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ABSTRACT

Recent developments in computer graphics and hardware technology
enable easy access to virtual reality headsets along with integrated
eye trackers, leading to mass usage of such devices. The immer-
sive experience provided by virtual reality and the possibility to
control environmental factors in virtual setups may soon help to
create realistic digital alternatives to conventional classrooms. The
importance of such settings has become especially evident during
the COVID-19 pandemic, forcing many schools and universities to
provide the digital teaching. Researchers foresee that such transfor-
mations will continue in the future with virtual worlds becoming
an integral part of education. Until now, however, students’ behav-
iors in immersive virtual environments have not been investigated
in depth. In this work, we study students’ attention by exploiting
object-of-interests using eye tracking in different classroom manip-
ulations. More specifically, we varied sitting positions of students,
visualization styles of virtual avatars, and hand-raising percentages
of peer-learners. Our empirical evidence shows that such manipu-
lations play an important role in students’ attention towards virtual
peer-learners, instructors, and lecture material. This research may
contribute to understanding of how visual attention relates to social
dynamics in the virtual classroom, including significant considera-
tions for the design of virtual learning spaces.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Empirical studies in HCI—; Computing
methodologies—Computer graphics—Graphics systems and
interfaces—Virtual reality; Applied computing—Education—
Interactive learning environments—; Applied computing—
Education—Computer-assisted instruction—

1 INTRODUCTION

Everyday use of head-mounted displays (HMDs) is increasing as
virtual reality (VR) technology and virtual environments are already
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being used in various domains such as gaming and entertainment. In
addition, some of the consumer-grade HMDs are coming to market
with integrated eye trackers that may help to assess human attention
during immersion and allow for more interactive virtual environ-
ments. It is likely that, in the near future, such tools will become
widely used mobile devices similar to today’s mobile phones or
smart watches. To this end, not only should researchers strive to
improve the capabilities of these devices, but scrutiny should also
be given to understanding human behavior and attention while using
such technology.

Measures of eye movements obtained through eye-tracking are ef-
fective indicators of human states and visual behavior to some extent;
however, they are dependent on application or task [17]. Analyzing
and modeling human attention using this data in a specific domain
may not be transferable to other domains. Thus, when assessing
human attention in digital environments, or more particularly in VR
for the application in educational technology, specific domain knowl-
edge and configurations should be considered. There is already some
history of training and teaching in digital or virtual setups [14, 19].
Today, due to the COVID-19 pandemic, virtual or digital education
has become more popular and even a necessity in many cases. Cur-
rently, many schools and universities are carrying out their teaching
responsibilities remotely via platforms such as Zoom1 or Webex2.
Such platforms lack the possibility of instructor-student interaction
beyond audio and video features and encounter privacy concerns if
videos are recorded and stored during classes. VR setups offer the
immersion, interaction, and privacy preservation that current remote
learning platforms lack. In addition, as VR allows users to easily
control the environmental settings, it is possible to evaluate different
classroom manipulations and subsequent effects on human behavior,
a step that is exponentially more difficult in real world classrooms.

In this work, we exploit object-of-interest information by using
eye-gaze and three main sets of objects in immersive VR. We focus
on virtual peer-learners, virtual instructor, and screen to understand
visual attention through the design of a virtual classroom and a
lecture about computational thinking. We choose these objects-of-
interests since they are of particular interest with regard to attention
towards social dynamics and learning. Our study has three different
design factors: Different sitting positions of participating students,
different visualization styles of virtual avatars including an instructor
and peer-learners, and different hand-raising behaviors of virtual
peer-learners. Different sitting positions include seating participating
students in the front or back of the virtual classroom. In addition,
different visualization styles of avatars consists of two conditions

1https://www.zoom.us/
2https://www.webex.com/
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that are cartoon- and realistic-styled avatars. Lastly, different hand-
raising behaviors include 20%, 35%, 65%, and 80% of the peer-
learners raising their hands to answer questions during the lecture. To
the best of our knowledge, this is the first work that assesses students’
attention by using object-of-interest information in an immersive VR
classroom through the manipulation of sitting positions of students,
visualization styles of peer-learners and instructor, and hand-raising
behaviors of peer-learners collectively. Such manipulations may be
important indicators of students’ visual attention towards lecture
contents and social dynamics in the classroom and should be taken
into consideration when designing VR classrooms.

