
1

Eye-tracked Virtual Reality: A Comprehensive
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Abstract—Latest developments in computer hardware, sensor
technologies, and artificial intelligence can make virtual reality
(VR) and virtual spaces an important part of human everyday
life. Eye tracking offers not only a hands-free way of interaction
but also the possibility of a deeper understanding of human visual
attention and cognitive processes in VR. Despite these possibil-
ities, eye-tracking data also reveal privacy-sensitive attributes
of users when it is combined with the information about the
presented stimulus. To address these possibilities and potential
privacy issues, in this survey, we first cover major works in eye
tracking, VR, and privacy areas between the years 2012 and 2022.
While eye tracking in the VR part covers the complete pipeline
of eye-tracking methodology from pupil detection and gaze
estimation to offline use and analyses, as for privacy and security,
we focus on eye-based authentication as well as computational
methods to preserve the privacy of individuals and their eye-
tracking data in VR. Later, taking all into consideration, we
draw three main directions for the research community by mainly
focusing on privacy challenges. In summary, this survey provides
an extensive literature review of the utmost possibilities with eye
tracking in VR and the privacy implications of those possibilities.

Index Terms—virtual reality, eye tracking, privacy, security,
survey, literature review.

I. INTRODUCTION

Over the last decade, virtual and augmented reality (VR/AR)
communities have benefited from developments in computer
hardware, graphics, and imaging science. To date, some
modern head-mounted displays (HMDs) have already be-
come available for reasonable prices for everyday usage.
Furthermore, eye-tracking sensors have become either directly
integrated into these HMDs (e.g., HTC Vive Pro Eye1) or
are available as low-cost add-ons (e.g., Pupil Labs’ eye-
tracker add-on [1]). Since eye movements are related to human
cognition, visual attention, and perception, the information
on where users look at a certain point in time can be used
to help users in various ways such as providing them with
adaptive support during their tasks in VR, increasing their
engagement, or improving the usability of the VR applications.
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At the same time, in the area of VR and HMDs, there is
also a lot of room for improvement such as enhancing display
resolutions, increasing realism, or preventing cybersickness,
and gaze information can potentially be utilized to mitigate
some of these technical issues.

It was foreseen by NVIDIA in 2017 that VR was approx-
imately 20 years away from resolutions similar to human
eyes [2]. With such technical developments and a wider range
of usage, it is likely that future HMDs may become mobile
devices like today’s mobile phones, tablets, or smartwatches.
However, as these devices are situated on the heads of users
and have close proximity to the eyes of the users, apart from
user-supporting functionalities, they might be perceived as
privacy-invasive by users due to the fact that a lot of sensitive
attributes about users such as genders, sexual preferences,
and personal identities, can be extracted using eye move-
ments [3]. From a privacy perspective, this information should
be protected or the user should be provided with control over
its release. At the same time, a pleasant virtual experience
should be available to all users. In addition to possibilities
with eye movements, eye information can also be utilized for
authentication purposes with very high accuracy, especially
with iris textures as they are treated as visual fingerprints.
Therefore, in terms of privacy, there is an essential utility-
privacy trade-off that should be taken into account along with
user preferences and concerns.

As VR and privacy communities have been working to
tackle these issues and with the availability of HMDs to wider
communities especially during recent years, the number of
works in the intersection of VR, eye tracking, and privacy
has been increasing. However, until now, none of the previous
works focused on comprehensive coverage of eye tracking
in VR and its privacy implications. In this work, (1) we
first cover the major research between 2012 and 2022 by
first discussing how eye movements are extracted and the
possibilities of using eye movements in immersive VR. Then,
(2) we discuss security and privacy implications including
eye-based authentication and privacy-preserving eye tracking.
Lastly, (3) we draw and discuss three different directions for
future research especially considering the privacy aspects of
immersive eye-tracked VR.

A. Paper Structure and A Guide on How to Read This Paper

As we comprehensively survey research conducted in eye
tracking, VR, and privacy domains, and due to the interdisci-
plinary and disparate nature of each domain, we present the
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structure of this paper and guidelines on how people with
different backgrounds can benefit from it. We first discuss
existing works in the literature in Section II. We then discuss
the most important academic venues where research in these
domains is published and how we filtered relevant papers from
each venue to include them in our survey in Section III. These
sections are appropriate for all readers especially to understand
existing surveys and our methodology to form our own work.

Section IV discusses a very wide range of topics from
computer vision-based approaches to track the eyes and further
process eye region data, to eye-based human-computer inter-
action and understanding human visual attention, cognition,
and perception mostly in an offline fashion. Section IV-A
will benefit most readers interested in computer vision and
machine learning to conduct research on how to track eyes and
make eye-tracking solutions available for others. Section IV-B
focuses on human-computer interaction by utilizing eye move-
ments for different purposes such as real-time interaction
in VR, foveated rendering, and how to deal with technical
issues to improve immersive experiences. This section is more
suitable for researchers and practitioners who work on the
technical aspects of human-computer interaction and eye-
tracked VR. Furthermore, Section IV-C combines eye tracking
and VR from human visual attention, cognition, and perception
point of view and is more suitable for researchers who have
cognitive and experimental psychology backgrounds or are
interested in these fields. In Section V, considering all the
works and insights provided in Section IV, we provide works
that revolve around the privacy and security implications of
eye-tracked VR including authentication possibilities using
eye data, why privacy-preserving methods are needed for
this domain, and how current literature has addressed the
privacy issues in a computational way. This section is relevant
both for privacy and security researchers and for human-
computer interaction researchers who are interested in privacy
and security aspects of eye-tracked VR. Lastly, despite the
fact that we provide future directions and discussions mainly
on privacy implications of eye-tracked VR in Section VI, we
note that this section is very relevant for all the researchers
and practitioners whose work includes VR as privacy issues
should be handled carefully regardless of any research area or
application domain. In Section VII, we conclude our paper.

II. RELATED WORK

There are several works that systematically analyze relevant
research for eye tracking, VR/AR, privacy, and security. De-
spite this, none of the works review eye tracking in VR setups
in a comprehensive and systematic way, the privacy issues that
such works could lead to for the end users, and how to mitigate
such risks. Previously, Lappi [4] analyzed eye tracking in
the wild by discussing the advantages, disadvantages, and
technical terms to achieve valid and high-quality results from
human eye-related experiments. Duchowski [5] discussed gaze
applications and gaze-based interactions in graphical systems
by focusing on topics like eye movement analytics, foveated
rendering, and visual attention in a SIGGRAPH course. In
another work, Plopsky et al. [6] covered gaze-based interaction

and eye tracking in head-worn extended reality. Furthermore,
Silva et al. [7] discussed the foundations of eye-tracking
support for visual analytics systems, relevant applications,
and challenges by considering five different themes including
privacy protection as an important and challenging issue to
be solved as even disorders could be detected with high
accuracies, whereas Ens et al. [8] analyzed the challenges in
immersive analytics by considering virtual/mixed/augmented
realities and drew future directions. Merino et al. [9] presented
a systematic literature review on mixed and augmented reality
also discussing the possibilities with eye-tracking data. As
our focus is rather on VR setups in this work, for mixed
and augmented reality solutions, we refer the reader to the
previous work in this area [10], [11], [12], [13], [14]. Clay
et al.’s work [15] is related to VR-based eye tracking and
they examined eye-tracking research in VR along with a pilot
user study by focusing on experimental setups, common prob-
lems of virtual environments such as vergence-accommodation
conflict [16], [17], eye-tracking calibration details, and visual
region of interests. However, their study is relatively small
scale as they did not study the works in eye tracking and
VR in depth. More recently, Adhanom et al. [18] provided
a broad overview of eye-tracking applications in VR and
their challenges. Similar to Silva et al.’s work [7], they also
identified privacy and security as important discussion points.
Gressel et al. [19] also provided a brief overview of the privacy
aspects of eye tracking and provided recommendations for
privacy-aware eye tracking. Furthermore, overviews on consid-
erations for high-quality data collection [20] and measurement
of data quality of HMD-based eye tracking based on accuracy
and precision [21] were also studied in the literature, which
is important when privacy is considered because as when
privacy-preserving solutions are introduced, a privacy-utility
trade-off is often regarded and assessed.

To improve data analytics, quality, and evaluations, while
useful information about users can be extracted from their
visual scanning patterns and eye-tracking data, such infor-
mation also treats users’ privacy, which was considered by
a few. Liebling and Preibusch [3] discussed that privacy loss
may not be very understandable by the end-users and argued
that gaze and pupillometry data should be protected carefully.
Kröger et al. [22] pointed out the attributes that can be inferred
using gaze data similar to Liebling and Preibusch’s work [3]
and discussed the privacy implications and possible societal
impacts of those. Lebeck et al. [23] considered the security
and privacy aspects of multi-user AR. The authors found that
some of the users are concerned about the powerful abilities
of the eye-tracking enabled interfaces and behavioral tracking
such as an AR HMD understanding that the user is being
attracted to someone due to not being able to stop looking at
them, which might also apply for VR. This statement partly
overlaps with the findings of more recent work by Steil et
al. [24] that users agree to share their eye-tracking data if the
co-owner of the data is a governmental health agency or the
purpose is research. Roth et al. [25] also considered privacy
and security issues as one of the important discussion points
for social augmentations in user-embodied VR. Furthermore,
Katsini et al. [26] provided an extensive survey on gaze-based
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authentication and like other previous works [18], [7], further
research was encouraged for privacy-preserving eye tracking.

Despite several recent attempts, none of the works in the
literature focused on systematically analyzing the research that
studies eye-tracking data analytics in immersive VR setups
considering the full processing pipeline of eye-tracking meth-
ods from pupil detection and gaze estimation to human visual
attention and cognition, privacy-preserving manipulations of
eye movements in such setups, and further novel research
directions that should be pursued to help VR technology to
be used everyday life altogether. In our survey, we focus on
these aspects and provide a very comprehensive and systematic
overview for the research community.

III. METHODOLOGY

As a starting point, we analyzed the relevant surveys and
the papers that study eye tracking, VR, AR, human-computer
interaction, and privacy-preserving eye tracking [4], [7], [8],
[6], [9], [3], [22], [26]. Following, we considered the papers
between 2012-2022 since the VR devices and eye trackers
have been becoming prevalent in the daily life lately. We
used Google Scholar to query papers from 33 renowned
venues including ACM CHI, IEEE VR, ACM ETRA, IEEE
ISMAR, ACM IUI, ACM UIST, ACM ICMI, ACM Mobile-
HCI, ACM MM, ACM VRST, IEEE AIVR, AAAI Conference
on Artificial Intelligence, IEEE CVPR, IEEE ICCV, ECCV,
NeurIPS/NIPS, ACM Interactive, Mobile, Wearable and Ubiq-
uitous Technologies (IMWUT), Journal of Eye Movement
Research (JEMR), IEEE Transactions on Visualization and
Computer Graphics (TVCG), ACM Transactions on Graphics
(ToG), PoPETS/PETS, USENIX Security, USENIX SOUPS,
NDSS, IEEE Symposium on S&P, IEEE S&P Magazine,
ACM SIGSAC Conference on Computer and Communications
Security (CCS), Journal of Privacy and Confidentiality, IEEE
Transactions on Information Forensics and Security (TIFS),
IEEE Transactions on Dependable and Secure Computing,
Computers & Security, ACM Transactions on Privacy and
Security, and ACM Transactions on Cyber-Physical Systems.
For the conference proceedings, we only considered the main
conference proceedings, leaving companion and workshop
proceedings aside, apart from the works that present concrete
results or that are highly related to eye tracking and VR. We
cross-checked the query results from the DBLP.

In order to filter the relevant papers, we used (“eye tracking”
AND “virtual reality”) as the main query where each phrase
could appear anywhere in the article. In addition, to further
track privacy- and biometrics-related papers, we used the
following sub-queries: (“eye tracking” AND “virtual reality”
AND “privacy”) and (“eye tracking” AND “virtual reality”
AND “biometrics”). We also applied forward and backward
tracking by checking the citations and references of the queried
papers, respectively. The main query yielded 1327 query
results, whereas two sub-queries led to 212 and 95 results,
respectively. Figure 1 shows the resulting distributions of the
main query according to venues. If the aforementioned venues
do not appear in Figure 1, it means that no paper was found
at those venues with our main query.

IV. EYE-TRACKED VIRTUAL REALITY

Eye tracking can be considered one of the key technologies,
especially for VR setups, as it is possible to track eyes more
accurately within HMDs compared to remote setups due to
the reduced distance between eye trackers and eyes in HMDs.
In addition, as eyes do not move completely voluntarily, it is
likely that one may get more objective measurements for user
behaviors compared to self-reported data such as question-
naires, which are often used in psychology-related studies in
VR. While this rich source of information could be utilized in
various manners, there are different technical aspects. Firstly,
in order to use this data, eye regions and gaze directions
are extracted. These tasks are mostly carried out by using
different computer vision and machine learning techniques.
Later, especially estimated gaze directions are utilized for
interaction purposes, for instance, to support users in a variety
of ways, such as by predicting user intents and providing them
with context-sensitive aid or by purely technical ways such as
foveated rendering. While such cases should work in real-time
in practice, collected data from different experimental setups
can be used ad-hoc to understand humans and how they behave
in various application domains such as education or medicine.
These application domains indeed show that VR can also be
considered as a research tool with its provided immersion to
create scenarios where it is almost impossible to do in the real
world due to privacy and safety issues or simply because of
practical infeasibility.

Considering these, we organize this section as follows. We
first discuss major works that utilize computer vision and
machine learning to estimate gaze and to detect eye regions as
these are the initial steps of all, also including the methods for
eye movement event detection in VR, which differs from the
conventional settings. Then, we provide a detailed overview of
eye-based interaction and its different applications. As the last
step, we cluster the works that conduct offline data analyses
particularly to understand human visual attention, cognition,
and perception and provide an overarching view of these
works. The structure of this section is given in Figure 2.

A. Hardware, Datasets, and Algorithms

In this section, we first lead insights into the works about
hardware and datasets that are relevant to eye-tracked VR
in Sections IV-A1 and IV-A2, respectively. Then in Sec-
tions IV-A3, IV-A4, and IV-A5, we proceed to discuss eye-
tracking-related algorithms for eye region segmentation, gaze
estimation, and eye event classification, respectively. A brief
summary of the papers discussed in this section is given in
Table I. It should be noticed that eye tracking in immersive
VR using HMDs is essentially different from other real-world
scenarios as users mostly wear HMDs on their heads, and
sensors only see the eye regions rather than the whole face.
Therefore, if not explicitly mentioned, we reduce the focus
to such setups in this work. For an extended evaluation of
eye tracking, such as gaze estimation models regardless of
immersive VR or real-world scenarios, we refer the reader
to the survey papers by Cheng et al. [27] for appearance-
based gaze estimation with deep learning, by Akinyelu and
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Fig. 1. Query responses according to venues for the query (’eye tracking’ AND ’virtual reality’) between 2012-2022.

Fig. 2. Organization of Section IV.

Blignaut [28] for convolutional neural network (CNN)-based
gaze estimation, and by Kar and Corcoran [29] for gaze
estimation in consumer platforms.

1) Hardware: We begin by examining the hardware neces-
sary for implementing eye-tracked VR. Formerly, the majority
of VR headsets like Oculus Rift2 and HTC Vive3 did not
deliver built-in eye tracking functionality by themselves. To
approach eye tracking on these devices, add-on eye-tracking
extensions like the ones provided by SMI4, Pupil Labs5, and
Tobii6 were needed. As eye tracking and VR both grow at
an astounding rate, an increasing amount of HMDs like HTC
Vive Pro Eye7, Fove-08 and Varjo XR-3 support eye tracking
on their own. An example of an HMD device, the Varjo XR-

2https://vr-compare.com/headset/oculusrift, discontinued, Last access
01/19/2023.

3https://vr-compare.com/headset/htcvive, discontinued, Last access
01/19/2023.

4SensoMotoric Instruments, acquired by Apple.
5https://pupil-labs.com/, Last access 01/19/2023.
6https://www.tobii.com/, Last access 01/19/2023.
7https://www.vive.com/us/product/vive-pro-eye/overview/, Last access

01/19/2023.
8https://fove-inc.com/product/fove0/, Last access 01/19/2023.
8https://varjo.com/products/xr-3/, Last access 01/31/2023.

3, which comes with an integrated eye tracker, is shown in
Figure 3, along with eye images and a part of a sample raw
data. In the meanwhile, a growing body of research highlights
the importance of evaluating the performance of built-in and
add-on eye trackers for HMD devices. For instance, Lohr et
al. [32] measured the quality of eye data acquired with the
SMI add-on eye tracker in the HTC Vive from multiple facets,
including spatial accuracy, spatial precision, temporal preci-
sion, linearity, and crosstalk. Using the same metrics, Aziz
and Komogortsev [36] assessed the eye-tracking performance
of the Microsoft HoloLens 29. The quality of eye-tracking data
recorded by the SMI extension has also been analyzed by Roth
et al. [33] in combination with Oculus Rift DK210 regarding
tracking precision and fixation accuracy in the context of
foveated rendering. Adhanom et al. [30] reported an average
eye-tracking accuracy of 1.23◦ and a root mean square (RMS)
precision of 0.62◦ on the HTC Vive Pro Eye with their newly
developed Unity package called GazeMetrics. In a recent work

9https://www.microsoft.com/en-us/hololens, AR HMD, Last access
01/19/2023.

10https://vr-compare.com/headset/oculusriftdk2, discontinued, Last access
02/05/2023.

https://vr-compare.com/headset/oculusrift
https://vr-compare.com/headset/htcvive
https://pupil-labs.com/
https://www.tobii.com/
https://www.vive.com/us/product/vive-pro-eye/overview/
https://fove-inc.com/product/fove0/
https://varjo.com/products/xr-3/
https://www.microsoft.com/en-us/hololens
https://vr-compare.com/headset/oculusriftdk2
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TABLE I
A NON-EXHAUSTIVE OVERVIEW OF PAPERS DISCUSSED IN SECTION IV-A.

Contribution Characteristics

Eye-tracker
performance
assessment

[30], [31] HTC Vive Pro Eye
[32], [33] SMI add-on eye tracker + HTC Vive / Oculus Rift DK2
[34], [35] HTC Vive Pro Eye, Varjo VR-1, Fove-0
[36] Microsoft HoloLens 2 (AR)

Low-cost
eye trackers

[37] Using dichroic mirrors and personalizable lens
[38] Using phone selfie camera + Google Cardboard
[39] EyeSpyVR: Using phone selfie camera + VR Box headset
[40] EyeMR: Using USB camera + IR-LED + Cardboard

Non-VOG
eye trackers

[41], [42] Photosensor-oculography (PSOG)
[43], [44] Electro-oculography (EOG)
[45] Scleral search coil (SSC)

Datasets

[46], [47] OpenEDS: 152 users, for eye region segmentation
[48] NVGaze: 35 users, synthetic + real data
[49] IQVA: 14 users, question-driven visual attention
[50] 13 users, automatic eye event classification
[51] TEyeD: 54 users, largest unified eye dataset
[52] SynchronEyes: 15 users, stationary + HMD eye tracking
[53] 100 users, quantitative taxonomy for videos, multi-modal
[54] OpenNEEDS: 44 users, multi-modal
[55] VREED: 34 users, for emotion recognition, multi-modal
[56] EgoBody: 2 users, for human body reconstruction
[57] HE-Gaze: 15 users, AR dataset, multi-modal
[58] 32 users, real-time emotion annotation

Eye region
segmentation

[59] EyeNet: Using residual blocks and convolutional attention
[60] Using CycleGANs for segmentation, refinement, and generation
[61] EllSeg: Robust against occlusions
[62] Semi and unsupervised domain adaptation
[63] Eye-MMS: Using multi-scale inter-connected CNN, lightweight
[64] EyeSeg: Using generalized dice loss function, lightweight
[65] RITnet: Using U-Net + DenseNet, lightweight

Generating
eye image from
segmentation

[66] D-ID-Net: Two-phase image generation
[67] Seg2Eye: content from segmentation + style from person
[68] GeoMaskGAN: Maintaining geometric consistency

Gaze
estimation

[69] Using changes in pixel brightness, lightweight
[70] Using eye motion event, extremely high frame rate
[71] Neural3DGaze: 3D pupil localization
[72] Robust against head pose changes
[73] Using unsupervised representation + gaze redirection
[74] Using CNN-recurrent model for temporal gaze trace
[75] ARE-Net: Asymmetric regression of eyes
[76] Using depth information

Calibration [77] Using correlation between fixation and hand interaction

Eye event
classification

[78] Data/algorithm translation between 2D-monitor and HMD
[50] Rule-based classifier
[79] Estimation of remaining time until next saccade

by Schuetz and Fiehler [31], an average accuracy of 1.08◦ and
mean standard deviation (SD)/RMS precisions of 0.36◦/0.2◦

were reported on the same device after outlier correction.
The authors also found a significant decrease in accuracy and
precision when participants wore vision correction glasses,
while the effect of contact lenses was more elusive. Stein et
al. [35] conducted a comparison between Fove-0, Varjo VR-
111, and HTC Vive Pro Eye using another two metrics: eye-
tracking delay and latency. With a delay of 15-52 ms and
a latency of 45-81 ms, the Fove-0 outperformed the other
two HMDs to a large extent. The assessment of eye-tracked
HMD can also go beyond statistical performance. For instance,
Maraj et al. [34] compared the HTC Vive Pro Eye with the
Varjo VR-1 in three eye-tracking scenarios. The comparison
results were reported in non-parametric forms that covered
immersion, simulation sickness, and visual discomfort.

