectories by KLT,
ConVRT achieves smoother trajectories. This indicates
that, unlike other methods, ConVRT consistently removes
turbulence throughout the video. In addition, the x-t slice in
Figure 7 reveals that ConVRT smoothens row pixel motion
more effectively, further enhancing single-frame turbulence
removal (also shown in Figure 4).

Figure 5 presents a histogram of Total Variation (TV )
for optical flow between frames in a video with real-world
turbulence. ConVRT attains lower TV, indicating more ac-
curate optical flow, particularly on static backgrounds. In-
correct restoration of these backgrounds often leads to high
TV due to chaotic optical flow.

4.5. CLIP Text Prompt Selection

Since we use the CLIP model to semantically guide the
video restoration process, we investigate the effectiveness
of different text prompts for guiding the turbulence removal
and get better quality restoration. As shown in Figure 8,
we use the ground-truth information to learn the turbulence
removal process on a single image, we also simultaneously
record the LPIPS learning curve and clip loss for different
prompts from the Table 2, then calculating the correlation
between LPIPS sequence and clip loss sequences. The best
text prompt is the text prompt that has loss with highest cor-
relation score with LPIPS sequence. In this way we can
quantitatively select the most correlated clip text prompt to
guide the learning process of turbulence removal purpose.

5. Discussion
Difference to existing neural video representations?
ConVRT does not merely represents the observed video, but
actually restores the content before distorted by turbulence.
ConVRT accounts for the nuanced relationship between the

temporal and spatial distortions of turbulence and adapting
the neural representation to effectively model and counter-
act these distortions. Conventional neural video representa-
tions do not account for such complex, dynamic distortions.

Difference between CLIP guidance to perceptual loss?
Perceptual loss is less effective for turbulence mitigation
as they typically require a reference clean image, which
is often unavailable in turbulence-distorted scenarios. Our
CLIP-guided module, on the other hand, bypasses this lim-
itation by leveraging the pretrained CLIP model’s ability
to understand and interpret complex image content without
needing a direct clean image reference, and yet allows for
the integration of human priors through text prompts.

Significance of improving the temporal consistency?
Our method achieves smoother KLT tracking trajectories
and maintains stationary backgrounds, which is crucial for
downstream tasks like SLAM [4, 13, 47], NeRF [36], pose
estimation [44], and object segmentation and tracking [53].
Improving temporal consistency in turbulence-mitigated
videos will bring significant benefits to these tasks.

Why not use a simulator? Existing turbulence simula-
tors may not accurately model distortions on backgrounds
or distant objects. This is likely because 2D-based simula-
tors (e.g., [33]) do not consider the depth effect on pixel
displacement. Consequently, models based on these simu-
lators struggle with far or background objects, as in Fig 7,
where baseline results show vibrating tracked points on sta-
tionary rocks. Simulating realistic turbulence for 3D scenes
and objects are beyond the capacity of existing simulators.

6. Conclusion
This paper presents ConVRT, a novel approach combining
neural video representation with semantic supervision, en-
hanced by the pretrained CLIP model. ConVRT signifi-
cantly improves temporal coherence and visual quality in
video restoration, outperforming existing methods. Con-
VRT not only enhances video restoration quality under se-
vere atmospheric turbulence, but also enables application
scenarios like long-range object tracking and scene recon-
struction. Overall, ConVRT represents a major step forward
in long-range imaging, merging machine learning advance-
ments to address key challenges and opening new avenues
in computer vision and optical imaging.
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