2 RELATED WORK

Since our work benefits from VR in education and in eye tracking
research, we discuss the state-of-the-art along these two lines. Vari-
ous studies using VR in education settings assess the mechanisms of
attention or social dynamics by using pre- or post-tests or by relying
on head movement behavior as a proxy for gaze. Using eye tracking
in addition to such information presents the possibility of a deeper
understanding of visual and situational attention during immersive
experiences.

2.1 Virtual Reality in Education and Classrooms
VR offers great promise for supporting teaching and learning proce-
dures, especially when digital learning, physical inabilities, ethical
concerns, and situational limitations are considered. An extensive re-
view of immersive VR in education and its pedagogical foundations
are discussed in [14] and [18], respectively. We focus on research
on VR in education and immersive VR classrooms in this section.

The effectiveness of learning in virtual and augmented reality
(VR/AR) compared to tablet-based applications and the impact of
VR-based systems on students’ achievements are studied in [30]
and [2], respectively, and these works indicate several advantages
of VR-based conditions. In addition, it has been found that stu-
dents’ motivation increases when VR is used as a teaching tool in
art history [9] and social studies [11]. VR not only supports the
effectiveness of learning, but also can improve instructor teaching
skills [21].

Apart from VR applications in teaching and learning, the design
and degree of realism in VR classrooms have also been studied. Pres-
ence of a virtual instructor was found to increase the engagement and
progress of users [42]. Furthermore, the processes of synthesizing
virtual peer-learners by using previous learner comments [25] and
designing VR classrooms by replicating real conditions [40] which
may affect learning are considered.

Several works focused on understanding visual attention and be-
havior in immersive VR classrooms. Bailenson et al. [4] and Blume
et al. [5] studied learning outcomes according to sitting positions
and offer compelling evidence that students seated in the front have
better learning outcomes. Few studies, however, took head move-
ments into consideration [13, 31, 34, 39] in such setups. In [13], the
immersive VR classroom was used as a tool to study attention mea-
sures for attention deficit/hyperactivity disorder (ADHD), whereas
in [31] reliability of virtual reality and attention was studied with
continuous performance task (CPT) for clinical research. Social in-
teraction using head movements was studied in [39] with users’ head
movements found to shift between the interaction partner and target.
Some studies argued for eye tracking measurements, especially in
clinical research for diagnosis or attention related tasks [27, 33].
However, none of the previous works have focused on social interac-
tions and dynamics in the immersive VR classroom in an everyday
setting by using object-of-interest information and eye movements.

2.2 Eye Tracking in Virtual Reality
Eye tracking and gaze estimation are considered challenging tasks
in a real world setting because it is difficult to control factors such as

occlusions or illumination changes [16,47]. However, in most of the
VR setups, eye trackers are located inside of HMDs. This creates
not only a more controlled and reliable environment for eye tracking,
but also provides a unique opportunity to analyze and process human
visual behavior during the VR experience.

Eye tracking has been used in many applications and shown
to be helpful for various tasks in VR such as guiding attention
in panoramic videos using central and peripheral cues [37], pre-
dicting motion sickness by using 3D Convolutional Neural Net-
works [24], synthesizing personalized training programs to improve
skills [22], foveated rendering using saccadic eye movements and
eye-dominance [3, 29], evaluation and diagnoses of diseases such
as Parkinson’s disease [32], re-directed walking using blinking be-
havior [23], or continuous authentication using eye movements [48].
While these works have used either the eye tracking or gaze data
to derive more meaningful information for related tasks, assessing
visual attention via eyes and gaze-based interaction is more rele-
vant for classroom setups in particular. Bozkir et al. [6] assessed
visual attention using gaze guidance and pupil dilations in a time-
critical situation, whereas Khamis et al. [20] discussed gaze-based
interaction using smooth pursuit eye movements in VR. In addition,
Sidenmark and Lundström [41] analyzed eye fixations on interacted
objects during hand interaction in VR and found that interaction with
stationary objects may be favorable. Aforementioned works indicate
that eye movements can be used reliably in VR setups. Moreover,
considering that the majority of objects in a classroom are stationary
or have limited spatial movement, visual attention extracted from
such data may provide valuable insight into human behavior. While
exploiting objects-of-interests could be considered as a primitive
task, it forms the foundation of more complex tasks necessary to
understand visual attention.