11https://vr-compare.com/headset/varjovr-1, discontinued, Last access
01/19/2023.

a) Low-cost HMD Eye Trackers: While add-on eye-
tracking extensions and built-in tracking modules have become
more commercially affordable, they can still be expensive due
to additional hardware and software requirements. To address
this issue, Stengel et al. [37] proposed an implementation
utilizing dichroic mirrors and a personalizable lens positioning
system at an estimated cost of merely 450$. The authors
deployed dichroic mirrors to support eye-tracking cameras
outside of the field of view (FOV), whereas the lens locat-
ing module was applied to account for different interocular
distances. With a model-based gaze estimation algorithm, the
system achieved a gaze angle error of 0.5◦-3.5◦. An alterna-
tive, more affordable system was suggested by Greenwald et
al. [38], which uses a smartphone and an inexpensive Google
Cardboard14 that costs approximately 15$. In this system,
gaze estimation is approached through the capture of Purkinje

13https://varjo.com/products/xr-3/, Last access 01/31/2023.
14https://arvr.google.com/cardboard/, Last access 01/26/2023.

https://vr-compare.com/headset/varjovr-1
https://varjo.com/products/xr-3/
https://arvr.google.com/cardboard/
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Fig. 3. Left: Varjo XR-313, which is a high-end HMD device for both VR and AR. Upper right: eye images taken by cameras inside Varjo XR-3. Lower
right: some eye features recorded by Varjo XR-3.

images (i.e., reflections of on-screen images on the eyes) using
the smartphone’s front-facing camera, and an average error of
5.0◦ can be achieved. In parallel to them, Ahuja et al. [39]
presented a similar framework named EyeSpyVR, which also
uses the smartphone selfie camera and a 10$ VR Box headset
to achieve coarse gaze tracking. Having tested the framework
with 70 subjects, the researchers reported an average gaze
estimation error of 10.8◦ and 12.9◦, respectively for the use
case with and without calibration. Another system deployed on
Google Cardboard called EyeMR was developed by Stratmann
et al [40]. In contrast to the aforementioned systems that
are realized using the smartphone selfie camera, EyeMR uses
USB cameras and extended IR-LED circuit boards to function
gaze estimation and supports both mono- and binocular eye
tracking.

b) Non-Video-oculography (VOG) HMD Eye Trackers:
Common camera-based eye-tracking systems fall into the
category of video-oculography (VOG). VOG-based methods
often struggle to find an optimal balance among factors like
power consumption, computational cost, latency, and accuracy.
There also exist other types of eye trackers, which can be
categorized into photosensor-oculography (PSOG), electro-
oculography (EOG), and scleral search coil (SSC) according
to Duchowski et al. [80] and Rigas et al. [81]. PSOG is
akin to VOG in the sense that they both often require light
sources and optical sensors to capture reflections, whereas
PSOG usually uses a sparse grid of photodiodes/photosensors
and records significantly fewer pixel values compared to VOG.
As a result, PSOG can outperform VOG on the sampling
rate, computational cost, and power consumption. The works
by Li et al. [41] and by Katrychuk et al. [42] fall into

this category. In comparison to VOG and PSOG, EOG-based
methods such as by Shimizu and Chernyshov [43] and by
Bernal et al. [44], as well as SSC-based methods like by
Whitmire et al. [45], commonly put no requirement on light
emitters or receivers. The former approach eye tracking by
placing electrodes around the eyes and then measuring voltage
changes during eye movement, whereas the latter realize gaze
estimation by requiring users to wear wired contact lenses
and then tracking the lenses in a magnetic field. As stated
by Adhanom et al. [18], EOG-based methods can be easily
implemented in HMDs and are capable of functioning eye
tracking even when eyes are closed though being less accurate,
while SSC-based methods provide excellent accuracy but are
often hard to deploy. Other than the aforementioned methods,
eye tracking may also be approached with quite special devices
and algorithms. One example would be the work by Shenoy
et al. [82] where the authors achieved gaze estimation us-
ing adaptive optics scanning laser ophthalmoscope (AOSLO),
which is a device that can image retina at high resolution
and high frame rate. The authors modeled eye tracking as
a joint estimation of retina motion and appearance similar
to simultaneous localization and mapping (SLAM [83]) and
achieved an accuracy of below 1

60◦ at a sampling rate of 1
kHz.

2) Datasets: As data quality, sample size, and context-
dependent information are very important for the performance
and robustness of the gaze estimators, Kim et al. [48] proposed
two datasets satisfying such criteria, including a synthetic one
using anatomically informed eye and face models and a real-
world dataset from 35 participants for near-eye gaze estima-
tion. The authors showed that their trained CNNs perform
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approximately with accuracy losses of 2◦ and 0.5◦ for person-
independent and personalized setups, respectively. Garbin et
al. [46], [47] introduced a well-known dataset called OpenEDS
that can be used for not only gaze estimation but also eye
region segmentation. The dataset was collected from 152
participants in an immersive virtual environment and covers
diverse data types, including pixel-level annotations of eye
regions, unlabeled eye images, video sequences, and point
clouds. In most cases, visual attention is raised in a bottom-up
pattern driven by visual stimuli during data collection. Jiang et
al. [49] presented a novel dataset called IQVA (i.e., immersive
question-directed visual attention) in which visual attention
was driven by tasks in a top-down style. The dataset consists of
eye-tracking data from 975 HMD video clips with questions,
with each being annotated by 14 participants. The authors also
incorporated a neural network to predict the correctness of
attention maps. Agtzidis et al. [50] published an eye-tracking
dataset for 360◦ videos collected from 13 observers together
with a novel two-stage eye event annotation pipeline and a
rule-based eye event classifier for automatic event labeling.
Fuhl et al. [51] introduced the largest ever unified public
eye dataset, which was gathered using seven different head-
mounted devices in the real world, VR (54 participants), and
AR. The dataset covers various types of eye data, such as
2D and 3D landmarks, eye segmentation information, and 3D
eyeball annotation.

More recently, Aziz et al. [52] published a new dataset
called SynchronEyes, in which eye movements of 15 partic-
ipants were recorded simultaneously with both a stationary
eye tracker EyeLink 100015 and a wearable glass eye tracker
AdHawk MindLink16. Jin et al. [53] presented a new quan-
titative taxonomy for VR videos that rely on three metrics:
camera motion, video quality, and dispersion of region of
interest (ROI). Based on this taxonomy, the researchers created
a dataset of both head and gaze behavior from 100 participants
and 27 videos. There also exist other multi-modal datasets
available. An example would be the OpenNEEDS dataset by
Emery et al. [54], which was collected from 44 participants
exploring two virtual spaces and it includes data of not only
eyes but also head, hands, and scenes. Tabbaa et al. [55]
introduced a dataset called VREED for emotion recognition
where data from different modalities, including eye movement,
electrocardiogram (ECG), and galvanic skin response (GSR)
were recorded from 34 subjects while experiencing 360◦

videos. Recently, Zhang et al. [56] published a new multi-
modal dataset called EgoBody, where data including eye gaze,
head motion, and gestures were collected while an emphasis
on the work is human body reconstruction from an egocentric
view in VR. Chen et al. [57] also presented a multi-modal
dataset called HE-Gaze recently, which was captured from
15 participants using an AR HMD device Nreal Light17. In
addition to eye movement data, the dataset also contains head
movement data and near-eye images for both eyes. Along with

15https://www.sr-research.com/eyelink-1000-plus/, discontinued, Last ac-
cess 01/25/2023.

16https://www.adhawkmicrosystems.com/adhawk-mindlink, Last access
01/25/2023.

17https://www.nreal.ai/light/, AR HMD, Last access 01/23/2023.

the dataset, the authors also introduced an appearance-based
gaze estimation algorithm called HE-Tracker that utilizes head
movement and is capable of approaching eye tracking in real-
time at 48 Hz with an accuracy of 3.655◦.

a) Synthetic Data: Collecting high-quality eye-gaze data
can be expensive in terms of both time and cost. This has
led to the development of synthetic 3D models such as UT
Multi-View [84], SynthesEyes [85], and UnityEyes [86], as
well as generative algorithms like [87] and data augmentation
approach like gaze redirection [88]. While few of these works
are specifically tailored for the use of HMDs, some concepts
can be adapted for eye data generation in immersive virtual
environments.

b) Data Annotation: An essential step during and after
a data collection process is data annotation, which is often
costly. Xue et al. [58] addressed the issue of collecting
emotion annotations along with eye-tracking data in VR
environments. Typically, emotional feedback during the VR
experience is annotated retrospectively. As a consequence,
emotion labeling can be discrete and time-consuming. By
leveraging their previously introduced peripheral visualization
frameworks HaloLight and DotSize [89], the authors were
able to achieve real-time continuous emotion annotation during
data collection from 32 participants and provided temporally
precise labels for downstream tasks.

3) Eye Region Segmentation: Having broadly viewed hard-
ware and datasets for eye-tracked VR, we now proceed to
provide an overview of algorithms related to gaze estimation
on HMDs, beginning with the algorithms for eye region
segmentation. Semantic segmentation of the eye region is
crucial for gaze estimation and is often the starting point
for many gaze estimation algorithms. According to Shen et
al. [62], early eye region segmentation algorithms like [90],
[91] were mainly driven by iris texture and sclera extraction.
Nowadays, an increasing shift towards multi-class (multi-
region) eye segmentation that is typically realized through
deep learning has been experienced. Unlike other semantic
segmentation tasks, eye region segmentation is often chal-
lenged by images being low resolution, blurring, off-axis, etc.
Kansal and Nathan [59] presented an efficient encoder-decoder
network called EyeNet that addresses these issues by using
residual blocks [92] in both encoder and decoder to improve
gradient flow and using convolutional block attention modules
(CBAM [93]) to enhance boundary sharpness and accuracy.
The network accomplishes a total score of 0.974 on the EDS
evaluation metric. Fuhl et al. [60] explored the applicabil-
ity of CycleGANs [94] for eye segmentation and suggested
three different generative adversarial networks (GANs) for
segmentation, image refinement, and image generation, re-
spectively. In particular, these models were trained with cyclic
loss to prevent discriminator overfitting. Conventionally, eye
segmentation is vulnerable to occlusion caused by eyelids and
eyelashes. Kothari et al. [61] addressed this challenge with a
segmentation framework called EllSeg that is robust against
occlusions and can be implemented jointly with other pupil
and iris ellipse segmentation methods in an encoder-decoder
pattern.

https://www.sr-research.com/eyelink-1000-plus/
https://www.adhawkmicrosystems.com/adhawk-mindlink
https://www.nreal.ai/light/
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a) Lightweight Eye Segmentation: Computational re-
sources, such as computational power, memory, and storage,
are often bottlenecks of HMD devices. Boutros et al. [63]
alleviated the computation burden on embedded systems
with their miniature multi-scaled segmentation network (Eye-
MMS), which is based on multi-scale interconnected CNN.
The authors achieved a 3% loss in accuracy compared to
the original model while successfully reducing the number
of model parameters from 6574k to 80k. Perry and Fernan-
dez [64] proposed a lightweight encoder-decoder segmentation
network named EyeSeg, which adopts a customized loss
function combining categorical cross entropy and generalized
dice loss function (GDL [95]) to tackle the shortage of labeled
data. EyeSeg contains merely 190k parameters while yielding
a 94.5% mean intersection over union (mIOU) on the 2020
OpenEDS dataset. Another lightweight segmentation network
called RITnet that combines U-Net [96] and DenseNet [97]
was developed by Chaudhary et al. [65]. The network has a
size of only 0.98 MB and allows eye segmentation at 300 Hz
in real-time with an mIOU of 95.3% on the OpenEDS dataset.

b) Dealing with Data Shortage: Another major challenge
in eye region segmentation is the lack of high-quality eye
images. Damer et al. [66] overcame this challenge by gen-
erating eye images from semantic segmentation with their
novel model called D-ID-NET. The pipeline of this model
consists of two phases: in the first phase, a domain network
(D-Net) synthesizes identity-irrelevant images from semantic
labels, and in the second phase, identity-specific information
is introduced into the images by an identity-specific network
(ID-Net). Both networks are CNNs with the same structure
but different training strategies. A similar concept was im-
plemented by Buehler et al. [67] with their model Seg2Eye,
which generates content-preserving eye images from semantic
segmentation. The work resembles style transfer [98] in the
sense that semantic segmentation defines the content of gen-
erated images while their styles are controlled by style features
extracted from images of the target person. Shen et al. [62]
extensively studied domain adaption for eye segmentation in
the case when only a few source images are annotated while
most data are not labeled. They systematically investigated the
impact of annotated data by training the model in supervised,
unsupervised, and semi-supervised manners respectively, and
varying the amount of labeled eye images in the target domain
during training. More recently, Lu et al. [68] proposed an
image-to-image translation network called GeoMaskGAN that
accounts for geometric consistency. The network consumes as
input a pair of the eye image and eye segmentation mask and
outputs a new pair while reducing the geometric gap between
translated images and original ones.

4) Gaze Estimation: Gaze estimation is the core focus
of most eye-tracking works. In this subsection, we do not
necessarily differentiate between stationary eye tracking and
HMD eye tracking, as most gaze estimation algorithms are not
customized for the use of HMDs. A broad categorization of
gaze estimation methods is provided in Figure 4.

a) Model-based Gaze Estimation: According to Hansen
and Ji [101], gaze estimation algorithms can be broadly
classified into two categories: model-based and appearance-

based. Model-based methods are sometimes also referred to as
feature-based. As their name implies, model-based techniques
rely on local geometric eye features such as contours and
eyeball models. Model-based methods often provide high
accuracy, while a common disadvantage of them is that
they often have a limited range of operation in accordance
with Zhang et al. [102], which is presumably not a central
concern for HMD devices since sensors are close enough
to eyes. As surveyed by Zhang et al. [103], model-based
algorithms can be further categorized into corneal reflection-
based (glint-based) and shape-based (glint-free), depending on
whether additional light sources are needed or not. Glint-based
methods like [104], [105] often compute the location of the
cornea center using the Purkinje reflection of infrared light,
while a typical workflow of glint-free methods [106], [107]
often begins with eye landmark detection and then geometric
features are fitted to service gaze estimation in downstream.

Formerly, gaze estimation methods were often heavyweight
and hence could not function with eye tracking at a high rate.
In recent work, Feng et al. [69] addressed this issue with their
novel model-based algorithm that is based on event-driven
eye segmentation. The model tracks events (changes in pixel
brightness level) to predict ROIs of near-eye images, whose
resolutions reduce to 18-32% compared to original images.
Then, eye region segmentation is carried out on the reduced
eye images and gaze estimation is realized upon segmentation.
The whole model is capable to operate at 30 Hz on a mobile
device at an accuracy of 0.1◦-0.5◦. Angelopoulos et al. [70]
also made use of motion events to promote the frame rate of
gaze estimation by placing event cameras close to the eyes.
While conventional model-based pupil detection algorithms
are used to approach basic pupil tracking, the motion events
are utilized to update pupil location at high frequency. On
an event-based eye dataset, the whole system reaches an
accuracy of 0.45◦-1.75◦ at a frame rate of over 10 kHz.
Another deficiency of most model-based algorithms is that
they do not take pupil location in 3D space into consideration,
which can in turn negatively influence eye-tracking accuracy.
Lu et al. [71] proposed a solution to this with their 3D
pupil localization model that utilizes an advanced anatomical
eyeball model and accounts for the error caused by corneal
reflection. With the proposed model, the authors achieved error
reductions of 47.5% and 18.7%, respectively for 3D pupil
localization and for gaze estimation in comparison to prior
works on their newly collected dataset, which contains ground
truth of relative 3D pupil locations.

b) Appearance-based Gaze Estimation: An increasing
shift towards appearance-based methods has been experi-
enced in recent years. In contrast to model-based techniques,
appearance-based methods are conceptually and structurally
simpler: they typically use machine learning techniques to
directly learn gaze direction from photographic eye appearance
(images). As surveyed by Akinyelu and Blignaut [108], prior
appearance-based methods like [109], [110], [111] gener-
ally relied on basic machine learning models such as lin-
ear regression, support vector machine, and random forest.
Nowadays, appearance-based methods are often approached
through deep learning and CNNs. One example of advanced
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Fig. 4. A general taxonomy of gaze estimation methods that are discussed in Section IV-A.

appearance-based models is the work by Ranjan et al. [72],
which improves the robustness against head pose by head
post clustering. In contrast to former works in which one
dedicated network is needed for each head pose, the authors
designed a branched structure where the majority of layers are
shared while only a few final dense layers are specified for
each head pose. Moreover, they trained the model by transfer
learning from the object viewpoint estimation CNN [112] that
is intrinsically more related to gaze estimation than object
detection. To overcome the problem of data shortage, Yu
and Odobez [73] suggested an unsupervised representation for
gaze estimation for which unlabelled eye images are used,
and calibration works in a few-shot manner. The authors
jointly trained a network for learning gaze representation and
a network for gaze redirection while using warping field
regularization to prevent overfitting and distortion. Different
from prior works which learn embeddings in high dimensional
space, this novel model captures 2D embeddings which are
linked to clear physical meaning, namely eyeball yaw and
pitch. With solely 100 calibration samples, the model was
capable to reach an accuracy of 7◦-8◦.