3 METHODOLOGY

The main focus of this work is to investigate object-of-interest infor-
mation in different manipulations of an immersive VR classroom.
We focus on three objects that may be considered as the most im-
portant objects in the current setup, namely peer-learners, instructor,
and screen.

3.1 Participants

381 volunteer sixth-grade students (179 female and 202 male) be-
tween 10 to 13 years old (M = 11.5, SD= 0.6) were recruited for the
experiment. In this age group, students are able to use an HMD, but
do not have much experience with VR. They also had no background
knowledge about the lecture content. Data from 101 participants
were removed due to hardware related problems, incorrect calibra-
tion, low eye tracking ratio (lower than 90%), and synchronization
issues. The average number of participants per condition was 17.5
(SD= 5.2). Finally, we used the data of 280 participants (140 female
and 140 male) with the aforementioned average age and standard
deviation. For each condition group separately, participants’ gender
was also equally distributed (M = 0.58,SD = 0.08). The study was
approved by the ethics committee of the University of Tübingen
prior to the experiments. Participants and their parents or legal
guardians provided written informed consent in advance.

3.2 Apparatus

For the experiments, HTC Vive Pro Eye devices with integrated
Tobii eye trackers were used. The HTC Vive Pro Eye has a refresh
rate of 90 Hz and field of view of 110◦. The integrated eye tracker
has 120 Hz sampling rate. The screen resolution per eye was set to
1440×1600. Unreal Game Engine v4.23.13 was used to render the
virtual classroom.

3https://www.unrealengine.com/
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(a) Overall virtual classroom design. (b) Hand-raising cartoon-styled peer-learners from back.

(c) Realistic-styled peer-learners. (d) Hand-raising cartoon-styled peer-learners.

Figure 1: Views from the virtual classroom.

3.3 Experimental Design

The virtual classroom consists of 4 rows of desks organized in 2
columns. Next to each desk, chairs are located to let virtual peer-
learners sit. There are 24 virtual peer-learners in the environment and
all of them sit on chairs during the entirety of the lecture. Some of the
chairs are kept empty so as not to overcrowd the virtual classroom. In
addition, the virtual classroom includes other objects, which exist in
real classrooms such as board, screen, cupboard, clock, and windows.
The lecture content is visualized on the white screen. Additionally,
the virtual instructor walks around the podium, replicating behavior
similar to that of a real instructor. Fig. 1 (a), (b), (c), and (d) show
the overall design, hand-raising peer-learners, realistic-styled peer-
learners, and cartoon-styled peer-learners, respectively.

The content of the virtual lecture is about computational think-
ing [44] and the lecture takes ≈ 15 minutes in total, including 4
phases. These four phases are grouped as “Introduction to the topic”,
“Knowledge input”, “Exercises”, and “Summary” and take ≈ 3,
≈ 4.5, ≈ 5.5, and ≈ 1.5 minutes, respectively. The topic of the vir-
tual lecture is visible on the board as “Understanding how computers
think”. The first phase starts with the virtual instructor entering the
classroom. After staying for a while, the instructor leaves the class-
room for about 20 seconds. During this time, participants have the
opportunity to explore the classroom, look around, and acclimate
themselves with the virtual environment. During the initial phase of
the lecture, the instructor asks five questions, and some of the virtual
peer-learners raise their hands to interact. In the second phase, the
instructor describes two terms, “sequence” and “loop”, and shows
these terms on the white screen. After the descriptions, the instructor
asks four questions about each term and some of the peer-learners
raise their hands to answer them. In the third phase, the instructor
assigns two exercises and allows students some time to think about
them. Later, choices for each exercise are provided by the instructor
and, this time, peer-learners raise their hands to vote on the correct
answer out of the presented options. In the fourth phase, the in-
structor summarizes the lecture without asking any questions, which

means that peer-learners do not raise their hands. In addition, no
hand-raise is expected from the participants as hand poses are not
measured during the experiments.

Our study is conceptualized in a between-subjects design. We
evaluated three design factors, namely sitting positions of the par-
ticipants, visualization styles of virtual avatars, and hand-raising
percentages of virtual peer-learners. Participants were seated either
in the front or back rows, which means that the participants seated in
the front had one row in front of them, whereas participants seated
in the back had three rows between them and the screen. Both condi-
tions were aligned in the aisle side of the desks that were on the right
side of the classroom. This manipulation can give insights about stu-
dents’ attention during a lecture, when they have either the overview
over whole class and see most of their virtual peer-learners or when
they are positioned closer to instructor and screen the lecture is pre-
sented on. Participants encountered either cartoon- or realistic-styled
virtual avatars in the environment, including the virtual instructor
and peer-learners. The cartoon-styled avatars have larger heads and
tinier arms and legs as compared to the realistic-styled avatars. Since
the animation and design of more realistic looking avatars is time
and cost expensive, it should be interesting to investigate the impact
of such manipulation. In addition, various hand-raising percentages
of virtual peer-learners consist of four levels, namely 20%, 35%,
65%, and 80%. This means that when a question is asked during the
lecture by the virtual instructor, a corresponding percentage of vir-
tual peer-learners raise their hands to answer the question. The last
two manipulations are of particular interest, regarding the question
how social avatars should be designed in a virtual classroom and
how they are perceived by students. Under which condition do stu-
dents use social information and how does visualization and certain
behaviour influence students attention. This helps to simulate and
evaluate social dynamics and engagement during the virtual lecture
using visual attention. In total, our 2 (factor 1) ×2 (factor 2) ×4
(factor 3) between-subjects design leads to 16 treatment groups.
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3.4 Procedure
In the beginning of the experiment, the assistants introduced the
experiment and its process to the participants. Participants had the
opportunity to familiarize themselves with the hardware and the VR
environment. Afterwards, the actual experiment and data collection
began. Firstly, the eye tracker was calibrated. Then, the experiment
was started with assistants pressing a start button. At the end of the
virtual lecture, the participants were told to take the HMD off by a
message which was displayed in the virtual environment. Virtual
lectures were carried out without any breaks. After watching the
virtual lecture, participants filled out questionnaires about their per-
ceived realism and experienced presence which were conceptualized
for the VR classroom according to [26, 38].

Each session took ≈ 45 minutes in total. The experiments were
carried out in groups of ten participants who were randomly allo-
cated to one of the 16 treatment groups by using a random number
generator to ensure the random distribution of conditions within
groups. To maintain natural behavior, participants selected the physi-
cal seat in the experiment room freely without being informed about
experimental conditions. Although research assistants helped with
technical issues regarding the use of the HMD, participants were
blinded to the true purpose and design of the study, as it was solely
introduced as a learning experience.

3.5 Data Processing and Measurements
During the experiments, head location and pose, gaze, and eye re-
lated data along with experimental condition were collected. Head
movements are particularly helpful for mapping eye-gaze in the
virtual environment. These were saved in data sheets for each partic-
ipant using anonymous identifiers which ensured the privacy of the
participants.

As gaze data reported by the eye tracker can be affected nega-
tively by blinks or noisy sensor measurements, we applied a linear
interpolation on the gaze vectors to clean the data. Afterwards, using
head pose and interpolated gaze data, we applied ray-casting [35] to
map the gaze into the 3D virtual environment. The objects in the 3D
environment are surrounded by dedicated colliders; therefore, we
were able to calculate 3D gaze points and gazed objects using the
procedure visualized in Fig. 2.

However, gazed objects may not directly represent visual attention
as participants can gaze on some objects unconsciously for a very
short time. To overcome this issue, we set an attention threshold
of 200 ms, meaning that we count the objects as object-of-interest
if participants stay with their gaze on the objects for at least the
amount of the attention threshold. As we assume that both fixations
and saccades can occur during attending one object, the selected
threshold is larger than classical fixation thresholds applied in eye
tracking literature for both conventional [36] or VR eye tracking [1]
setups. While we also experimented with various threshold values,
our results show similar trends across different thresholds.

In addition to the data related to visual attention, self-reported
perceived realism and experienced presence were obtained at the
end of the experiments with 4-point Likert scales ranging from 1
(“completely disagree”) to 4 (“completely agree”) with 6 (e.g., “I
felt like the teacher and the classmates could be real people”) and 9
(e.g., “During the virtual lecture, I almost forgot that I was wearing
the VR glasses”) items, respectively.