Most appearance-based gaze estimation methods only uti-
lize static eye images and often ignore temporal trace of gaze,
albeit it contains important information. Palmero et al. [74]
demonstrated the benefit of temporal gaze sequence by imple-
menting a many-to-one CNN-recurrent model for gaze esti-
mation. By bringing into temporal information, the researchers
realized an error reduction of up to 19.78% on average, respec-
tively 16.91% for the horizontal axis and 23% for the vertical
axis. In another promising appearance-based model, Cheng et
al. [75] introduced a new asymmetric regression-evaluation
network (ARE-Net) that exploits the asymmetry of human
eyes. The model consists of an asymmetric regression network
(AR-Net) that estimates 3D gaze direction and evaluation
networks (E-Net) which assess the performance of each eye

and adjust the regression strategy accordingly. While a model
considering a single eye can achieve an accuracy of 6.3◦ on
the MPIIGaze [113] dataset, the proposed method decreased
the error to 5.0◦. Returning to the context of eye tracking
in immersive virtual environments, a common problem is
the HMD slippage, which can dramatically downgrade the
gaze estimation accuracy of appearance-based models due to
their sensitivity to camera placement. To mitigate this issue,
Stojanov et al. [76] recently incorporated depth information
in parallel to eye appearance while using two approaches to
improve the robustness against fitment and slippage. While the
first approach simply combines features from the eye image
and depth map channel-wise, the second approach exploits
the so-called transformer-based cross-modal attention (CMA)
block [114] and increases the generalizability of the model to
a large extent.

c) Hybrid Gaze Estimation: Besides appearance-based
and model-based techniques, in the last years, gaze estimation
techniques that combine both have also drawn attention. Such
models are often called hybrid models. As the name implies,
these methods like [99], [100] commonly use deep learning
models to extract eye geometric features and then map the
features to gaze position.

d) Calibration: A procedure that is closely related to
gaze estimation is calibration, which serves as a prerequisite
for an eye-tracking device to function properly. However,
when deployed in HMDs, calibration can be disrupted by
movements of the head and body. Therefore, it is often
necessary to re-calibrate during usage. There has been some
work dedicated to addressing this problem. For instance, to
provide a more immersive and consistent user experience,
Sidenmark and Lundstroem [77] analyzed the timing and
probability of fixations by exploiting the correlation between
gaze location, virtual objects, and hand interaction. Based on
the analyzed gaze patterns, the authors suggested an implicit
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and consecutive re-calibration during the use of HMDs.
5) Eye Event Classification: For the sake of data visu-

alization and further analysis (e.g., offline analyses in psy-
chology experiments that utilize eye tracking), eye movement
is often divided into a sequence of consecutive events of
different types like fixations, saccades, and smooth pursuits.
This procedure is often referred to as eye movement event
classification, eye movement segmentation, or eye movement
event detection. Broadly speaking, fixations are defined as
stable eye movements when eyes are focused on a specific area
or volume, whereas saccades are fast and ballistic switches
between consecutive fixations. These two eye movements are
often combined in the temporal dimension to create visual
scanpaths. In contrast to fixations and saccades, there are
some other more fine-grained eye movements such as smooth
pursuits, which are defined as eye movements that are fixated
on a moving target.

In accordance with Agtzidis and Dorr [78], traditional
classification methods such as [115], [116], [117] which were
designed for 2D monitor-based scenarios cannot be directly
applied to eye movement event classification in VR HMDs
due to the change in frame of reference. The authors sug-
gested two approaches to alleviate such a problem: the first
approach aims at the transplantation of 2D monitor-based
classification algorithms to 3D Cartesian space, while the
second approach projects HMD data onto 2D space such
that traditional methods can be used without modification.
Similar to other gaze-related tasks, eye event classification
in VR suffers from data vacancy. In a subsequent study,
Agtzidis et al. [50] tried to address this issue. The authors gave
explicit definitions to primary and secondary eye events and
then proposed a two-stage annotation pipeline. Furthermore,
the authors developed a rule-based eye event classifier for
automatic event labeling. Based on these, the authors published
an annotated eye-tracking dataset for 360◦ videos collected
from 13 observers. Recently, Rolff et al. [79] introduced a
classification strategy that redefines eye event detection as a
time-to-event problem. In comparison to traditional algorithms
that divide eye movement into discrete events, the newly
proposed model is capable of estimating the remaining time
until the next saccade and predicting eye behavior in the near
future.

B. Eye-based Human-Computer Interaction in VR

In the prior section, we provide a review of the latest ad-
vancements in eye-tracking hardware, datasets, and algorithms
that form the algorithmic fundamentals of eye-tracked VR.
These advancements have opened up numerous opportunities
to enhance human-computer interaction in immersive virtual
environments. In this section, we provide a comprehensive
examination of research in the field of eye-tracking-based
human-computer interaction within the context of VR. We
begin with exploring recent works related to eye-based inter-
action, explicitly addressing the challenges and potential solu-
tions in Section IV-B1. Subsequently, we delve into predictive
gaze analyses in Section IV-B2 by encompassing prediction
and visualization techniques. Lastly, in Section IV-B3, we give

an overview of eye-based rendering techniques that improve
the real-time performance of VR devices and enhance the
user experience by mainly creating more realistic virtual
environments.

1) Interaction in VR: Inherent characteristics of virtual
environments provide users with novel opportunities for inter-
acting with these environments and settings. Many interaction
methods require additional controllers, such as handheld ones,
while gaze-based interaction can solely be executed by using
built-in or integrated eye trackers in a hands-free way. How-
ever, there are numerous challenges with regard to precision,
time efficiency, and simplicity. In this section, we focus on
works that revolve around eye-based interaction techniques in
VR that address existing challenges in this field. An overview
of all papers in this section is depicted in Table II.

a) User Interface Design: We first present a review
focusing on the design of user interfaces based on eye tracking
in VR. The main goal of these interfaces is to allow for robust
interaction while minimizing the time and effort required by
users. In the field of VR, several works have addressed this
issue. For instance, Reiter et al. [118] introduced a hand-
attached menu design that can be navigated with wrist rotation
and interacted with the eyes, freeing up one hand for other
tasks. In another work, Choi et al. [119] proposed a solution to
the “Midas Touch” problem [158], a phenomenon that occurs
when a user’s gaze falsely interacts with an object or menu
item during a search task. Choi et al. defined the gazing
region between 25◦ and 45◦ as the “Kuiper Belt” which is not
frequently targeted by the users during interaction due to being
outside of the comfortable eye movement region [159], [160],
but still within the physically reachable area [161], [162]. By
placing menu items within the Kuiper Belt region, Choi et
al. [119] showed the number of false inputs during the search
task significantly reduced, and the Midas Touch problem was
avoided.

Kim et al. [120] suggested another menu design that aims
to improve the precision of gaze-based selection and reduce
the time required for selection. Incorporating lattices as a
guiding mechanism for gaze gestures in the menu structure
yielded a lower number of selection errors and shorter se-
lection times as compared to conventional gaze interactive
menu designs [163]. Ahn et al. [121] introduced a novel
gaze-based VR/AR marking menu named “StickyPie” that
addressed the limitations present in existing eye-tracking inter-
action techniques, including overshooting and false activation.
The authors reported that StickyPie, which provides a scale-
invariant marking menu, achieved over 10% improvement
in efficiency compared to RegularPie, a more conventional
scale-variant menu design. An alternative interface design
was presented by Wei et al. [137] for the object locating
process with gaze in several VR applications with a significant
number of objects, resulting in a reduced task load and time
compared to traditional methods. Recently, GazeDock was
presented by Yi et al. [123] as a view-fixed peripheral menu
that is automatically displayed when the user’s gaze moves
to the menu region. GazeDock, with a personalization and
optimized selection algorithm, achieved an average selection
time of 471 ms and a false trigger rate of 3.6% while being
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TABLE II
A NON-EXHAUSTIVE OVERVIEW OF PAPERS DISCUSSED IN SECTION IV-B1.

Contribution Characteristics

User interface
design

[118] Hand-attached menu interacted with wrist rotation and eye gaze
[119] Menu placement on Kuiper Belt region
[120] Menu design incorporating lattices as a guiding mechanism
[121] StickyPie: Solution for overshooting and false activation
[122] Wheelchair control with waypoint navigation
[123] GazeDock: View-fixed menu with personalized selection
[124] VRDoc: Reading interface design
[125] SwiVR-Car-Seat: Car interface design
[126] Bionic Tracking : Cell tracking in 3D volumetric data

Target
selection

[127] Outline Pursuits: Gaze and object movements based selection
[128] Radi-Eye: Discrete and continuous selection
[129] EyeSeeThrough: Merging confirmation and selection processes
[130] Eye&Head: Head-supported gaze actions
[131] Comparison of gaze interaction in selection and drawing tasks
[132] Comparison of gaze, foot, head, and mouse interaction
[133] Interaction with dwell time and pinch movement
[134] Saccade-based confirmation method
[135] Weighted Pointer: An error-aware gaze-based interaction
[136] Fatigue analysis for eye-gaze and controller-based selection
[137] Gaze-based label guidance for object locating task
[138] Comparison of hand-free text selection task

Text entry

[139] TapGazer: Finger tapping and eye gaze
[140] Interaction methods using blink or neck motions
[141] SSVEP: Combines brain-computer interfaces and eye-tracking
[142] Keyboard visualization and dwell&click-based interaction

Disambiguation
&
Depth

[143] VOR-gain-based depth estimation
[144] Regression model with vergence-based features
[145] Depth estimation with VOR gain
[146] Comparison of disambiguation techniques

Intent
[147] Predict tasks based on eye movements
[148] Logistic regression with focal attention and eye gaze
[149] LSTM model based on sequence of eye gaze

Hand
redirection

[150] Sparse Haptic Proxy: Mimic haptic feedback
[151] REACH+: Physical interaction in virtual spaces to enhance realism
[152] Hand redirection exploiting blink motion of the eye
[153] Object manipulation tasks beyond arm reach
[154] Error detection in gesture input with the help of gaze

Walking redirection
[155] Discrete rotation technique for both blind and open eyes
[156] Prediction for the future positions of user with LSTMs
[157] Prediction for short- and long-term future positions of user with LSTMs

preferred over dwell- and pursuit-based approaches. A virtual
interface, VRDoc, was proposed by Lee et al. [124] for a
reading task that might be useful for office workers. VRDoc
incorporates eye-tracking-based interaction methods to reduce
document selection and navigation time as well as required
effort compared to existing VR reading interfaces. Günther et
al. [126] designed an eye-tracking-based user interface called
Bionic Tracking to facilitate object tracking by exploiting
smooth pursuits of eyes in a virtual environment. Based on
experiments conducted with 7 cell tracking experts, the inter-
face, designed for tracking cells in 3D volumetric data using
eye tracking achieved a speed-up of 2-10 times compared to
traditionally used 2D point-and-click methods.

Additionally, it is essential to design user interfaces and
interaction modalities by considering their specific needs and
domains as well as the unique movements and conditions of
the setups. To this end, Colley et al. [125] considered a vehicle
setup and presented the SwiVR-Car-Seat to explore the impact
of vehicle motion on VR interaction in automobiles. The au-
thors designed an experiment using a low-cost rotating seat to
observe the impact of vehicle rotation on touch, gesture, gaze,
or speech interactions. The results revealed important insights

for user interface design, indicating that vehicle motion had
a detrimental effect on gaze- and gesture-based interaction
methods. In contrast, touch and speech interactions were found
to be more resilient in such environments. Additionally, Araujo
et al. [122] proposed gaze-based control interfaces such as
an overlay control interface, continuous-control interface, and
waypoint navigation. In a wheelchair control setup, the semi-
autonomous waypoint gaze interface yielded the fastest task
completion time for each trial. The authors imply that this
provides a more favorable user experience compared to other
interaction methods.

b) Gaze-based Target Selection: Gaze-based user inter-
face design requires efficient object and region selection to
enable a smooth interaction experience. To this end, Siden-
mark and Gellersen introduced Eye&Head [130], an approach
that separately evaluates only gaze- and head-supported gaze
actions for hands-free target selection. They found that eye-
tracking data supported with head motion provides greater
freedom to users during the selection process, as the user intent
is more evident in such a setup. In another work, Sidenmark
et al. proposed Outline Pursuits [127], which utilizes gaze to
solve object selection problems in occluded virtual scenes. The



12

authors assigned different motions to candidate objects and
analyzed the correlation between gaze and object movements.
The experimental results indicated that using Outline Pursuits,
the selection process was completed with less effort in a
shorter time than traditional ray-casting methods, also provid-
ing slightly better accuracy in highly occluded environments.
Sidenmark et al. proposed another selection technique called
Radi-Eye [128], to enable hand-free interaction in virtual smart
home applications. Similar to their previous work, Radi-Eye
uses gaze data to perform discrete or continuous target and
object selections, while head movement is primarily used to
confirm or modify the choice. As Radi-Eye provided a more
precise and time-efficient interaction compared to previous
works, it also provides important implications and design
insights, especially for immersive virtual spaces.

Mardanbegi et al. presented EyeSeeThrough [129], a novel
eye-tracking-based interaction technique that integrates both
confirmation and selection processes through the line-of-sight
direction. Results from user studies demonstrated that Eye-
SeeThrough surpasses the performance of two-stage selection
methods in terms of time and comfort. Along the same lines,
Pfeuffer et al. [131] evaluated the effectiveness of gaze-based
interaction in virtual handheld menus. The standard selection
methods, including using dwell time, gaze button, and cursor,
were integrated with eye-tracking data and compared to a
pointer-based selection method. The user studies on color
selection and line drawing tasks indicated that gaze-based
selection reduces physical effort compared to traditional se-
lection methods. Minakata et al. [132] conducted a study
to evaluate the performance of gaze, foot, head, and mouse
pointing methods in selection tasks. The results indicated that
head input was superior to gaze in terms of ease of calibration,
effective target width, and throughput [164], which is the
primary performance measure that takes into account both
speed and accuracy of the users’ responses. On the other hand,
gaze input performed similarly to foot input.

Mutasim et al. [133] conducted another study to examine
dwell and pinch movements as alternative versions of click-
in devices supporting visual attention-based interaction. Their
study indicated that pinch gestures could serve as a viable
alternative to conventional button click-based selection meth-
ods. In another work, Mutasim et al. [134] evaluated the
performance of a saccade-based selection and confirmation
procedure in comparison with more traditional approaches
such as dwell and button press. According to the authors, the
saccade-based selection was the most time-efficient option but
also the most error-prone. Recently, Sidenmark et al. [135]
introduced a weighted pointer, an error-aware gaze-based in-
teraction technique that is designed to maintain stability in the
presence of eye-tracker sensor errors through the integration of
fallback modalities. The authors demonstrated that a weighted
pointer allowing automatic switching of modalities is more
effective and favorable than techniques that require manual
switching. In another recent work by Meng et al. [138], the
authors investigated the efficiency of hands-free text selection
techniques, including selection using the dwelling, blink, and
voice. They found that target selection using blinks outper-
forms the other mechanisms in terms of time, accuracy, effort,

and user preference. Additionally, to gain insights into the
practical use of gaze-based selection techniques, Masopust et
al. [136] analyzed the fatigue occurrence providing a compar-
ison of selection techniques based on eye gaze and controller
input. Their findings revealed that prolonged use of eye gaze
could lead to fatigue, making it less suitable for interactions
for an extended period of time compared to controller-based
techniques.

c) Gaze-based Text Entry: Similar to the aforementioned
eye-based target selection techniques, another way of inter-
action is text input. However, the nature of the task in text
entry and its requirements are different; therefore, the interface
design and interaction modalities should take those differences
into account.

To this end, He et al. proposed TapGazer [139], which
utilizes finger tapping to type on a virtual keyboard by incor-
porating gaze assistance for word selection. Lu et al. [140]
presented BlinkType and NeckType text entry techniques,
utilizing blink and neck movements in character selection,
respectively. The authors found that using a blink signal is
more favorable and reaches the highest word-per-minute rate
compared to NeckType and dwell-based text-entry techniques.
Another approach introduced by Ma et al. [141], combined
brain-computer interfaces (BCIs) and eye-tracking data, which
allowed VR users to compose ten words per minute and
achieved 270 bit per second information transfer rate. Rajanna
and Hansen [142] conducted a comparative investigation on
the application of dwell-time and click inputs in conjunction
with gaze information as a confirmation mechanism. The
authors also analyzed various keyboard visualization options.
According to their user studies, the most convenient combi-
nation was the use of click actions with visualization of the
entire keyboard. In addition to these works, Mardanbegi and
Thies [165] presented an eye tracking-based interaction toolkit
EyeMRTK supporting text entry in Unity.

d) Gaze-based Disambiguation: Gaze-based interaction
methods may suffer from inaccuracy and stability issues due
to the imprecise target object detection caused by factors such
as the accuracy of eye tracking, the complexity of virtual
environments, or the nature of the task. In the following, we
discuss eye gaze-based disambiguation techniques addressing
these challenges.

Interaction methods that rely solely on the intersection of the
gaze ray may cause less accurate detection of targeted objects,
especially in scenes with objects at multiple depth levels. To
address this issue, depth estimation methods based on the eye
have been proposed to improve the interaction quality. Most
existing approaches to this problem relied on the relationship
between target depth and the vestibulo-ocular reflex (VOR) to
fix gaze by moving the eye in the opposite direction of the
head. Mardanbegi et al. [143] proposed a VOR-based depth
estimation approach using VOR gain obtained by observing
pupil centers, as a measure of in-depth computation, rather
than the more conventional vergence measure. The VOR gain-
based model, which only requires the use of one eye, was
evaluated on eye-tracking data collected from 10 participants.
Despite the limited number of participants, the findings of
this study revealed that the performance level is comparable
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with the vergence measure conventionally used in in-depth
estimation. Mardanbegi et al. [145] introduced a VOR-based
technique to overcome disambiguation problems during gaze
interaction by jointly utilizing eye and head movements to esti-
mate gaze depth, leading to a better performance compared to
conventional vergence-based methods in gaze depth estimation
for the virtual objects that are located in deep in the scene.
In another work, Weier et al. [144] built a regression model
to improve gaze depth estimation by combining vergence
measures with other features acquired through conventional
ray-tracing techniques based on the user’s point of regard.
The model yielded a remarkable level of accuracy in terms
of the average deviation from the benchmark depth over a
6-meter range while vergence measures offer accurate pre-
diction only up to 1 meter. Similarly, disambiguation is also
a significant challenge in hands-free interaction techniques.
Chen et al. [146] evaluated disambiguation techniques such as
head gaze, speech, and foot tap in different timing scenarios
and found that head gaze outperformed other methods in
eliminating disambiguation.

The utilization of user intent can also be employed to
address disambiguation issues that arise in VR interaction
based on eye tracking. By predicting user intent, it is pos-
sible to identify forthcoming movements of users and objects
with which users will interact and the gaze point can be
evaluated for the given user intent, which facilitates gaze-
based interaction in ambiguous situations. To this end, the
precise prediction of user intent is crucial and several works
utilized eye-tracking-based approaches. For example, Keshava
et al. [147] demonstrated the capability of point-of-regard
(POR) regions to predict four different alignment tasks with
cubes, achieving F1-score of 0.51. David-John et al. [148]
employed eye-tracking features to train a logistic regression
model and revealed that characteristics of focal attention, gaze
velocity, fixation, and saccade dynamics are highly relevant for
predicting user intention. Hu et al. [166] proposed EHTask,
a novel task classification method utilizing eye and head
movement features, and showed that eye-tracking features
differ based on the tasks in VR. In addition, EHTask performed
better than state-of-the-art in task classification in 2D viewing.
Similarly, for intent prediction, Alghofaili et al. [149] intro-
duced an approach for the prediction of navigation assistance
needs based on eye gaze and LSTMs, and the approach of the
authors achieved a prediction accuracy of over 80%.

e) Gaze-based Hand Redirection: Hand redirection
methods are essential for addressing the discrepancies between
hand movements in virtual and real environments, as perfect
alignment between the two cannot always be achieved. Dis-
crepancies can lead to difficulties during hand interactions,
such as the inability to interact with the intended objects. Eye-
tracking-based methods can be utilized to assist in identifying
the user’s intent and direct hand to the right location.

Considering these, Cheng et al. [150] utilized a gaze-based
hand redirection method to bridge the gap between real and
virtual worlds with their proposed framework called Sparse
Haptic Proxy. This framework consists of geometric primitives
that mimic the haptic feedback of virtual objects. The authors
employed the haptic re-targeting technique [167] that utilizes

users’ eye and hand behaviors to predict their intention and
redirect their hand to a physical proxy. User studies showed
that the proposed method achieved an accuracy of 97.5% for
gaze-based user intention prediction and reported the maximal
acceptable hand redirection angle as 40◦. Blink-Suppressed
Hand Redirection (BSHR) was proposed by Zenner et al. [152]
as a hand redirection approach based on body wrapping
algorithm [150]. Unnoticeable instant changes are performed
exploiting the natural blink motion of the eye, and real and
virtual hand offset is adjusted with slight modifications when
eyes are opened.

REACH+ proposed by Gonzalez et al. [151] combines eye-
tracking data and hand motion to determine user intention
in redirection frameworks, and it is designed to overcome
challenges through physical interaction in virtual spaces.
REACH+ redirects the users’ hands to the intended target
within arm-reachable range, improving the feeling of realism.
In recent work, Sendhilnathan et al. [154] accomplished error
detection in gesture input with the help of gaze dynamics.
The authors analyzed the gaze patterns following gesture input
and classified the input into three types: true input, input
recognition errors, and user errors. Utilizing only gaze features
such as fixation duration, saccade amplitude, and gaze velocity,
the researchers successfully achieved a classification area
under the curve of receiver-operator characteristic curve for
one-vs-rest score (AUC-ROC-OVR) of 0.78 with a temporal
convolutional network (TCN) and examined the consistency
of such classification across tasks. More in terms of object
manipulation tasks, Yu et al. [153] designed an interaction
technique combining hand gestures with gaze information
for object manipulation tasks in VR. They evaluated four
alternative combination techniques while varying the object
distance from the agent in the virtual environment. According
to user studies, the authors showed that the combination of
hand and gaze improved the usability and efficiency of object
manipulation tasks in large environments where objects are
not located within the arm’s reach distance.

f) Gaze-based Walking Redirection: Another challenge
in VR interaction, especially during mobile activities such as
walking and running, is the limited space in the real world.
Nguyen and Kunz [155] proposed a discrete rotation technique
to minimize the required area in a real workspace. The authors
first assessed the threshold for the discrete rotation in virtual
scenes and obtained 9.1◦ and 2.4◦ for closed and open eyes,
respectively. Then, they applied discrete scene rotation while
the agent was walking and reduced the required area by 20%
for these tasks. An alternative method to facilitate virtual
walking activity in constrained physical space proposed by Sun
et al. [168]. The authors employed a path-planning algorithm
that considered positions of pre-existing static and dynamic
obstacles, including walls and furniture, as well as multiple VR
users within a designated room. Furthermore, the algorithm
made use of the saccadic suppression periods to facilitate
efficient path planning. Furthermore, the authors presented a
subtle gaze direction (SGD) technique to increase the number
of saccades, considerably enhancing the redirection gain.

Predicting future physical positions is a beneficial way to
optimize the use of limited physical area [156], [157]. Stein et
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TABLE III
A NON-EXHAUSTIVE OVERVIEW OF PAPERS DISCUSSED IN SECTION IV-B2.

Contribution Characteristics

Gaze prediction

[159] DGaze: CNN model using object-, head-, and saliency-based features
[169] SGaze: Data-driven model for real-time gaze prediction
[170] FixationNet: Eye&Head tracking and task-related data
[171] In-game variables and gaze features
[172] Deep Future Gaze (DFG): GAN model
[173] Head orientation prediction with linear SVM

Scanpath
prediction

[174] SaltiNet: CNN model with saliency volumes
[175] PathGAN: GAN model for scanpath prediction
[176] ScanGAN360: Scanpath generation from graph
[177] Utilization of clustering and graph-based algorithms

Saliency map
estimation

[178] Benchmarking different methods
[179] Multi-perspective 3D saliency map estimation
[180] User-specific behaviors
[181] LSTM model with head and saliency features
[182] User attention in cinematographic VR movies
[183] Salient object detection (SOD) & 360-SSOD dataset

al. [156] proposed to use future location predictions obtained
through an LSTM model utilizing eye-tracking features. The
authors demonstrated that the model, which can be applied in
redirection approaches, is capable of predicting the position
of users 2.5 seconds in advance, with an average error of
65 cm. A similar approach relying on the LSTM model was
proposed by Bremer et al.[157], evaluating short-term (i.e.,
50 ms) and long-term (i.e., 2.5s) predictions separately. The
optimal performance in short-term predictions was obtained
by utilizing position and orientation features. In contrast, the
inclusion of eye-tracking features with these features resulted
in the best performance for long-term predictions. The authors
also stated that especially short-term predictions might be
valuable to optimize computational sources for rendering or
transmission bandwidth in streaming activities.

2) Predictive Gaze Analysis: Predicting the future gaze
locations enhances the efficiency of gaze-based rendering
techniques, particularly foveated rendering; therefore, methods
combining gaze prediction and foveated rendering have gained
strong momentum in recent years. This section discusses the
related algorithms for gaze location prediction, scanpath pre-
diction, and saliency map generation. We provide the overview
of the papers discussed in this section in Table III.

a) Gaze Prediction: Foveated rendering methods depend
on accurate gaze prediction, which directly impacts the per-
formance and usability of foveated rendering applications.
Therefore, researchers have been dedicating significant atten-
tion to exploring and implementing effective gaze prediction
techniques, leveraging a range of methods from pure statistical
ones to neural networks. For instance, Deep Future Gaze
(DFG), proposed by Zhang et al. [172], is a GAN-based
model that exploits spatial-temporal CNN as an encoder and
anticipates upcoming gaze positions while generating future
frames based on the current ones. A by-product of their
work is an object search task (OST) dataset, considered one
of the most extensive egocentric datasets. Hu et al. [169]
proposed SGaze that utilizes eye-gaze information collected
by an integrated eye tracker to forecast future gaze locations.
SGaze was designed as a data-driven model based on eye-
head coordination for real-time gaze prediction and is based

on statistical models exploiting the relation of gaze and head
movements, and it does not require any additional hardware
or eye-tracker support. In this model, the latency in the
movements of the eye and head was taken into account, and
SGaze achieved better angular distance values compared to
the baseline, which used the screen center as the gaze point.
More recently, Hu et al. [159] also presented DGaze as a CNN-
based gaze prediction algorithm incorporating dynamic object
positions, head movements, and saliency features extracted
with SAM-ResNet saliency predictor [184]. Object positions,
head velocity data, and previous gaze location sequences are
processed with a sequence encoder model to increase the
precision. This technique was applied in real-time, and near-
future gaze predictions were carried out corresponding to
short-term predictions such as 200-1000 ms. DGaze achieved
better angular distance values in both dynamic and stationary
scenes compared to their prior method, SGaze [169].

FixationNet proposed by Hu et al. [170] is a neural network
utilized to predict near-future gaze locations up to 600 ms in
task-oriented virtual experiences utilizing eye-tracking data,
head movements, saliency maps, and task-related informa-
tion. Data from 27 individuals during the visual searching
task in VR indicated a strong correlation between fixation
positions and head movements, saliency maps, and content-
related information. Besides estimating the gaze position,
the proposed model outperforms state-of-art models in gaze
prediction tasks for 150-600 ms in task-oriented and free-
viewing experiments. Another gaze prediction method was
introduced by Koulieris et al. [171], specifically for games
that are heavily task-oriented. The proposed approach exploits
the correlation between the game variables in their current
states and gaze locations. Moreover, predicted gaze locations
were used in the dynamic disparity manipulation method to
improve the depth sense in the game scenes. Vielhaben et
al. [173] predicted the user’s future head orientation using past
head movements and eye-tracking data by training a linear
SVM model. Their model is able to predict future view-ports
without utilizing any information related to the content in
spherical videos; hence, it can be utilized to improve rendering
performance as well as reduce the transmission load.
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b) Scanpath Prediction: To provide a comprehensive
overview of gaze prediction, we discuss the scanpath predic-
tion referring to the sequence of gaze points in a given virtual
environment. Unlike gaze prediction techniques that forecast
individual samples, scanpath prediction involves predicting the
sequence of gaze points as a whole, thereby allowing for the
estimation of complete human attention on a given scene.
While these two concepts are related, they serve different
purposes and require different types of models and algorithms
for prediction. To this end, Assens et al. [174] proposed
SaltiNet, a deep CNN trained first to generate saliency volumes
that capture temporal information, and then the scanpath is
sampled from the saliency volumes. In another work, Assens
et al. [175] designed a novel GAN model, called PathGAN,
that employs a convolutional-recurrent architecture for both
the encoder and decoder in order to predict scanpath. Recently,
Martin et al. [176] introduced another GAN-based scanpath
prediction model, ScanGAN360, which deploys a novel GAN
objective function based on dynamic time warping. Unlike the
ScanGAN360, Zhu et al. [177] suggested generating scanpaths
by building a graph from a saliency map. The saliency map is
first binarized and clustered into centers. Then, a weighted
graph is created with the cluster centers as nodes, and a
scanpath can be generated from the graph.

c) Saliency Map Estimation: A saliency map, also
known as a heat map or attention map, is a visual rep-
resentation of eye-gaze data on an image or on a scene.
It serves as a visualization tool that highlights the regions
that attract the most attention from human observers. An
illustration of a saliency map, which shows the distribution
of human attention over an image, is provided in Figure 5.
The saliency map lays the foundation for numerous gaze-
based VR applications and hence plays an important role.
Different approaches have been proposed in the literature for
saliency map estimation and generation. John et al. [178]
benchmarked four different methods for saliency map gen-
eration in VR. The authors suggested utilizing the modified
Gaussian kernel [185] with a scale of 5% for 360◦ saliency
map generation due to ease of implementation. Pfeiffer and
Memili [179] presented an approach that tackles challenges
such as changing perspectives, dynamically moving objects,
and depth of fixations in the generation of saliency maps for
3D environments. They aggregated the gaze data from multiple
users and represented the distribution of visual attention at the
object level using textures. Their method offers high-quality
saliency maps for multi-perspective eye-tracking recordings.
Sitzmann et al. [180] studied the difference in saliency patterns
between desktop and stereoscopic vision among 169 partic-
ipants and adapted traditional saliency prediction methods
according to user-specific behaviors such as particular fixation
biases. Nguyen et al. [181] conducted research on predicting
head movement using an LSTM model in conjunction with
saliency maps. Maranes et al. [182] exploited a dataset of 3259
users watching cinematographic VR movies and measured user
attention via saliency maps. Closely related to visual saliency,
Ma et al. [183] aimed at salient object detection (SOD) in
360◦ panorama images with the help of eye tracking and
proposed a novel dataset, i.e., 360-SSOD, including manually

Fig. 5. A saliency map is a gaze visualization tool that highlights regions of
an image with a color-coding scheme. An example of such a map is provided
here.

annotated object-level saliency ground truth with balanced
semantic distribution compared to existing datasets.

3) Rendering Techniques: The quality of the 3D scene dis-
play is of paramount importance for VR devices, as it directly
impacts the overall immersive experience for users. Therefore,
it has been of great importance to render with high resolution
and high refresh rates in VR environments. However, several
challenges exist in this area regarding computational issues for
real-time rendering, computational power, and realistic natural
depth perception. To overcome those, different rendering tech-
niques utilizing gaze information have been proposed in the
literature. In this section, we discuss rendering techniques in
three categories based on their objectives: ensuring computa-
tional load and power efficiency, optimization of transmission
efficiency, and scene quality enhancement. By exploring these
categories, we aim to provide a deeper understanding of the
current state of the art in rendering in VR and the potential
for future developments in this field. We provide an overview
of the papers discussed in this section in Table IV.

a) Foveated Rendering: In this section, we first provide
a comprehensive review of foveated rendering techniques.
Subsequently, we discuss gaze-based methods with similar
objectives. In a nutshell, foveated rendering approaches focus
on graphical computations and rendering around gaze fixation
in a high-quality manner while blurring other parts of the
scene to reduce computation load without deteriorating the
user experience. Figure 6 depicts illustrations of images with
blurred peripheral regions.

To this end, Patney et al. [186] proposed a foveated render-
ing architecture to lessen computation power and reduce the
number of shades in the scene. In their architecture, a percep-
tual target image is generated by adjusting the blur filter width
according to retinal eccentricity to prevent temporal and spatial
aliasing. The authors discovered that contrast enhancement
could provide a larger tolerance for blurred region size through
a user experience study, and as a result, contrast enhancement
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TABLE IV
A NON-EXHAUSTIVE OVERVIEW OF PAPERS DISCUSSED IN SECTION IV-B3.

Contribution Characteristics

Foveated
rendering (FR)

[186] Blur Filter width based on retinal eccentricity
[187] Eye dominance measured with Miles test
[188] 4D-Light areas and gaze-based acceleration
[189] Content aware foveated rendering using luminance contrast
[190] Neural radiance fields (NeRF)
[191] Foveation, depth of field, and longitudinal chromatic aberration
[192] FR with a subsampling technique for ray tracing
[193] RMFR: Rectangular mapping-based foveated rendering

Saccade-based
FR

[194] Polynomial fitting for saccade landing position estimation
[195] Recurrent neural network model
[196] Data augmentation for neural networks

FR assessment [197] Foveated rendering assessment

Power efficiency
[198] Gaze-based approach for colour discrimination
[199] Gaze-based dynamic refocusing for gigapixel panoramas (GPP)
[200] FocusVR: Gaze-based intelligent dimming technique

Streaming
[201] Log-rectilinear transformation
[202] Codec supporting multi-resolution in a frame
[203] Low resolutions 2D scene processing and mapping to 3D scenes

Depth sense
enhancement

[204] Blurring based on focal points and gaze
[205] Foveated rendering accounting for ocular parallax
[206] Ocular parallax aware gaze-based stereo rendering
[207] Gradual and stereoscopic depth adjustments

Vergence-
accommodation
conflict

[208] Phase-only spatial light modulator (SLM)
[209] Decomposition method with gaze and head motions
[210] Binocular disparities & screen distance
[211] Accommodation-invariant display
[212] Minimum eye-tracking accuracy for varifocal displays
[213] Multi-focal and single-focal comparison

was applied as a post-processing step to the image. They
demonstrated that the proposed technique achieved a similar
level of temporal stability compared to temporally filtered non-
foveated images and validated it through frequency analyses,
which showed alignment with the perceptual target. Ye et
al. [193] introduced a technique called rectangular mapping-
based foveated rendering (RMFR), which renders scenes with
non-uniform foveation levels based on eccentricity and scene
complexity. RMFR offers superior visual quality compared
to conventional foveated rendering methods while requiring
minimal rendering cost. Meng et al. [188] proposed another
foveated rendering approach, referred to as 3D-kernel foveated
rendering (3D-KFR), which is combined with an eye-tracking-
based acceleration algorithm. The proposed algorithm, de-
signed specifically for visualizing high-resolution microscopic
4D-Light fields with depth cues, provides rendering accelera-
tion up to a factor of 7.28 in HMDs.

Similar to the aforementioned works, Deng et al. [190]
presented a gaze-contingent rendering approach with neural
radiance fields (NeRF), which allows the rendering of 3D
scenes with photo-realistic quality. However, this approach
also requires heavy computation, which causes latency in
the rendering process. To address this issue, the proposed
technique involves encoding each retinal region, including the
foveal, mid-periphery, and far-periphery regions, with varying
levels of visual perception. According to their experiments,
the authors indicated that the proposed method incorporating
eye-gaze information reduces latency without compromising
perceptual quality. Additionally, Meng et al. [187] took eye
dominance into account and designed an approach providing
more visual details to the dominant eye than the non-dominant

eye to enhance the efficiency of foveated rendering. An image
with a broader foveation area is rendered for the eye with
higher ocular dominance. The authors conducted a study
to estimate foveation level parameters individually for each
eye, using Miles test [214]. They showed that the rendering
performance of the devices was boosted with the proposed
technique for the same level of perceived quality.

Most of the discussed foveated rendering algorithms con-
sider the peripheral region and the sensitivity of human eyes to
model foveated areas. In addition to those, Tursun et al. [189]
introduced a content-aware foveated rendering method con-
sidering the luminance contrast of the exhibited content. The
proposed model can forecast the resolution parameters as a
function of luminance patterns by processing low-resolution
frames before carrying out high-resolution rendering. Their
user studies revealed that with their model, rendering perfor-
mance increases while maintaining an imperceptible foveation
layer. In a different study, Liu et al. [191] proposed a hybrid
foveated rendering method that incorporates foveation, depth
of field, and longitudinal chromatic aberration. Their method-
ology accounts for vergence and accommodation, visual acuity
eccentricity, and color vision. The authors stated that the
proposed model outperforms the state-of-the-art rendering
techniques in frame rates while providing at least the same
level of visual scene quality. In parallel to these works, Kim et
al. [192] presented a promising foveated rendering approach to
deal with the high computational demand of ray tracing, which
can be considered as an advanced technique employed to
achieve high visual quality and more realistic effects in scenes.
The proposed foveated rendering approach includes a selective
subsampling technique, which gradually decreases the rate in
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Fig. 6. Foveated rendering provides a higher level of detail at the gaze location of the viewer while reducing the level of detail in the peripheral vision. The
gaze locations are shown with blue circles in the figures.

the peripheral region while preserving high sampling rates in
the foveal region. This allows the practical use of ray tracing
in HMDs by reducing the high power requirement.

A handful of the rendering techniques rely on fixation
prediction, and such techniques may suffer from latency which
might result in the degradation of user experience because
of the mismatch between actual gaze location and predicted
location, especially during saccades. Therefore, forecasting
the saccade landing points by exploiting saccadic suppres-
sion is essential to improve the quality of the foveated
rendering [194], [195], [196]. The algorithm proposed by
Arabadzhiyska et al. [194] forecasts the final position of
saccades during the saccadic behavior and then renders the
image considering the predicted landing location. To determine
the final saccade location, the direction of the movements
is predicted according to the previous gaze samples, while
the saccade amplitude is predicted with a polynomial fitting
approach. The authors indicated that this technique could be
easily integrated into the existing foveated rendering systems
to improve their performance. Similar to Arabadzhiyska et
al. [194], Morales et al. [195] utilized recurrent neural network
(RNN) models exploiting dynamic temporal relationships to
predict the saccade landing point. Their LSTM-based model
provides prediction at a lower error level compared to other
state-of-the-art techniques. In RNN models such as LSTMs,

the acquisition of suitable training data is vital for discerning
temporal relationships. To address this challenge, Griffith and
Komogortsev [196] proposed a data augmentation technique
to improve the saccade landing point estimation with neural
networks. Time-shifted imitations of the training data are used
to boost the estimation reliability of the starting time of the
saccadic movement. This augmentation method improves the
median accuracy of the predicted final saccade point locations
both for LSTMs and feed-forward neural network models.

Apart from the discussed foveated rendering techniques,
qualitative or quantitative performance evaluation approaches
are necessary to assess and compare the performance of
existing rendering techniques properly. In addition, the robust-
ness and effectiveness of the introduced assessment methods
could vary in different test scenarios. Subjective assessment
methods for foveated rendering were evaluated by Hsu et
al. [197] in terms of efficiency and consistency. Efficiency is
assessed based on the required time to reach perceptual ratio
convergence. Meanwhile, the distribution of individual quality
of experience (QoE) scores, which indicates the level of user
satisfaction, expectation, and perception, is used for consis-
tency. The authors stated that no subjective evaluation method
could be defined as superior to any other, but they provide the
research community with information on evaluation metrics so
that researchers can decide on a metric that fits their specific
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needs.
While we present a comprehensive discussion of various

foveated rendering techniques designed to alleviate VR de-
vices’ high power and GPU requirements and make them
practically usable for real-world applications, there are several
other techniques based on eye tracking that address similar
challenges in different ways. These are mainly based on
gaze-based color manipulation and dimming techniques [198],
[200]. To this end, Duinkharjav et al. [198] presented a
real-time applicable power reduction method based on gaze
information and color discrimination. The authors achieved
a display power requirement reduction of up to 24% with
minimal degradation in perceptual quality. Similarly, Wee et
al. [200] proposed a system called FocusVR to overcome the
high power requirements of VR/AR devices with advanced
high-resolution displays. Power consumption efficiency was
enhanced by combining techniques like intelligent dimming,
vignettes, and color mapping. The eye-tracking capability of
these devices is utilized to execute more aggressive dimming
techniques with less impact on user experience. The authors
reported that FocusVR could reduce display and system power
consumption up to 80% and 50%, respectively. In addition to
these works, Lyu et al. [199] proposed an approach using eye-
tracking data to deal with high GPU requirements and lags in
gigapixel panorama (GPP) displays in HMDs. A rendering
technique supporting panning, tilting, zooming, and dynamic
refocusing based on gaze information was proposed to display
GPP scenes in HMDs and the introduced system is capable of
keeping the FPS rates above 50 without using high-end GPUs.

b) Streaming Techniques: Techniques that are used in
foveated rendering can also be utilized or customized to
reduce the bandwidth requirements of the high-resolution 360-
degree video streaming, especially for VR devices [201],
[202]. In such setups, eye-tracking data is processed, and
content providers transfer the data based on gaze position
using a similar methodology employed in foveated rendering.
Although different approaches exist, the general framework for
streaming solutions aiming to optimize bandwidth efficiency
is given in Figure 7.