In this study, we focused on three main objects in the virtual
classroom, namely peer-learners, virtual instructor, and screen, when
we extracted object-of-interest information. We decided that these
objects may have a significant impact on social dynamics in the
classrooms and for overall course of lecture. In our analyses, the
attention time on each peer-learner is aggregated and the object of
“peer-learners” represents the aggregated object and related attention.
In addition, in our classroom setup there is one board and one
white screen behind the instructor as depicted in Fig. 1 (a). The

Figure 2: Ray-casting procedure to obtain 3D gazed object.

lecture content is provided on the white screen only; therefore, in
our analysis we refer to the white screen when mentioning screen
object.

3.6 Research Hypotheses

Our hypotheses correspond to the experimental factors of sitting
positions, avatar visualization styles, and various hand-raise percent-
ages of virtual peer-learners, respectively. Furthermore, since we
analyze behaviors towards three different objects in the virtual class-
room, namely peer-learners, instructor, and screen, for simplicity we
call attention to attending these objects-of-interests for the rest of
the paper.

3.6.1 Visual Attention in Different Sitting Positions (H1)

We expect that participants seated in the front condition have less at-
tention on peer-learners, naturally because they do not have as many
peer-learners sitting in front of them as opposed to the participants
sitting in the back. In addition, the participants that are located in the
front are closer to the virtual instructor and the screen that visualizes
lecture content. Due to the proximity and having fewer moving and
occluding objects in their field of view (FOV), we hypothesize that
these participants have more attention time on both virtual instructor
and screen than the participants sit in the back.

3.6.2 Visual Attention in Different Visualization Styles of Vir-
tual Avatars (H2)

We hypothesize that attention time on peer-learners in the cartoon-
styled visualization is longer than in the realistic-styled visualization
as cartoon-styled peer-learners are more exciting for participants
when ages of our interest group are taken into consideration. In
addition, we assume that participants look at the realistic-styled
instructor for longer than at cartoon-styled instructor as participants
may consider the realistically rendered instructor more credible in
a learning environment. Lastly, we do not expect any differences
in terms of attention towards virtual screen that lecture content is
visualized, as the visualization style of the screen does not change.

3.6.3 Visual Attention in Different Hand-raising Behaviors of
Peer-learners (H3)

We hypothesize that attention time on peer-learners increases with
a higher number of virtual peer-learners raising their hands when
questions are asked, as this would create a visually more dynamic
classroom. Additionally, we expect that if fewer virtual peer-learners
raise their hands, this will lead participants to keep their attention
either on the instructor or the lecture screen due to having less
amount of visual distractors when questions are provided by the
virtual instructor.
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(a) Comparison between sitting positions. (b) Comparison between visualization types. (c) Comparison between hand-raising behaviors.

Figure 3: Attention towards virtual peer-learners for different classroom manipulation configurations. ∗∗ and ∗∗∗∗ correspond to the significance
levels of p < .01 and p < .0001, respectively.

4 RESULTS

In this section, we analyze the total amount of time spent on each
object-of-interest (OOI), which we call visual attention, between
different conditions. For each OOI, we applied a 3-way full factorial
ANOVA for statistical comparison using alpha level of 0.05. For non-
parametric analysis, we transformed the data using the aligned rank
transform (ART) [46] before applying ANOVAs. For the pairwise
comparisons, we used Tukey-Kramer post-hoc test as the sample
sizes were not equal. While the main focus of this work is to assess
visual attention using OOI information, here we report experienced
presence and perceived realism questionnaires to support our main
results. We obtained mean values of 2.91 for experienced presence
and perceived realism with SD = 0.55 and SD = 0.57, respectively,
without any significant differences between conditions.

4.1 Visual Attention on Peer-learners
Total time spent on peer-learners for different sitting positions, avatar
visualization styles, and various hand-raising behaviors are depicted
in Fig. 3 (a), (b), and (c), respectively. Total time spent on peer-
learners is significantly longer in the back seated condition (M =
115.07 sec, SD = 85.28 sec) than it is in the front seated condition
(M = 33.59 sec, SD = 32.45 sec) with (F(1,264) = 156.23, p <
.0001, η2 = .36).

Attention towards peer-learners as different visualization styled
avatars differs significantly. Cartoon-styled peer-learners (M =
98.67 sec, SD = 82.79 sec) drew significantly more attention than
the realistic-styled peer-learners (M = 55.28 sec, SD = 65.65 sec)
with (F(1,264) = 54.13, p < .0001, η2 = .17).