Li et al. [201] proposed a log-rectilinear transformation-
based method using summed-area table filtering and off-the-
shelf video codecs, that optimizes huge bandwidth require-
ments of the high-resolution live video streaming services for
VR headsets. Log-rectilinear-based transformation provides
about 10% efficiency in bandwidth usage compared to tradi-
tional log-polar transformation. It also reduced the flickering
as measured by a metric suggested by Winkler et al. [215].
As an alternative, Lungaro et al. [202] presented a novel
codec method, which intentionally causes some errors in the
less-sensitive visual areas to support streaming video frames
having regions with different qualities. The proposed solution
offers an 83% improvement in the bandwidth requirement for
high Quality of Service (QoS) levels over traditional solutions.
Additionally, Chen et al. [203] proposed a gaze-contingent
streaming approach that identifies the essential regions in 2D
scenes and then maps them to 3D scenes to improve 3D
rendering and streaming efficiency. The authors argued that
the proposed system provides a better visual scene quality

Fig. 7. A streaming framework example. Eye-tracking data is provided to a
server that estimates future gaze locations and communicates with a content
provider. The content provider streams VR content considering gaze position
and optimizes the transmission process.

with temporal consistency compared to other systems.
c) Improving Scene Realism and Depth Perception: The

aforementioned works, such as in the area of foveated or
streaming techniques, offer solutions to deal with or mitigate
the technical and computational limitations of VR devices,
such as issues regarding power consumption, computational
load, and bandwidth requirements. In addition to these, achiev-
ing high scene quality and high levels of realism are other
challenging concepts in VR technology, which are related to
the visual acuity of virtual scenes. The majority of research
in this field focuses on depth perception, which is related
to the degree of realism. Therefore in the following, we
discuss the rendering techniques that have been introduced
to enhance the realism sense focusing mainly on the users’
depth perception. Additionally, we also explore the proposed
solutions for enhancing depth perception, which addresses the
issue of vergence-accommodation conflict (VAC) in HMDs.

Mauderer et al. [204] presented a gaze-contingent technique
allowing the production of more realistic 3D images with
improved depth perception by modifying the blurring rate of
the objects in a range of distances considering gaze locations.
The authors achieved higher levels of perceived depth and
realism by employing focal points in combination with the
gaze. Konrad et al. [205] proposed a rendering method based
on ocular parallax exploiting small changes of images on the
retina caused by eye rotation. The ocular parallax’s visibil-
ity was evaluated with a series of experiments to measure
perceived relative distance in the AR/VR scenes. According
to the authors, ocular parallax rendering combined with gaze
contingency offers a more authentic experience and improved
depth perception in VR scenes. Another work accounting
ocular parallax presented by Krajancih et al. [206] as a solution
to the depth distortion in conventional rendering models. The
introduced gaze-contingent stereo rendering method reduces
the shape and disparity distortions and provides a more
consistent depth sense while maintaining perceived relative
distances between the rendered objects in a scene compared
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to conventional methods. Kellnhofer et al. [207] introduced
another technique by using eye tracking as well as predicted
gaze data to enhance depth perception while preserving the
visual quality and comfort of the users. Their model employs
a controller executing unperceived local depth adjustments
for the stereoscopic content to optimize the trade-off be-
tween depth reproduction and visual comfort. The evaluations
showed that their method provides a significant enhancement
of depth perception while preserving the visual quality.

Vergence-accommodation conflict (VAC), which is referred
to as the mismatch between the vergence and accommodation
points of the eye, is another challenge that can affect the
perceived image quality, the sense of depth, and realism in
near-eye displays. This conflict occurs due to changes in the
shape of the eye lens during eye movements. In some VR
displays that are designed for a fixed distance, the degradation
of perceived image quality can be attributed to the conflict
between the vergence and accommodation of the eyes. To
address this challenge, Matsuda et al. [208] proposed the use
of a phase-only spatial light modulator (SLM) made from the
liquid crystal on silicon (LCOS) as a lens with a dynamically
adaptive shape that is positioned between the display screen
and the viewing optics. The authors presented a rendering
technique that decomposes the scene and generates images for
each display plane while taking the gaze location into account.
Mercier et al. [209] proposed a computationally plausible
decomposition method that utilizes gaze and head motions to
align the layers of the multifocal displays in HMDs. The exper-
iments, which were conducted on a multifocal testbed designed
for eye-tracking and accommodation measures, showed that
eye tracking could be effectively utilized for plane alignment
tasks. In addition, Konrad et al. [211] introduced an accom-
modation invariant display approach for near-eye displays,
which makes scenes independent of the accommodation state
of the eyes. This approach replaces traditional retinal blur with
disparity and vergence to drive accommodation. Batmaz et
al. [213] examined the effect of VAC on user performance
during a hand-pointing task within arm’s reach using multi-
focal and single-focal VR displays. The authors concluded that
multi-focal displays are better than single-focal displays in
terms of both time and error rate, which corresponds to the per-
centage of missed targets during virtual hand interaction tasks.
More recently, Aizenman et al. [210] systematically explored
eye movement and binocular disparities when wearing an HTC
Vive Pro Eye. The authors proposed an optimal screen distance
to minimize the adverse effects of the VAC by analyzing the
distribution of fixation distances. However, the accuracy of eye
tracking can pose challenges for these solutions. To this end,
Dunn [212] reported that the minimum eye-tracking accuracy
required for the implementation of varifocal displays in VR is
1.444◦.

C. Understanding Human Cognition, Visual Attention, and
Perception

Plenty of works in the literature focus on computer vision-
and machine learning-based approaches to identify eye regions
and detect gaze and concentrate on human-computer interac-
tion, mostly in an online fashion for rendering and real-time

user support. In addition to those, researchers often collect eye-
tracking data from VR setups and process and analyze them
in an offline fashion to understand human behavior from a
perspective of cognitive and visual attention processes as well.
Therefore, in this section, we give a comprehensive review of
both theoretical and practical studies of eye-tracked VR with
respect to understanding human behaviors. We first outline in
Section IV-C1 how eye tracking can be used to understand
human cognition in VR and during the use of HMDs. Then,
we explore the works that investigate the relationship between
human visual attention and gaze behavior in Section IV-C2.
Later, in Section IV-C3, we provide the research related to
human perception of VR spaces, considering perceived realism
and cybersickness.

1) Human Cognition: Unlike the fields that are tangible,
the realm of human cognition is characterized by abstraction
and is hence more elusive. To close this gap, eye-tracked VR
has shown great potential in the study of human cognition.
Gaze features such as eye movement patterns, pupil diameters,
and aggregated eye features such as fixation and saccade
durations have been widely used as indicators for different
human cognitive processes. For instance, Bozkir et al. [216]
showed cognitive load differences in a driving simulation in
VR with machine learning and were able to predict human
cognitive load with an accuracy of over 80% by incorporating
gaze features, particularly by using pupil diameters. Souchet
et al. [217] conducted cognitive load prediction using features
from different modalities, including gaze features, electrocar-
diogram, and electrodermal activity. The authors found that
electrocardiogram features were the most relevant features
correlated with self-reported subjective cognitive load levels
compared to the other modalities in their setup. Duchowski
et al. [218] pointed out the drawbacks of pupillometry in
cognitive load assessment that is caused by ambient illu-
mination and off-axis distortion and suggested the wavelet-
based estimation of pupil diameter oscillation frequency as
an alternative feature. The suggested metric showed great
potential to classify task difficulty in a user study where 17
participants were asked to do math calculations.

Cognitive load prediction tasks were also utilized in
aviation-related scenarios. Luong et al. [219] utilized features
from various modalities, including pupil features such as
pupil diameter, pupil diameter amplitude, and constriction and
dilatation speed of pupil to evaluate the cognitive load in a
VR flight simulation. Using a random forest estimator, the
authors were able to classify four levels of cognitive load with
an accuracy of up to 65%. Wilson et al. [220] also studied
cognitive load in flight simulation with a deep learning model
using various sensing modalities. They fed pupil dilation and
blink features into their models and obtained 80% accuracy in
the cognitive load estimation task.

Related to cognitive load, Bækgaard et al. [221] examined
the correlation between pupil dilation and the difficulty index
in Fitts’ Law [222]. Fitts’ Law describes the relationship
between the time, distance, and accuracy of an individual’s
movement in reaching a given target while taking the level
of cognitive load or task difficulty into account. It enables
the assessment of task difficulty or cognitive load by defining
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the difficulty index as a quantitative measure. Findings of
Bækgaard et al. indicate that tasks that demand higher cogni-
tive load lead to a larger pupil diameter, whereas there is no
significant relationship between pupil diameter and the Fitts’
Law index, which is related to motor task complexity. One
common challenge in measuring pupil dilation is its sensitivity
to illumination. To overcome this challenge, John et al. [223]
attempted to exclude the impact of the light source on pupil
dilation in both 2D monitors and HMDs using three different
models. Although a linear calibration model yielded prediction
errors of 0.41 and 0.60 mm for pupil constriction and dilation,
respectively, and in 2D, an exponential model dominates with
an error of 0.27 mm in VR. More related to application
use cases, in recent work, Gao et al. [224] compared the
effects of five VR locomotion methods on cognitive response,
including arm swinging, dash, grappling, joystick, as well as
teleportation. To measure cognitive load, gaze features like
blink rates, fixation durations, and saccade amplitudes were
employed. The authors discovered that locomotion methods
could significantly influence the cognitive state in VR, while
joystick and teleportation resulted in lower cognitive load in
participants.

Human emotions such as fear and frustration also play
an important role in the human cognitive state, and an in-
creasing amount of studies have been devoted to identifying
the relationship between gaze behavior and human emotion
in virtual spaces. For instance, Pan et al. [225] used pupil
diameter changes to measure the influence of the fear of
the sea on working memory. The authors designed n-back
memory tests for 29 subjects and found that pupil diameter
changes noticeably increased in undersea simulation in all
tasks. Furthermore, Luong and Holz [226] investigated users’
pupillometry responses along with pulmonary, electrodermal,
and cardiac data to capture sensations of fear, frustration,
and insight. Insight refers to the moment when a player
suddenly understands the solution to a puzzle or clue. They
achieved an F1 score of over 71% to predict these senses using
classification models including logistic regression and support
vector machine models.

Apart from the estimation of the cognitive load, inferences
about human cognition have also been used as a supportive
source of information in various application domains, espe-
cially to enhance the interaction experience in VR. Lindlbauer
et al. [227] utilized cognitive load, which was estimated by
the index of pupil activity metric based on pupil dilation
change, to optimize and eliminate the manual adjustment
process of the level of information displayed in mixed reality
glasses. The authors showed that, with their approach, the
amount of secondary task interactions was reduced by 36%.
Kübler et al. [228] utilized cognitive load as an indicative
factor to detect hazard situations in a driving simulator. SVM
models trained with wavelet transformation components ex-
tracted from pupil diameter data were used in the detection
of hazardous situations. The authors demonstrated that pupil
dilation could be used as an indicator of hazard perception in
driving simulations. However, they also noted that it cannot
be relied upon as a stand-alone detection mechanism due to
the number of false positives.

When applications of human cognition are considered,
one of the most important domains is medicine, as human
cognitive processes are related to neurological and psycholog-
ical diseases. In addition, since it is possible to manipulate
and control experimental conditions very precisely in VR,
researchers often employed VR and eye tracking together
in this domain. For instance, to understand the response of
children suffering from autism spectrum disorder (ASD) to
facial expressions, Bekele et al. [229] conducted a user study
with 10 ASD patients and 10 typically developing (TD) peers
in multiple emotion recognition tasks using a facial expression
system in VR. By analyzing participants’ gaze features such
as region-of-interests (ROIs), fixation durations, blink rates,
and pupil diameters, the latter being indicative of cognitive
load, the authors found that the way how individuals with
ASD identify emotional faces is significantly different from
their TD peers. In another work by Bekele et al. [230],
the authors introduced a novel multi-modal adaptive social
interaction in a VR platform and suggested the use of gaze
information for adaptive intervention. In particular, they used
ROIs to adjust the face occlusion of virtual characters in
real time. In their emotion recognition experiments with 6
ASD and 6 age-matched children, a performance increase of
3% associated with the novel gaze-sensitive mechanism was
observed. Similarly, Kim et al. [231] presented a VR-based
interactive social skill training system (VISTA) that uses eye-
tracking data, including ROIs and pupil features, to understand
the characteristics of people with ASD. In a user study of 20
participants, the authors found that the ASD group was highly
engaged with VISTA while showing a dramatic difference
from the neurotypical group in biological signals, such as a
larger variation in pupil diameters, which in general indicates
a higher cognitive load. The research in the medical domain
that includes human cognition, eye tracking, and VR is not
limited to ASD. For instance, Orlosky et al. [232] presented a
remote diagnosis system in VR for neurodegenerative diseases
like Parkinson’s. The authors designed various tasks to elicit
abnormal eye behaviors such as ocular tremors, square wave
jerks, and abnormal pursuits, which could be indicators for
neurodegenerative diseases and cognitive load. Based on the
experimental results, the authors claimed that the VR interface
successfully elicited five types of abnormal eye movements,
while eye physicians could identify three out of four ab-
normal eye behaviors. The authors also implemented three
different visualization techniques for eye movements, which
can be helpful for doctors as small movements can hardly be
identified by humans. While the diagnosis of such diseases
could not only be done with the help of eye tracking and
VR due to the fact that those diseases are far more complex
for only machines and data-driven practices to identify, such
systems could be used for supporting doctors in their regular
workflows. In Table VI, we provide a brief overview of papers
discussed in Section IV-C1, including their purposes, eye-
tracking features, and the number of participants involved in
their experiments, whereas Table V includes abbreviations for
the features.

2) Visual Attention: In this section, we give a holistic view
of prior works linking eye-tracked VR and human visual
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TABLE V
FEATURE ABBREVIATIONS.

Name Abbreviation Name Abbreviation
Pupil-based features pup Blinks & Eye openness blnk
Fixation fix Saccade sac
Interpupillary distance ipd Oscillation frequency freq
Eye vergence angle eva Smooth pursuit spur
Phoria phr Eye gaze gaze
Convergence cvgn

TABLE VI
AN OVERVIEW OF THE PAPERS RELATED TO HUMAN COGNITION.

Paper # Users Purpose Eye-tracking Features
[216] 16 Cognitive load prediction in driving simulation pup
[217] 92 Cognitive load prediction pup, sac, blnk
[218] 17 Cognitive load prediction pup, freq
[219] 75 Cognitive load prediction in flight simulation pup
[220] 40 Cognitive load prediction in flight simulation pup, blnk
[221] 27 Cognitive load analysis in physiology pup
[223] 24 Cognitive load analysis pup
[224] 15 Cognitive response analysis for VR locomotion blnk, fix, sac
[225] 29 Emotion recognition pup
[226] 24 Emotion recognition pup
[227] 12 Cognitive load prediction pup
[228] 31 Cognitive load analysis for hazard detection pup
[229] 20 Understanding ASD gaze, fix, blnk, pup
[230] 12 Understanding ASD for adaptive intervention gaze, pup, blnk, fix, sac
[231] 20 Understanding ASD for social skill training gaze, pup
[232] 16 Parkinson’s disease detection gaze, pup

attention. Human visual attention is highly related to where
people look at the scene mainly with their eye gaze and often
correlates with cognitive and perceptual abilities. In addition,
visual attention is affected by the 3D scene design and external
stimulus-related factors in virtual spaces. To understand these,
researchers have addressed various aspects of human visual
attention. Schmitz et al. [233] explored how peripheral flicker
and central arrow stimuli differently impacted visual attention
guidance in virtual panoramic videos. Based on their analysis
conducted with 25 users, the researchers reported that the
participants preferred the central arrow stimuli over the periph-
eral flicker stimuli, perceiving the former as more rewarding.
Additionally, the authors claimed that traditional attention
mechanisms might not be fully applicable to panoramic videos.

The effect of endogenous and exogenous cues to orient
visual attention was investigated by Soret et al. [234], with
eye-tracking analysis. The results showed that such cue types
reduce the reaction time of the user as initially expected.
Liu et al. [235] performed unordered tasks more efficiently
over time by employing dynamic visual cues to guide users’
visual attention towards specific substeps of the performed
task. The proposed method allows the user to determine the
sequence of task completion, which subsequently influences
the presented set of cues which are dynamically updated based
on hand proximity and eye gaze. The authors stated that visual
cues based on eye gaze improve task completion times more
significant than the cues based on hand proximity.

Lange et al. introduced HiveFive [236] as an attention
guidance technique designed to direct the users’ attention to
context-relevant points using swarm motion. The proposed
technique achieves lower response latency, resulting in a less
adverse impact on immersion. Visual attention guidance was
also proposed in VR-based driving simulators as well. For
instance, Bozkir et al. [237] provided gaze-aware warning
cues for pedestrian crossing scenarios in a low-cost VR setup
to enhance driver attention. The experimental results, which
include metrics such as minimal distances to pedestrians,
participant pupil diameters, and drivers’ inputs on accelerator
and brake, showed that eye-tracked VR might be an effective
tool for driver training in safety-critical situations due to the
effectiveness of the visual cues.

Notifications are often considered a form of external stim-
ulus that may interrupt the user during virtual experiences.
Gaze-based visual attention analysis could help to understand
the impact of notifications and potentially provide a less
disruptive VR experience. To this end, Hsieh et al. [238]
explored the perception of notifications by VR users when
they received them in a message form from the real world. The
authors provided design suggestions to eliminate the disruptive
effect of these notifications, such as by measuring users’ level
of engagement using eye-tracking data to find the convenient
times for notifications and locating the message according to
the user’s peripheral area. Similarly, Chen et al. [239] proposed
a technique using a deep learning model by processing time
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series sensor data, including gaze angles and gaze shift rates, to
predict the optimal time for notification. Their deep learning
model was able to predict a favorable time for notifications
with 71% precision, and further improvements were observed
when the information related to user activities and engagement
was considered. Similarly to the aforementioned works about
notifications, the assessment of visual attention is considered
useful for the identification of appropriate time and region to
insert unperceived modifications within a virtual scene. Mise-
Unseen [240] by Marwecki et al. is an approach that injects
scene changes imperceptibly into the users’ field of view.
Eye-tracking data were used to assess the user’s attention,
intent, and spatial memory, which were employed to adjust
the injection time. The authors demonstrated that the use of
gaze data in combination with masking techniques enables the
insertion of modifications without being perceived by the user.

a) Attention-based Virtual Space Design: Analysis of
visual attention is also useful during the design phase of
virtual spaces. By analyzing and understanding the visual
attention of users, 3D virtual spaces could be designed in a
way that supports the primary task objective. Alghofaili et
al. [241] presented an attention-based approach to optimize
the placement of visual elements and design a 3D environment
taking predefined goals into account. The authors employed a
regression model to predict gaze duration and then showed
the efficiency of the optimization, combining cost functions
for regularization, number of elements, and primary design
objective related to the visual elements that wanted to be
placed. Hillaire et al. [242] introduced an algorithm for explor-
ing virtual scenes by simulating human visual attention. The
proposed algorithm, which can also be applied during first-
person exploration that includes walking and turning move-
ments, uses a surface element-based representation instead
of a mesh-based representation. The authors stated that the
proposed algorithm and model can be used to optimize the
quality of the scene to accelerate the rendering process.

b) Joint Attention: With VR, there is an additional ease
to assess the joint attention of users as with each HMD and
user, it is possible to get precise gaze and head orientations
in the same virtual space. As the information on visual
attention in VR also promotes interaction and collaboration,
joint attention has been a focal point for some. For instance,
Špakov et al. [243] analyzed the effect of eye-gaze- and head-
gaze-based visual attention sharing in cooperative games. In
such VR games, sharing eye-gaze led to a higher level of
subjective ratings of teamwork and shorter game duration com-
pared to sharing head-gaze. Similarly, Kasahara et al. [244]
evaluated the effect of the shared egocentric videos with
gaze locations in perspective sharing. The behavior changes
and decisions of the participants with experience sharing are
analyzed while sharing parallel views. During the drawing
activity, the researchers observed that individuals can develop
behaviors to complement their partner’s memory and decision.
Furthermore, even in complex cases, individuals can create
mechanisms to comprehend their physical embodiment and
spatial relationship with their pairs.

In the realm of medicine, impairments in joint attention can
serve as an early indicator of ASD. Training and enhancing

the joint attention mechanisms are essential in interventions for
individuals for instance with ASD. Mei et al. [245] attempted
to address skills training for the joint attention of ASD patients
using customizable virtual humans (CVH). The researchers
designed an educational drum-playing scenario in an eye-
tracked virtual environment for 10 ASD patients and measured
visual attention with the help of gaze data. Their user study
showed that CVH improved participants’ visual focus on
relevant regions on the scene at the cost of an increase in
reaction time.

c) Visual Attention in Virtual Learning Spaces: Eye
tracking has also found its applications in the realm of ped-
agogy, particularly in virtual learning spaces. Especially with
the impact of the COVID-19 pandemic, remote and immersive
learning spaces have become popular, especially in the form of
virtual classrooms. In such simulations and setups, the visual
attention of students and teachers plays an important role in
the learning processes. To facilitate this, Ahuja et al. [246]
proposed a novel 3D digital twin classroom simulation that
could be accessed through both VR headsets and web inter-
face and incorporated a computer vision-based head and eye
tracking system. Two cameras were deployed for the system to
track students and teachers, respectively, and gaze data were
visualized in diverse forms, such as students’ saliency map
on the board and intersections of instructor’s gaze on student
planes. A controlled study showed that this novel non-HMD
classroom gaze system almost halved the gaze prediction
error of its predecessors, whereas a reliability of 92.54%
was reported in an in-the-wild assessment. Focusing more
on the virtual simulations, Gao et al. [247] utilized several
gaze features such as fixation durations, saccade durations, and
pupil diameters to investigate the influence of various class-
room manipulations on learners in a VR classroom, including
different sitting positions, virtual avatar styles, and peer hand-
raising behaviors. The authors found that such manipulations
affect user attention and cognition differently, which could lead
to different learning and engagement outcomes in the long
term. The same manipulations were also studied by Bozkir et
al. [248] in an eye-tracked VR classroom. In this work, the
authors focused on virtual objects and attention times on the
objects related to learning and engagement in the classroom.
The authors showed that learners sitting in the front part of the
virtual classroom paid more attention to the teacher and board,
whereas others who sit in the back visually focused more on
their peers. They also discovered that cartoon- and realistic-
styled avatars grabbed different amounts of attention during
the classroom discourse. Later, Gao et al. [249] explored vari-
ous gaze features in a virtual lecture to scrutinize the effects of
social interactions. The authors considered peer-learner hand-
raisings as a cue of social interaction in their virtual classroom
and found that such hand-raising animations and the number
of peer-learners that raise their hands affect students’ attention
in different ways. Attention and cognition analyses toward
such cues in virtual learning spaces are especially important
as student self-concepts could be influenced positively or
negatively with constantly the same amount of peers raising
their hands. Using the same VR classroom space, Gao et
al. [250] also showed that boys and girls visually behave
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TABLE VII
OVERVIEW OF THE PAPERS RELATED TO HUMAN VISUAL ATTENTION.

Paper # Users Purpose Eye-tracking Features Visual Stimuli
[233] 25 Attention analysis in panaromic videos gaze Cues
[234] 20 Attention guidance in sandwich preparation gaze Cues
[235] 15 Attention guidance in unordered tasks gaze Dynamic cues
[236] 20 Attention guidance gaze Swarm motion
[237] 16 Attention guidance in driving simulation pup Cues
[238] 40 Attention analysis gaze Notifications
[239] 20 Attention analysis gaze Notifications
[240] 15 Attention analysis for scene changes gaze Scene changes
[241] 23 Attention analysis for environment design gaze N/A
[242] 12 Attention analysis for environment design gaze N/A
[243] 40 Joint attention analysis in collaboration gaze Shared gaze
[244] 40 Joint attention analysis in collaboration gaze Shared gaze
[245] 10 Joint attention training for patients with ASD gaze N/A
[246] 13 Attention analysis in education saliency, gaze N/A
[247] 288 Attention analysis in education fix, sac, pup N/A
[248] 280 Attention analysis in education gaze N/A
[249] 280 Attention analysis in education pup, fix, sac, gaze N/A
[250] 280 Gender analysis in education pup, fix, sac, gaze N/A
[251] 26 Gaze visualization in education gaze Visualized gaze

differently with their eye gaze in the classroom discourse
and indicated that utilization of this information could be
of help for personalized learning support. Their explainable
machine learning model resulted in a gender classification
accuracy of over 70%. Complementary to the aforementioned
works, Rahman et al. [251] focused on the perspective of the
teacher during a lecture in VR and proposed six different gaze
visualization techniques from the teachers’ view to identify
distracted students. These visualization techniques covered
gaze ring, gaze disk, gaze arrow, gaze trail, gaze trail with
arrows, and gaze heatmap. The user study results showed that
gaze trail visualization outperformed the others in terms of
popularity and the application of 3D gaze heatmaps was found
to be problematic. Similar to papers about human cognition,
we summarize the papers that are related to visual attention
in Table VII by also including the stimulus types associated
with each paper.

3) Perception: Human visual attention and cognition pro-
vide a lot of information on how humans experience virtual
spaces; however, the research in these fields does not directly
answer the question of how humans perceive these spaces.
Considering perception engineering and its combining aspect
of engineering and human physiology [252], many researchers
have focused on the perception aspect of VR using eye
movements as an important source of information. While some
of the findings on human perception overlap with the findings
on cognition and visual attention, it is important to address the
findings individually and tackle the issues altogether to design
more immersive and usable virtual spaces.

Depth perception is a well-studied topic when human per-
ception is considered in the VR domain. For instance, Katzakis
et al. [253] investigated human depth perception during a 3D
painting task in both foveal and peripheral regions. The study’s
findings revealed that the accuracy of the task was dependent
on the location of the target rather than the starting point,
and highly accurate 3D painting tasks can be accomplished in
virtual spaces when targets are within arm-reachable range.

Nonetheless, it was observed that overestimation of depth
occurred in all cases, but it was more significant in the cases
starting from the periphery and terminating in the foveal
region. In another work, Arefin et al. [254] revealed the
relationship of perceptual depth level with eye vergence angle
and interpupillary distance in VR. The authors stated that
changes in perceptual depth could be inferred by using these
features.

Research on human perception also goes beyond depth
perception. Serrano et al. [255] systematically investigated the
human perception of continuity in VR movies, which have
different cinematographic requirements from conventional 2D
movies. The authors used gaze information and eye-tracking
data along with the videos and revealed new metrics such as
scanpath errors describing visual attention and offered design
insights for VR content creation. Additionally, MacQuarrie
and Steed [256] examined HMD users’ perception capacity
to comprehend the eye-gaze direction of virtual volumetric
characters in varying display resolutions, virtual character
positions, head rotations, and gaze directions. The authors also
indicated that perceptual accuracy is considerably position-
dependent and influenced by the direction of view.

a) Understanding Perceptual Limits: Identifying the per-
ceptual limits of users is essential for various VR applications
that consist of reorientation and repositioning, which often
require discrete or continuous scene changes. However, it is
essential to insert the scene changes imperceptibly during
the VR experience. Optimizing the amount and timing of
these changes according to users’ perceptual limits ensures
that users’ virtual experience is not disturbed by the inserted
changes. Researchers have examined the perceptual limits and
abilities of VR users to have a detailed understanding of this
and provide them with tailored VR solutions. For example,
Shin et al. [257] examined the effect of unobtrusive and prompt
virtual object movements on users’ body posture. The authors
provided design insights while also assessing users’ perceptual
limits for unnoticeable position changes of the virtual objects
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during eye blinks. Langbehn et al. [258] investigated conscious
or unconscious blinks that suppress human visual perception
which can be exploited to design motion algorithms in VR.
The authors examined the upper limits of unnoticed changes
during eye blinks and demonstrated that users could not
perceive translational changes of 4-9 cm and rotations of
2◦−5◦. Furthermore, they also stated that a 50% improvement
can be observed in curvature gain, which is defined as 1

r where
r corresponds to the radius of a circular path in the real world
while moving in a straight line in VR.

In addition to the blinks, Keyvanara and Allison [259]
evaluated the human limits during saccadic behaviors and what
effects and manipulations are unperceivable during saccadic
suppressions that occur during constant horizontal and vertical
camera movements by utilizing a Bayesian procedure. The
authors reported that additionally applied sudden horizontal
camera movements to the continuously moving virtual camera
on the vertical axis are less observable. In another work,
Keyvanara and Allison [260] examined the visual sensitivity
of VR users against changes in a 3D scene during saccadic
suppression. The findings of the authors revealed that certain
image transformations, such as rotations along the roll axis,
are more noticeable by users during horizontal saccades.
Similarly, Bolte and Lappe [261] proposed the use of saccadic
suppression to include rotations and translations into the
scene. The authors modified two eye movement classification
algorithms, which were originally proposed by Behrens et
al. [262] and Niemenlehto [263] to meet the time and reliabil-
ity requirements of online saccade detection. They investigated
the limitations of human perception during detected saccadic
periods and found that users were unable to perceive positional
changes up to 50 cm in the direction of their eye gaze and
rotational changes up to 5◦.

b) Perceived Realism of Virtual Spaces and Perceptual
Considerations for Virtual vs Real Worlds: Sense of realism
is related to the visual characteristics of the 3D scenes we
explore, the ecological validity of the simulations, and how
we perceive those 3D spaces physiologically. As human visual
attention drives eyes and we perceive the scenes accordingly,
eye tracking-based analysis paves the way for the understand-
ing and estimation of the realism level of virtual environments.
This also allows the possibility of developing techniques for
enhancing the perceived realism of VR environments taking
the perceptual limits of the human visual system.

To this end, the effects of light sources on human vision,
such as temporal eye adaptation, perceptual glare, visual acuity
reduction, and scotopic color vision, can be used to enhance
the realism level in virtual scenes. Luidolt et al. [264] utilized
gaze direction and pupil size as means of lighting effect
adjustment in order to produce more realistic low-light scenes
that are tailored to the users’ vision. The authors also revealed
that the effect of the light in virtual scenes is highly subjective.
Perception and reaction differences between virtual- and real-
world tasks also provide insights to create more realistic
virtual environments. In this respect, eye-gaze activity is a
crucial indicator for understanding human behavior in real and
virtual worlds [265], [266]. To achieve the goal of designing
realistic crowd simulations, Berton et al. [265] investigated

gaze behavior during crowd walking activity. The differences
in gazing activity in real and virtual simulations were analyzed
and virtual walking simulations were performed at different
crowd levels. As the crowd level increases, participants’ eye
movements become more restricted, scanning a narrower por-
tion of the street. Furthermore, the authors noted that users
tend to direct their attention to the individuals who are in front
of them. They also provided some design recommendations,
such as using a constant number of neighboring agents and
positioning them by considering collision risk in virtual crowd
simulations. In a different study, Berton et al. [266] exploited
gaze data to compare collision avoidance behaviors in the real
world and several VR environments. Their findings revealed
that collision avoidance behaviors are similar across different
settings. A work investigating the existence of the stare-in-the-
crowd effect, which refers to the tendency of individuals to
detect and observe the gaze directed to them, was designed
by Raimbaud et al. [267]. The occurrence of the stare-in-
the-crowd effect was revealed through the identification of
differences in gaze characteristics. Additionally, the authors
observed a negative correlation between the dwell time as-
sociated with this effect and social anxiety scores while
providing insights to achieve realistic interactive environments
with virtual avatars. Another research on the similarities and
differences between the real and virtual worlds was conducted
by Gupta et al. [268] in which the authors examined the
autobiographical memory (AM) that is often considered as
one of the vital factors in human perception. The effect of
autobiographical memory was revealed on diverse physiolog-
ical cues like eye gaze, pupil diameter, and electrodermal
activity (EDA). The authors presented evidence of the potential
efficacy of the features in assessing autobiographical memory
within virtual environments.

Avatars are essential components of virtual spaces and
reality due to being a proxy for social interactions within
virtual environments and they also have different impacts on
perceived realism. To this end, eye-tracking methods to gen-
erate realistic avatars raised some attention from the research
community. For example, Borland et al. [269] augmented a
virtual self-avatar with eye movement animations to achieve
a more comprehensive virtual embodiment and improve self-
recognition. The authors compared representative animations
of real eye movements with simulated eye movements without
requiring eye-tracking hardware and reported that the use of
eye movement animations results in an increased subjective
sense of self-identification. Bergström et al. [270] evaluated
the plausibility of virtual musical performance, with changing
environmental conditions and gaze-based attributes of audi-
ences and musicians. It was found that the gaze behavior of
the virtual agents and distractions that do not comply with
the nature of the environment had substantial effects. More
recently, Ma and Pan [271] presented a technical framework to
generate self-avatars with facial expressions and assessed the
psychological effects of realistic avatars. In their study, partici-
pants found the facial expressions of cartoon-like avatars to be
more controllable than realistic-looking avatars. Additionally,
the authors observed that participants had a higher sense of
body ownership in the first trial, regardless of the type of
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avatar used.
Eyes, faces, and heads are important components of virtual

avatars and a handful of works focused specifically on the
simulations of these components. For instance, Le et al. [272]
introduced a method to automatically simulate head move-
ment, eye gaze, and eyelid movement based on speech input.
Gaussian Mixture Models and Nonlinear Dynamic Canon-
ical Correlation Analysis were employed to simulate head
movement and eye gaze behavior, respectively. Non-negative
linear regression was applied for intentional blinks, while
unconscious blinks were generated using a log-normal distri-
bution. The authors reported superior performance compared
to state-of-the-art algorithms in the generation of head and
eye motions. Thies et al. [273] introduced FaceVR, an image-
based face synthesis approach that includes an eye-tracking
algorithm based on monocular videos, aiming to render more
realistic outputs on stereo displays. Ladwig et al. [274] pro-
posed a low-cost solution to construct the face of a person
wearing VR glasses utilizing GANs to produce face images.
Additionally, the authors created an eye-tracking method that
gives cues for iris position and gaze direction. Similarly, Song
et al. [275] presented a CNN-based 3D face-eye reconstruction
technique to construct a 3D personalized avatar with eye
movements. The proposed algorithm is able to construct per-
sonalized avatars with facial expressions and eye animations
of the VR user. Another CNN-based technique introduced by
Olszewski et al. [276] supports speech animation, as well as
emotional expressions using mouth and eye-tracking cameras
for HMDs. The proposed method outperforms existing state-
of-art techniques in terms of the fidelity of animations without
requiring individualized calibration. Zhao et al. [277] proposed
a face reconstruction algorithm using a personalized 3D head
model along with a colorization algorithm for near-infrared eye
images without causing the red-eye effect, which is defined as
color distortion in the iris of the eyes.

c) Cybersickness: While virtual spaces and setups pro-
vide users with a lot of exciting opportunities, the use of VR
HMDs may lead to several types of physical discomfort, which
are often called VR sickness or cybersickness and these are
closely related to human perception. Oftentimes, eye tracking
has been used to understand the causes and severity of cyber-
sickness as well as to develop methods to mitigate or prevent
cybersickness. For example, Islam et al. [278] proposed a
cybersickness severity prediction algorithm utilizing built-in
HMD sensors including eye and head trackers. This algorithm
relies on deep fusion network models and it was evaluated
on the data collected from 30 participants during a VR video
game. The authors demonstrated the capability of their models
by incorporating eye- and head-tracking features with video
stimuli and they achieved an accuracy of up to 87.77%. In
another work by Islam et al. [279], the authors introduced a
deep fusion network based on Deep Temporal Convolutional
Networks (DeepTCN) fusing physiological, head-tracking, and
eye-tracking data. DeepTCN is able to predict cybersickness
60 seconds in advance with a 0.49 mean-squared error (MSE)
on a scale between 0-10. Among different types of fused data,
eye-tracking data incorporated with heart rate and galvanic
skin response achieved the best performance. Similarly, Lee

et al. [280] employed eye movement features to predict cyber-
sickness severity along with disparity and optical flow maps
that respectively represent depth and movement in the image.
Their 3D CNN model achieved better precision rates with the
inclusion of eye-tracking features compared to Padmanaban et
al. [281].

Cybersickness can occur in all types of virtual experiences;
however, virtual experiences that require motion are more
likely to cause this problem due to the mismatch between
the movements in real and virtual worlds. For instance,
virtual locomotion, which allows the exploration of virtual
environments, is one of the leading causes of VR sicknesses
like nausea and dizziness due to one-sided movement in
the virtual world. Zayer et al. [282] provided a survey of
virtual locomotion techniques that enhance the overall VR
experience by mitigating motion sickness under the follow-
ing categories; walking-based, steering-based, selection-based,
and manipulation-based methods. The authors evaluated the
strengths and weaknesses of these techniques to provide com-
prehensive guidance for the community. It is stated that motion
sickness occurring during locomotion is usually caused by
visual-vestibular conflict and field of view (FOV) constraints
are deployed to mitigate VR discomfort but this also restricts
users’ FOV. Adhanom et al. [283] presented a gaze position-
based foveated FOV restriction method to improve existing
techniques that rely on head gaze to mitigate cybersickness.
These existing techniques are limited to cases where the
head and eye gaze are aligned. The authors showed that
their proposed method provides users with the flexibility to
experience a wider visual scan field while preserving the same
level of VR sickness and noticeability.

d) Perceptual Expertise Level: As people at different
levels of expertise and skill tend to have different visual
perception patterns, the applications of eye-tracked VR have
been developed with leaps and bounds in the realm of expertise
training and assessment. Driving training is particularly of
interest among all VR training applications. For instance, Lang
et al. [284] studied the improper driving habits of 50 users in a
driving simulation with eye-tracking-enabled VR headsets and
helped them improve their driving skills by designing synthe-
sized personalized training routes considering their perceptual
habits. Their user study conveyed that the 10 participants
trained in a customized VR setup outperformed the others who
were trained by conventional methods on average with respect
to response time in emergency situations, training persistence,
and an evaluation score based on inappropriate driving actions
(e.g., not signaling before a turn).

Expertise assessment and its applications also go beyond
driving training. For example, Hosp et al. [285] studied the
gaze behavior of 35 football goalkeepers in VR when 360◦

videos captured from goalkeepers’ viewpoint were displayed
to them. By analyzing their eye movements, the authors were
able to classify them into three levels of expertise: elite youth
player, regional league player, and novice player, with an
accuracy of up to 78%. The possibility of identification of
differences in the gazing behaviors of humans with different
expertise levels can help train novices by providing them with
visual cues that are similar to the visual behaviors of experts.
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In another domain, Orlosky et al. [286] applied eye tracking
to measure and classify the English language understanding
of 16 users in VR using features like pupil diameters and
eye movements. The authors reached a prediction accuracy
of 75% for words that are considered easy and medium with
SVMs. When they extended their analyses to include words
that are categorized as hard, the authors were able to obtain a
prediction accuracy of up to 62%.

The applications in the industry are also important and
especially these applications have the potential to be used in
everyday life. To this end, Burova et al. [287] developed an
elevator maintenance simulation in eye-tracked VR to facilitate
industrial AR prototypes, which are challenging to build due to
safety concerns in the real world. The authors recorded several
types of behavioral data from users including eye behaviors
and enabled gaze data visualization in the form of scanpaths
and heatmaps during training playback in VR. Based on their
survey including 12 elevator maintenance experts, the authors
indicated that the domain experts hold constructive opinions
regarding the utilization of eye tracking and gaze visualizations
for industrial training. Additionally, Gisler et al. [288] exam-
ined the relationship between training success and human be-
haviors in sanitary apprenticeship tasks. The authors combined
gaze positions, head movements, and attention durations on the
focused objects by using statistical summaries to predict the
training success of users. Experiments including 48 sanitary
apprentices in an industrial training task achieved a 10-20%
improvement in predicting users’ training success compared
to a baseline model. In addition, skill training for searching
and tracking in virtual police rooms has been examined by
Harris et al. [289]. They designed virtual experiments in which
officers are supposed to search and strive to gather evidence for
an investigation while also taking various criminal activities
into account. The perceptual-cognitive skills of 54 participants
were analyzed in multiple training scenarios by taking saccadic
eye movements (i.e., saccade sizes) into account. The results
showed that visual search expertise can successfully be trained
in VR.

e) Vision Impairment, Ocular Examination, and Medical
Perception: Eye tracking and VR have also been utilized to
study vision impairment and ocular examination, as people
with vision problems perceive the world differently. Just like
other subfields discussed in this paper, in VR, it is possible
to have very controlled programmed experiments compared
to in-the-wild settings to study such phenomena, which is
why researchers have attempted to design ecologically valid
simulations and study vision impairment issues in VR. For
example, to better understand the perception of people with
cataracts, Krösl et al. [290] successfully simulated cataract
patients’ vision in a virtual environment. As cataracts lead
to special visual effects at the lens center and periphery, the
authors used eye tracking to account for these gaze-dependent
symptoms. More related to ocular examination using eye track-
ing in VR, Kim et al. [291] transplanted the Developmental
Eye Movement test to VR HMDs, which is a clinical eye
test widely used to determine abnormalities in visual function
and to assess ocular motor skills. In subsequent research,
Kim et al. [292] designed the King-Devick test, which is

a standard measurement for the assessment of saccadic eye
movement and dynamic visual acuity, using HMDs both in VR
and AR. Hotta et al. [293] also designed a gaze-based ocular
examination for visual field defects in a virtual environment
using fixation and saccadic features. Compared to conventional
tests that take over 30 minutes, the proposed method can be
conducted in 5 minutes while retaining sufficient accuracy and
yet improving reliability. In addition to the aforementioned
studies, medical VR applications can actually go beyond the
setups that require HMDs. For instance, Kübler et al. [294]
analyzed the eye and head movements of patients with
homonymous visual field defects (HVFD) in a virtual driving
simulation. The virtual environment was used with a VR cabin,
while participants’ eye movements were tracked by a head-
mounted eye tracker. The findings of the authors confirmed
their hypothesis that a certain share of HVFD patients can
strengthen their viewing behaviors with an increased amount
of visual scanning to improve their driving skills. Similar to
earlier sections, we present an overview of the works that are
related to human perception in Table VIII.

V. SECURITY AND PRIVACY IN EYE TRACKING AND
IMPLICATIONS FOR VIRTUAL REALITY

As it is possible to extract and infer a lot of useful
information about users utilizing eye trackers in VR, eye
tracking is considered a powerful sensing modality based
on the aforementioned studies. In those studies, we mostly
considered works that utilize or are directly applicable to VR
setups. However, virtual environments are relatively new for
people and possibilities with eye movements are not evaluated
extensively compared to real-world settings. Despite this, it is
known that human eye movements depend on the context and
stimulus and we first argue that as long as similar stimuli
are presented to the users in virtual environments, similar
inference possibilities will be possible in these environments
like in the real world. Liebling and Preibusch [3] stated
previously that apart from person identification, it is possible
to link eye movements with many attributes such as gender,
sexual preferences, body mass index, health status, or tasks
mostly in real-world settings. These would presumably apply
to virtual settings as well, as some of them such as gender and
task predictions can already be carried out accurately in virtual
settings [24], [295], [250], which is in line with the literature
and we foresee that many other inference possibilities will
follow going forward when such virtual environments and
setups are more prevalent in daily life. To this end, Xu et
al. [296] stated that while the existence of eye-tracking data is
vital for utility tasks such as improving the efficiency of VR
rendering, it also gives opportunities, especially for companies
for targeted advertising based on such unique characteristics of
users, which may be thought as privacy intrusion. Considering
all of these, as identification of aforementioned attributes
(e.g., personal identification) might be of help for users for
authentication and personalization purposes while their use of
VR setups, we first discuss these possibilities in Section V-A.
Then in Section V-B, we mainly discuss the methodological
works that provide privacy-preserving eye tracking in VR.
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TABLE VIII
OVERVIEW OF THE PAPERS RELATED TO HUMAN PERCEPTION.

Paper # Users Purpose Eye-tracking Features
[253] 18 Depth perception analysis in 3D painting gaze
[254] 24 Depth perception analysis ipd, eva
[255] 49 Continuity analysis in VR movies gaze
[256] 37 Perceptual limit analysis gaze
[257] 27 Perceptual limit analysis blnk
[258] 32 Perceptual limit analysis for redirected walking blnk
[259] 36 Perceptual limit analysis sac
[260] 10 Perceptual limit analysis sac
[261] 13 Perceptual limit analysis sac
[264] 5 Perceptual realism analysis in low-light 3D scenes gaze, pup
[265] 21 Perception analysis in crowd walking gaze, fix
[266] 17 Perception analysis in collision avoidance task gaze, fix
[267] 30 Perception analysis in psychology fix
[268] 20 Perception analysis gaze, pup, blink
[269] 12 Perceived realism analysis for virtual avatars gaze
[270] 20 Perceived realism analysis gaze
[271] 18 Perceived realism analysis for virtual avatars gaze
[272] 20 Perceived realism analysis for virtual avatars gaze
[273] 18 Face & eye synthesis for virtual avatars N/A
[274] 5 Face & eye synthesis for virtual avatars N/A
[275] 7 Face & eye synthesis for virtual avatars N/A
[276] 310 Face & eye synthesis for virtual avatars N/A
[277] 3 Face & eye synthesis for virtual avatars N/A
[278] 30 VR sickness prediction gaze, pup, cvgn
[279] 30 VR sickness prediction gaze, pup, cvgn, blnk
[282] N/A VR sickness mitigation N/A
[280] 96 VR sickness prediction saliency
[283] 22 VR sickness mitigation gaze
[284] 50 Skill assessment and training for driving gaze
[285] 35 Skill assessment and training in soccer playing gaze, sac, fix, spur
[286] 16 Skill assessment and training in education pup, sac, fix
[287] 12 Skill assessment and training for elevator maintenance fix, scanpath, saliency
[288] 48 Skill assessment and training for sanitary apprentice gaze
[289] 54 Skill assessment and training for police room search task gaze, sac, fix, entropy
[290] 21 Vision simulation for patients with cataract gaze, pup
[291] 39 Visual acuity assessment for ocular examination eye dominance, ipd, cvgn, phr
[292] 30 Visual acuity assessment for ocular examination sac
[293] 2 Visual field analysis for ocular examination sac, fix
[294] 14 Visual field analysis in driving sac, fix, gaze

A. Eye-based Authentication for VR

Visual interaction and user assistance are two of the most
prominent uses of behavioral data including eye movements,
especially in VR applications that work in real-time. Apart
from those uses and related applications, such behavioral data
have been utilized for authentication purposes as well. One big
challenge for behavioral authentication is that accuracies of
the methods are not very high which can cause an unpleasant
user experience. For instance, Pfeuffer et al. [297] studied
authentication in VR by utilizing body motion data including
head, hand, and eye movement data for different tasks such
as pointing, grabbing, walking, and typing. The authors found
that while the best-achieved accuracies for identification are
in the vicinity of 60% and they drop when user group size is
increased. The authors also showed that body motions can be
of help for adaptive settings in VR. However, they did not use
any gaze features apart from the gaze ray obtained from the
eye tracker. In another study, Liebers et al. [298] studied user

authentication based on spatial movements in VR and reached
accuracies up to 90%. In addition, in another study, Liebers
et al. [299] also showed that gazing behaviors along with
head orientation can authenticate users in VR with an almost
perfect level of accuracy. However, the limitation of those
studies is the small sample size and it is an open question of
how utilized features perform when a wide range of users are
available and how usable the proposed authentication methods
would be. That is why when authentication is considered, more
distinguishing and fine-grained features are needed. This could
be achieved by using eye-tracking data obtained from high-
frequency eye trackers that are available nowadays, and that
will potentially be available in the near future.

When eye-based authentication is taken into account, there
are two prominent directions: iris-based and eye movement-
based authentication. On the one hand, while iris textures are
like visual fingerprints and help authenticate users with very
high accuracies [300], [301] and iris-based authentication has
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also been used in real-world scenarios such as in airports
and border-crossings [302], especially due to privacy reasons,
many of the commercial HMDs that integrate eye trackers do
not provide raw eye images to the users or applications (e.g.,
HTC Vive Pro Eye and Microsoft HoloLens 2). This can
mitigate the problem to some extent; however, in the case of
iris-textures utilized in VR, data protection issues should be
handled carefully possibly by using encryption schemes [301].
On the other hand, even if the iris textures are not captured or
not accessible with these devices, eye movements will still be
output by the eye trackers and it is also plausible to carry out
authentication using eye movements in the background over a
certain period of time depending on the eye tracker frequencies
and granularity of extracted eye movement features to perform
this task. While we do not carry out an extensive review for
eye-based authentication, we provide essential studies that are
related to implicit biometric authentication especially utilizing
eye movements in VR, and discuss why they are related to
privacy aspects of such data. For more detailed information
on eye-based authentication and authentication with different
modalities including eye tracking, we refer the reader to the
survey papers by Katsini et al. [26] and Stephenson et al. [303],
respectively.

While not necessarily in VR, biometric identification was
carried out successfully using oculomotor plant models and
eye movements [304], [305]. Task-independent authentication
is also possible using eye movements [306]. More related
to VR, Eberz et al. [307] argued that specific eye move-
ment features could be used for biometric authentication in
cheap consumer-level devices during everyday tasks such as
reading, writing, and web browsing. While the authors did
not use a VR setup, their sampling rate was 50 Hz, which
is even lower than the sampling rates of the eye trackers
of today’s consumer-grade HMDs. In follow-up work, Eberz
et al. [308] presented a continuous authentication system
based on eye movement biometrics and stated that for eye
movement-based authentication, a precise calibration should
be done and effects of light sensitivity and task dependence
of eye movements should be considered when designing the
authentication systems. In another work, Zhang et al. [309]
proposed a continuous authentication scheme based on eye
movements for VR headsets and showed that they could
continuously authenticate the wearer of the HMD in the
background, which shows the potential for personalized use
of HMDs. Zhu et al. [310] used blinking patterns and pupil
sizes for user authentication in VR headsets. While all of these
works show the plausibility of biometric authentication based
on eye movements, most of them suffer from issues in terms
of usability or privacy in the context of VR, which is similar
to behavioral authentication using spatial movements. From a
usability point of view, authentication models based on eye
and gaze movements do not work with as high accuracies as
iris authentication, which could irritate HMD users if errors
occur constantly. Furthermore, such models mostly depend on
the temporal movement of the gaze regardless of explicit or
implicit authentication, which leads to longer authentication
times compared to using single iris images. Similar implica-
tions were also stressed and partly confirmed by the work

of Lohr and Komogortsev [311] that biometric authentication
performance using eye movements is comparable to 4-digit
PIN entry when eye tracking signal quality is extremely high
along with very high sampling frequencies (i.e., 1kHz). The
authors stated that 5 seconds of eye movement data are needed
to achieve such performance. Niitsu and Nakayama [312]
also measured measurement time and presentation size on
biometric authentication and they found that using 3 seconds
maximized the biometric authentication success rates. While
they did not use a VR setup for this, the results could be
transferred to VR as well, as long as the quality of the eye-
tracking data and presentation sizes are comparable. Despite
these attempts at biometric authentication based on eye move-
ments, Friedman et al. [313] recently showed it is not possible
to identify users very accurately based on their eye movements
if the considered number of identities is comparably large,
which is in line with findings from research using behavioral
data for authentication [297], [298].

These findings imply that while implicit eye-based authenti-
cation might not work similarly to PIN-based authentication in
terms of usability and security, eye movements include patterns
that help identify individuals to a certain extent. These data
may thus be more useful for personalization where each user’s
data are accumulated over time during their use of VR HMDs
and utilized for authentication-related settings such as Two-
Factor Authentication (2FA). Since such an authentication
process should run continuously in the background, longer
waiting times for authenticating would not irritate the users
as they would not be actively aware of the ongoing process.
In addition, this way of authentication will potentially make
the overall VR experience more personalized as each user’s
unique viewing behaviors would be captured by their devices
over time. Several works could support this argumentation.
For instance, Lohr et al. [314] proposed a real-time capable
architecture for eye movement-based authentication in VR
and argued that eye-tracking-based biometrics will become
a standard way of authentication for VR. Luo et al. [315]
explored the human visual system (HVS) as a novel au-
thentication method for VR HMDs and proposed OcuLock
which is resistant against impersonation and statistical attacks
while maintaining a stable performance over a 2-month period.
Furthermore, Friedman and Komogortsev [316] assessed the
effectiveness of biometric feature normalization techniques,
including real-world eye movement features along with syn-
thetic ones. They found that the effectiveness of different
biometric normalization techniques on real-world data depends
on the inter-correlation of the features. Mathis et al. [317]
used VR to evaluate the usability and security of real-world
authentication systems, showing the potential of VR as a
testbed for authentication purposes.

Despite several disadvantages such as the need for con-
sistent tasks, high-frequency and high-quality eye-movement
data, and a decrease in authentication performance when
the number of involved individuals is increased, previous
work consistently showed that eye movement patterns are
representative of personal identities. This is useful if the
goal is to authenticate the user in VR or personalize the
virtual environments. However, if users do not want to get
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the advantage of these possibilities and yet want to use gaze-
based interactions and obtain assistive support, the linkage
of eye movements to user identity and characteristics implies
privacy risks that should be handled in a methodological way.
This means that personal patterns that are associated with eye
movements should be either hidden in the data or handled in
a privacy-preserving manner, while the interaction utility and
user experience during the virtual experience should be kept
high.

B. Privacy-preserving Eye Tracking for VR

Research in eye-based authentication [26], privacy consid-
erations for eye tracking [3], [22], and privacy risks of data
collection in XR [318, pp. 12-14] demonstrate that when
authentication is not preferred, it is advisable to preserve
the privacy of the individuals and specific attributes of the
individuals in the data, in addition to the good data hygiene
practices. Recently, what inferences could be carried out by
using the pupil dilation and gaze in the context of XR is also
highlighted by Future of Privacy Forum [319], by mentioning
concerns on users’ sexual orientation, gender, race, and health.
In addition, Garrido et al. [320] highlighted data privacy issues
in VR considering threat and defense models and included
eye-tracking sensors and data as discussion points.

To provide users with privacy-preserving eye-tracking so-
lutions, researchers have explored a few different approaches
applied at various stages of the eye-tracking pipeline. Privacy-
preserving methods have been applied to sensor data in the
form of eye images, aggregated data in the form of saliency
maps and feature vectors, and sample-level gaze position data.
Each method transforms or modifies data in a variety of ways
to create a trade-off between data privacy and utility that varies
by method and intended application of the data.

Recently, formal methods such as differential privacy [321]
have attracted the attention of VR and eye-tracking communi-
ties. Differential privacy is indeed an established approach that
has been applied across multiple domains, most prominently
in the context of databases and aggregate survey data. The
overall aim of differential privacy is to hide the information
on whether an individual was included in a particular database
or not. This is achieved by adding randomly generated noise
according to an ϵ parameter to query outputs such that the
inclusion of a specific participant does not change the queried
function outputs significantly. Since several works focus on
differential privacy in the context of eye tracking, we provide
the formal definition of the ϵ-differential privacy as follows.

Definition 1: ϵ-Differential Privacy (ϵ-DP) [321], [322].
A mechanism M is considered ϵ-differentially private for all
databases D1 and D2 that differ at most in one element for
all S ⊆ Range(M) with;

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S]. (1)

The eye-tracking community initially utilized standard dif-
ferential privacy mechanisms, namely Gaussian and Exponen-
tial mechanisms, on saliency heatmaps [323] and on aggre-
gated eye movement features that were collected from VR
reading tasks [24]. These initial works showed the potential

of formal methods for the VR domain; however, they suffer
from the correlations in the data that could jeopardize privacy,
especially from temporal correlations as independent noise
sampling from the standard mechanisms allows adversaries
to reconstruct signals that are very close to the original ones.
Bozkir et al. [295] further iterated these works and addressed
the temporal correlation issue by translating the data into
difference signals and using the frequency domain to add the
randomly generated noise. The authors noted that apart from
the correlation challenge, privacy-utility trade-off becomes
very important as eye-tracking data already consists of a
certain amount of noise due to the limitations of sensors and
image processing approaches. Furthermore, the privacy noise
needed to establish a strong differential privacy guarantee
is known to hurt utility across other domains and ends up
masking valuable insights from the processed data [324].

Based on these prior results, researchers have also pursued
alternative privacy guarantees to differential privacy to better
understand the range of privacy-utility trade-offs for eye-
tracking data. Specifically, David-John et al. explored k-
anonymity and k, γ-plausible deniability [325], [326]. These
alternative guarantees specifically target the privacy risk of
re-identification, and their mathematical formulation is related
to the ability to match released data to the original identity
in a dataset. Alternative guarantees allow dataset owners to
preserve privacy by reducing the risk of linking data to
identities and thus mitigating harms related to the inferences
that can be made from eye tracking, while also retaining data
utility across different applications.

First, k-anonymity is a definition of privacy in the context
of re-identification from a dataset and it was proposed by
Samarati and Sweeney [327] as follows.

Definition 2: k-anonymity. Given a person-specific dataset
D1, a de-identified dataset D2 is k-anonymized by privacy
process P : D1 7→ D2 if all released features Γd = P(Γ) ∈
D2 cannot be recognized as Γ with probability > 1

k .
The privacy guarantee is interpreted with a lone privacy

parameter k linked to the upper bound on re-identification.
Utilizing k-anonymity on eye-tracking feature data, David-
John et al. [325] showed that person re-identification accura-
cies drop to chance levels while the utility of a model trained
on privacy-preserving data is kept within reasonable ranges
when the document-type classification was the utility task.
However, the methods used to achieve k-anonymity typically
depend on the duplication or generalization of data which is
not ideal when releasing datasets for research or statistical
purposes. This led David-John et al. [326], [325] to introduce
the guarantee of k, γ-plausible deniability to eye-tracking data
as well. Plausible deniability differs from k-anonymity in that
it specifically applies to synthetic data generated by a model.
All synthetic data generated by the model is tested to ensure
that it meets the following privacy guarantee prior to release.

Definition 3: Plausible Deniability. For any dataset D where
|D| ≥ k, and any record y generated by a probabilistic
generative model M such that y = M(d1) for di ∈ D, it
is stated that y is releasable with (k,γ)-plausible deniability if
there exist at least k−1 unique records d2, ..., dk ∈ D \{d1},
such that
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γ−1 ≤ Pr{y = M(di)}
Pr{y = M(dj)}

≤ γ

where k ≥ 1 is an integer and γ ≥ 1 is a real number.
When considering datasets of gaze samples, the researchers

found that different formal methods produced practical
privacy-utility trade-offs across different applications. Namely,
practical trade-offs were achieved for the utility task of activity
type recognition for both plausible deniability and a sample-
based differential privacy method; while for a gaze prediction
task only k-anonymity produced a dataset that had minimal
errors when training a deep neural network model. The
takeaway from these works is that the recommended method
often depends on the target application and whether privacy
protections require differential privacy or guarantees specific
only to re-identification.

In another work, Li et al. [328] adapted a differential privacy
approach for providing real-time privacy control of ϵ for eye-
tracking data based on location indistinguishability [329]. The
key difference between this approach and the other methods
described earlier is the inclusion of spatial privacy parameter r.
The authors proposed tuning the value of r to objects currently
in view of the user, which requires an object detection model
to be run in parallel to the privacy noise method. The method
was applied in real-time to an interactive gaze-controlled
action game using webcam-based eye tracking and offline to
a VR dataset of video viewing. The authors reported that
according to subjective feedback they received from their
subjects, they enjoyed the gaming experience with real-time
privacy protection. However, their real-time interaction utility
evaluation was limited to eleven participants. In addition,
while the suggested method is effective in protecting against
re-identification, the VR dataset application was limited to
the utility of predicting the visual correction prescription of
users. In Table IX, we summarize the existing formal privacy
methods for eye-tracking data, their corresponding guarantee,
data type, and whether the trade-off was considered practical
or not.

As most of the works that provide formal privacy guarantees
add a considerable amount of noise to the data, this affects the
performance of the utility tasks negatively. When real-time
interaction is not needed and the utility task is limited to data
mining, privacy protection from formal methods by adding
noise is reasonable; however, especially in applications that
require a real-time working capability, the amount of noise
necessary for a privacy guarantee can significantly deteriorate
the user experience. Taking this into consideration, researchers
proposed solutions by underlining the importance of real-
time and practical use by trying to limit the amount of noise
introduced to real-time gaze data while still reducing the risk
of re-identification. David-John et al. [330] presented a privacy
protection method by utilizing spatial and temporal downsam-
pling of gaze positions along with additive Gaussian noise
when streaming the data. The findings of the authors show
that when proposed methods are applied, re-identification
rates drop significantly, without a formal guarantee, while the
performance of gaze prediction as a utility task is minimally
affected. In another work, Fuhl et al. [331] proposed training

reinforcement learning agents by maximizing the rewards for
utility tasks (e.g., expertise prediction, document-type clas-
sification) and by minimizing them for privacy tasks (e.g.,
gender detection, person identification). The authors’ approach
outperforms privacy protection by using generative adversar-
ial networks (GANs) and differentially private manipulation;
however, their approach works in a probabilistic way meaning
that it does not guarantee privacy in a formal manner, and is
most appropriate when specific risks and adversary models are
known and not expected to change.

In addition to the aforementioned formal and probabilistic
approaches, researchers also studied function-specific systems
focused on gaze estimation [332], [333]. Bozkir et al. [332]
proposed a function-specific cryptography-based method uti-
lizing a randomized encoding-based framework in a three-
party setup, where one party is identified as a server (e.g., a
cloud instance) that trains machine learning models using sen-
sitive eye movement data and the other two parties provide the
sensitive data in a masked way. While raw and sensitive data
from input parties are not visible to any party except the data
owner, the inference time allows a real-time interaction as long
as efficient communication between the parties is established.
While this work is suitable for real-time interaction for any
VR application, the utilized privacy framework is limited to
two data-provider parties. More recently, Elfares et al. [333]
proposed a federated learning approach for appearance-based
gaze estimation in the wild using pseudo-gradient optimiza-
tion. In federated learning [334], the machine learning models
are trained in a decentralized manner, implying that sensitive
data are not distributed around but kept locally, preserving data
privacy. The authors showed that both in person-independent
setup and in the majority of the person-specific setups, their
adaptive federated learning approach outperformed vanilla
federated averaging [334] for the gaze estimation task. While
neither of the works used data collected from VR to train
and evaluate their models, Bozkir et al. [332] used synthetic
images that are generated from UnityEyes framework [86] that
are very comparable to eye images obtained from VR HMDs.
In contrast, Elfares et al. [333] used a real-world dataset
(i.e., MPIIGaze dataset [113]). However, since VR HMDs can
already be considered as personal devices, federated learning
frameworks and processing data in a decentralized way fit
well and their approach is also directly applicable in VR as
well. The decentralization concept was recently also proposed
in an anonymous eye-tracking data collection protocol for
VR by eliminating the third parties for data processing and
manipulation purposes [335]. While the authors eliminated
third-party platforms or entities by using blockchains and
smart contacts, in their protocol, if the cryptocurrency wallets
to validate data authenticity are somehow linked to a wallet
associated with know-your-customer (KYC) validation, an
adversary could potentially identify the user to a certain extent.

Apart from the research that focused on protecting the
privacy of eye movements and gaze vectors over time, a
considerable amount of work focused on degrading iris au-
thentication [336], [337], obfuscation [338], and protecting
the personal identities [339] when iris textures are involved. To
this end, John et al. [336] proposed an approach by utilizing an
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TABLE IX
SUMMARY OF FORMAL PRIVACY METHODS APPLIED TO EYE MOVEMENT DATA. THE CHECKMARKS INDICATE WHETHER THERE IS A PRACTICAL

TRADE-OFF FOR THE UTILITY TASK AND APPLICATION.

Mechanism Guarantee Data type Utility task Practical trade-off
Laplacian-DP [323] ϵ-DP Fixation map Saliency map generation ×
Gaussian-DP [323] ϵ, δ-DP Fixation map Saliency map generation ✓
k-same-select
sequence [325]

k-anonymity Features Document type
classification

✓

Marginals [325] k,γ-PD Features Document type
classification

×

Exponential-DP [24] ϵ-DP Features Document type
classification

×

DCFPA [295] ϵ-DP Features Document type
classification

✓

CFPA [295] ϵ-DP Features Document type
classification

✓

k-same-synth [326] k-anonymity Samples Activity type classification ×
Event-synth-PD [326] k,γ-PD Samples Activity type classification ✓
Kalϵido [328] ϵ-DP Samples Activity type classification ✓
k-same-synth [326] k-anonymity Samples Gaze prediction ✓
Event-synth-PD [326] k,γ-PD Samples Gaze prediction ×
Kalϵido [328] ϵ-DP Samples Gaze prediction ×
Kalϵido [328] ϵ-DP Samples Gaze-based web game ✓

optical defocus in an eye-tracker setup. The authors found that
such defocus causes errors in the range of calibration errors of
typical eye trackers. In a later work, John et al. [340] analyzed
security-utility trade-off for iris authentication using the optical
defocus in a chin-rest setup and found similar results for
degradation of iris authentication. Evaluating a similar setup in
an immersive VR environment was proposed as a future work
by the authors. In another work, John et al. [337] proposed
adding pixel noise to break the iris signature to protect users
from spoofing attacks. The authors argued that it is possible
to replace up to 50% of the pixels in the eye image while
keeping the gaze estimation error less than 2.5◦. In further
studies, Eskildsen and Hansen found that an optimal method
to remove the iris signature without impacting gaze estimation
combines an edge-preserving filter with additive noise [338].
While these works did not directly use eye-tracking data
collected from VR setups, as VR with HMDs provides a
more controlled environment for eye-tracking data collection,
we foresee that similar results would be obtained from VR
setups as long as the underlying gaze estimation approach
is the same. In the context of VR eye tracking, Chaudhary
and Pelz [339] proposed replacing the iris texture regions
with synthetic iris templates using a Rubber Sheet Model on
the OpenEDS dataset [46], collected using VR HMDs. The
authors found that such video manipulations do not degrade
the semantic segmentation and pupil detection performance,
which is similar to the findings of John et al. [337].

In summary, according to the current literature, privacy-
preserving eye-tracking methods can be clustered into two
groups, one concerning the protection of sensitive gaze and
eye movement information over time, including the features
that are aggregated from the gaze movements such as fixation
durations or saccade rates, and the other concerning the iris

obfuscation and degradation. Ultimately, the recommended
privacy-preserving method depends on the target application
and whether the system is running in real-time or being
applied offline to a dataset. We note that real-time methods
should be tuned to the privacy and utility context of a given
application, and it is often challenging to find a good trade-
off if formal guarantees are necessary. We also recommend
that user experience should be explicitly evaluated when
new privacy approaches are developed for eye-tracking data
in immersive VR setups, as user experience and usability
are essential factors that cannot be ignored for the sake of
achieving high levels of privacy or security.

VI. DISCUSSION AND FUTURE DIRECTIONS

Taking the wide range of possibilities with eye-tracking
data in VR, state-of-the-art methods to preserve the privacy
of such data, and suggested best practices by the VR and
privacy communities into account, detailed considerations of
privacy are needed for eye tracking [341], [319]. We identify
three main directions for the eye-tracking community to follow
particularly for privacy and discuss these in the following
subsections.

A. Privacy in Social VR and Metaverse

Eye tracking is heavily integrated into discussions regard-
ing privacy in Social VR due to the important role of eye
movements as a non-verbal cue during social interaction.
Social interactions present special considerations for privacy
based on context, as expectations vary between interactions
in public spaces and interactions with friends or family in
private spaces [342]. Potential solutions to establish privacy in
social interactions include modulating the degree of accuracy
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or resolution of eye movements being mapped to a virtual
avatar. On the other hand, researchers have found that non-
verbal communication, through eye movements and gestures,
can help preserve privacy for users who wish to avoid vocal
communication in social VR [343]; suggesting that users
desire control over VR sensor data streams to preserve privacy.
Analogous methods exist for modulating privacy in telecom-
munications today, as users commonly turn off their webcam
feed during Zoom or video calls to preserve the privacy of not
paying attention or their background environment. Generating
synthetic face and eye animations directly from audio has been
proposed [344], which can help preserve privacy from raw
eye movements, but is still prone to animation artifacts or
incorrectly relaying social cues of the user. Open areas where
advancements in understanding privacy for social VR would
be critical are environments geared towards children [345],
individuals with behavioral conditions such as ASD [346], and
communities with privacy norms that vary from the general
population [347].

Recent usage of the term “Metaverse” involves a broad
vision of the future of immersive reality. While exact defi-
nitions vary, the broad futuristic visions include a connected
and integrated usage of VR that spans many aspects of our
daily life, superseding the use of the Internet globally today.
The privacy concerns introduced by such a deeply connected
and immersive VR are yet to be realized, but the long-term
implications of capturing eye-tracking data of users in such
environments are a critical line of future research. While
unexplored in current VR platforms that include functionalities
akin to a ‘Metaverse,’ an example of potential privacy concerns
for the future is captured by Tadayoshi Kohno’s short story
“The Schuhmacher” [348]. The story represents a fictional
reality where persistent tracking of behavior, for the purpose
of advertising to customers, is a two-way street that both
benefits a shopkeeper’s business and has negative impacts
on his relationship and social status within his town. Privacy
concerns due to eye tracking on a societal scale are largely un-
explored. To further establish the privacy risks that arise from
eye tracking in naturalistic real-world scenarios, eye-tracking
datasets such as the Virtual Experiences Database18 can be
explored. Such databases capture large-scale gaze data from
typical daily activities, as opposed to prescribed experimental
tasks that comprise the vast majority of research datasets.
Characterizing how frequently privacy-sensitive scenarios arise
due to eye tracking, and the magnitude of the privacy risk from
the perspective of users can lead to an initial understanding of
how to anticipate long-term risks introduced by an eye-tracked
“Metaverse”.

B. Privacy vs Utility and Usability

Computational methods that attempt to preserve the privacy
of the users mostly achieve privacy by adding a certain amount
of noise as was the case for the works utilize differential
privacy [24], [323], [337], [295]. However, as also reported by
these previous works, there is a utility-privacy trade-off that
should be taken care of. In differential privacy, it is especially

18http://visualexperiencedatabase.org/, Last access 01/19/2023.

challenging to find a good spot in terms of utility-privacy
trade-off when eye-tracking datasets are considered because
the longer the signals are, the more noise should be added due
to higher sensitivities that contribute to the noise. Considering
eye-tracking data are already a noisy source of information,
especially when utilized in real time, adding additional noise to
preserve privacy may ruin the user experience. Li et al. [328]
addressed this issue by obtaining information on how much
users enjoyed the experience when different utility-privacy
levels were provided during gameplay in a desktop setup. With
the immersion provided by the VR setups, the user experience
and enjoyment levels already change without any privacy
provided in the first place, so it is an open question of how
the privacy-utility trade-off transfers to immersive setups. In
addition, even if the privacy-preserving solutions are intended
to be used in an offline way such as private data mining, as
high amounts of noise may destroy the patterns in the data,
it is important for the eye-tracking community to find private
data representations that have little effect on the utility tasks
while preserving the privacy.

Privacy-preserving computations aside, it is equally impor-
tant to provide such solutions in an adaptive and user-centric
way. For instance, one user might be purely interested in a
better user experience and utility, while the other one might
prefer a privacy-enhanced experience during the use of VR en-
vironments. To achieve this, user behaviors should be known in
advance and virtual environments can be adapted accordingly.
In fact, such privacy aspects such as preferences and attitudes
along with usability have been well studied for a wide range of
devices including smartphones [349], [350], IoT devices [351],
[352], lifelogging cameras [353], [354], smart glasses [355],
[354], [356], or augmented reality glasses [357], [23]. Despite
this, these devices utilize real environments with a negligible
amount to no vision augmentation. We argue that studying
similar user behaviors for VR environments and devices with a
focus on eye-tracking data will enable deploying user adaptive
privacy schemes for virtual spaces. Such adaptions should
also go hand in hand with privacy regulations as well since
regulations differ based on the countries or regions [358],
especially when data protection is taken into consideration.

C. Stimulus and Environmental Aspects for Privacy-
preserving Eye Tracking in VR

Privacy concerns from eye-tracking data primarily depend
on what the user is looking at and the context of their environ-
ment when data is being recorded. The stimulus being viewed
determines what private information is at risk. For example,
eye movement behavior during a VR driving simulator may
reveal the driver’s age or their medical conditions such as
visual field loss [359]. However, a driving task would have
an extremely low chance of revealing sexual orientation, of
which accurate classification requires viewing and revealing
erotic stimuli [360]. Beyond just stimulus, we also must
consider the context of the user, such as whether they are
in the comfort of their own home viewing VR content alone,
playing VR games online with friends, or using VR at work for
remote collaboration in a professional setting. Prior research

http://visualexperiencedatabase.org/
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has demonstrated how users feel about sharing gaze data
with some environments, for example, indicating that users
are more likely to agree to share gaze data with medical
government agencies, but are not comfortable sharing with
their employer for internal use [24]. Thus, practical privacy
risks and user expectations for eye tracking depend on both
stimulus and environmental context.

We identify the need for further research into understanding
which types of stimuli or experiences can reveal certain
types of private information (age, gender, ethnicity, sexual
orientation, emotion, and identity), how much data is necessary
for accurate classification, and how frequently those stimuli
appear in typical VR use. There is a pressing need to further
quantify privacy risk across environments and bridge the gap
between real-world usage of VR and findings from laboratory
studies in ideal conditions. Additionally, understanding user
expectations and anticipated societal norms across environ-
ments is critical to producing effective privacy-preserving
systems specific to different domains. One future research
direction is to view eye-tracking data through the lens of
contextual integrity (CI) [361]. CI is a theoretical framework
of privacy that introduces three main concepts: context, infor-
mational norms, and contextual purposes or values. Contexts
capture distinct social spheres that arise naturally as part of
society, including politics, religion, healthcare, or education.
Informational norms are best characterized as a flow of data
that society deems appropriate, and consists of a sender,
recipient, data subject, data type, and finally a transmission
principle that provides the logic for when and how a data
flow can occur. Contextual purposes capture the social value
of a context, for example, by sharing gaze data with a medical
provider, a doctor may be able to diagnose a condition that oth-
erwise would have gone unnoticed, which has inherent value
to the data subject and is understood within society. Focused
research is required to transfer the theoretical components of
CI into a practical privacy mechanism for eye tracking. Similar
efforts have been attempted in other context-based computer
science research [362]. Establishing models and methods that
define and enforce societal norms on eye tracking is a grand
challenge for the future socio-technical landscape of VR and
eye-tracking technology.

VII. CONCLUSION

In this paper, we systematically focused on covering the
works in eye tracking in VR and the security and privacy
implications including authentication schemes and methods
that provide privacy-preserving eye-tracking data manipula-
tions. To this end, we scanned papers that were published
between 2012 and 2022 in major venues for VR, eye tracking,
and privacy. In addition to the extensive literature review, we
further provided and discussed three main research directions,
especially by keeping privacy as the main focus for the
research community and we indicated the importance of not
only privacy but also utility and usability.
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E. Kasneci, “Digital transformations of classrooms in virtual reality,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. ACM, 2021.

[248] E. Bozkir, P. Stark, H. Gao, L. Hasenbein, J.-U. Hahn, E. Kasneci,
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[273] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner,
“Facevr: Real-time gaze-aware facial reenactment in virtual reality,”
ACM Trans. Graph., vol. 37, no. 2, 2018.

[274] P. Ladwig, A. Pech, R. Dörner, and C. Geiger, “Unmasking commu-
nication partners: A low-cost ai solution for digitally removing head-
mounted displays in vr-based telepresence,” in 2020 IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR), 2020,
pp. 82–90.

[275] G. Song, J. Cai, T.-J. Cham, J. Zheng, J. Zhang, and H. Fuchs,
“Real-time 3d face-eye performance capture of a person wearing vr
headset,” in Proceedings of the 26th ACM International Conference on
Multimedia. ACM, 2018, p. 923–931.

[276] K. Olszewski, J. J. Lim, S. Saito, and H. Li, “High-fidelity facial and
speech animation for vr hmds,” ACM Trans. Graph., vol. 35, no. 6,
2016.

[277] Y. Zhao, Q. Xu, W. Chen, C. Du, J. Xing, X. Huang, and R. Yang,
“Mask-off: Synthesizing face images in the presence of head-mounted
displays,” in 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE, 2019, pp. 267–276.

[278] R. Islam, K. Desai, and J. Quarles, “Cybersickness prediction from
integrated hmd’s sensors: A multimodal deep fusion approach using
eye-tracking and head-tracking data,” in 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2021,
pp. 31–40.

[279] ——, “Towards forecasting the onset of cybersickness by fusing
physiological, head-tracking and eye-tracking with multimodal deep
fusion network,” in 2022 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). IEEE, 2022, pp. 121–130.

[280] T. M. Lee, J.-C. Yoon, and I.-K. Lee, “Motion sickness prediction
in stereoscopic videos using 3d convolutional neural networks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 5,
pp. 1919–1927, 2019.

[281] N. Padmanaban, T. Ruban, V. Sitzmann, A. M. Norcia, and G. Wet-
zstein, “Towards a machine-learning approach for sickness prediction
in 360 stereoscopic videos,” IEEE transactions on visualization and
computer graphics, vol. 24, no. 4, pp. 1594–1603, 2018.

[282] M. Al Zayer, P. MacNeilage, and E. Folmer, “Virtual locomotion: A
survey,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 6, pp. 2315–2334, 2020.

[283] I. B. Adhanom, N. Navarro Griffin, P. MacNeilage, and E. Folmer,
“The effect of a foveated field-of-view restrictor on vr sickness,” in
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 2020, pp. 645–652.

[284] Y. Lang, L. Wei, F. Xu, Y. Zhao, and L.-F. Yu, “Synthesizing personal-
ized training programs for improving driving habits via virtual reality,”
in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). IEEE, 2018, pp. 297–304.
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[356] M. Koelle, M. Kranz, and A. Möller, “Don’t look at me that way! un-
derstanding user attitudes towards data glasses usage,” in Proceedings
of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services. ACM, 2015, p. 362–372.

[357] T. Denning, Z. Dehlawi, and T. Kohno, “In situ with bystanders
of augmented reality glasses: Perspectives on recording and privacy-
mediating technologies,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2014, p. 2377–2386.

[358] F. Lucarini, “The differences between the california consumer privacy
act and the gdpr,” https://advisera.com/articles/gdpr-vs-ccpa-what-are-
the-main-differences/, last accessed 30/12/2022.

[359] E. Kasneci, K. Sippel, K. Aehling, M. Heister, W. Rosenstiel,
U. Schiefer, and E. Papageorgiou, “Driving with binocular visual field
loss? a study on a supervised on-road parcours with simultaneous eye
and head tracking,” PloS one, vol. 9, no. 2, p. e87470, 2014.

[360] G. Rieger and R. C. Savin-Williams, “The eyes have it: Sex and sexual
orientation differences in pupil dilation patterns,” PloS one, vol. 7,
no. 8, p. e40256, 2012.

[361] H. Nissenbaum, “Privacy as contextual integrity,” Wash. L. Rev., vol. 79,
p. 119, 2004.
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