Furthermore, for different hand-raising manipulations, attention
time on the peer-learners differs significantly with (F(3,264) = 6.93,

p < .001, η2 = .07). Particularly, the total time spent on peer-
learners in the 80% condition (M = 88.95 sec, SD = 78.15 sec)
is significantly longer than in the 65% condition (M = 59.23 sec,
SD = 65.19 sec) with (F(3,264) = 6.93, p < .0001, η2 = .07). In
addition, the total time spent in the 20% condition (M = 88.62 sec,
SD = 87.53 sec) is significantly longer than in the 65% condition
(M = 59.23 sec, SD = 65.19 sec) with (F(3,264) = 6.93, p = .005).
In summary, attention time towards extreme levels of hand-raising
percentages are longer than for intermediate levels.

Additionally, we found some significant interaction effects regard-
ing the attention time on the peer-learners. The time on peer-learners
in the hand-raising condition depends on the sitting position of the
students with (F(3,264) = 3.88, p = .0097, η2 = .041), as well as

the attention time on peer-learners in the avatar visualization styles
condition depends on the sitting position with (F(1,264) = 11.37,

p < .001, η2 = .039) and vice versa. A small interaction effect was
found between the hand-raising condition and the avatar visualiza-
tion styles with (F(3,264) = 3.36, p = .02, η2 = .036).

4.2 Visual Attention on Instructor

Total time spent on instructor for different sitting positions, avatar
visualization styles, and various hand-raising behaviors are depicted
in Fig. 4 (a), (b), and (c), respectively. The participants that are
seated in the front (M = 190.07 sec, SD = 93.13 sec) attended to the
virtual instructor significantly more than the participants seated in
the back (M = 80.37 sec, SD = 60.78 sec) with (F(1,264) = 144.16

p < .0001, η2 = .34).

The virtual instructor drew significantly more attention in the
realistic-styled avatar condition (M = 145.98 sec, SD = 96.63 sec)
than in the cartoon-styled avatar condition (M = 114.82 sec, SD =
89.83 sec) with (F(1,264) = 11.81, p < .001, η2 = .04).

Furthermore, attention time on the instructor is found to differ
significantly between different hand-raising behaviors of the peer-
learners with (F(3,264) = 3.54, p = .015, η2 = .04). In particular,
the total time spent on virtual instructor in the 65% condition (M =
152.46 sec, SD = 91.48 sec) is significantly longer than the 80%
condition (M = 117.39 sec, SD= 91.12 sec) with (F(3,264) = 3.54,

p = .009, η2 = .04). Overall, more attention is drawn by the virtual
instructor in the intermediate levels of hand-raising than the extreme
levels. There were no interaction effects found for attention time on
instructor.

4.3 Visual Attention on Screen

Total time spent on the screen, where the lecture content visualized
for different sitting positions, avatar visualization styles, and various
hand-raising behaviors are depicted in Fig. 5 (a), (b), and (c), respec-
tively. The participants that are seated in the front (M = 218.65 sec,
SD = 78.70 sec) attended to the lecture screen for a significantly
longer period of time than the back seated participants (M = 154.21
sec, SD = 96.88 sec) with (F(1,264) = 42.5, p < .0001, η2 = .14).

We did not find significant effects on screen attention between
cartoon- and realistic-styled avatar conditions (F(1,264) = 1.9, p =
.17, η2 < .01); however, attention time in realistic style (M = 193.35
sec, SD = 92.30 sec) was slightly longer than cartoon style (M =
173.95 sec, SD = 96.11 sec).
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(a) Comparison between sitting positions. (b) Comparison between visualization types. (c) Comparison between hand-raising behaviors.

Figure 4: Attention towards virtual instructor for different classroom manipulation configurations. ∗∗, ∗∗∗, and ∗∗∗∗ correspond to the significance
levels of p < .01, p < .001, and p < .0001, respectively.

In addition, the total attention time on the screen is found to
differ significantly between different hand-raising conditions with
(F(3,264) = 5.74, p < .001, η2 = .06). In particular, attention time
on screen is longer in the 65% hand-raising condition (M = 222.03
sec, SD = 94.90 sec) than in the 80% condition (M = 156.06 sec,
SD = 88.25 sec) with (F(3,264) = 5.74, p < .001, η2 = .06). In
addition, attention time in the 65% condition is also significantly
longer than in the 35% hand-raising condition (M = 174.87 sec,
SD = 81.28 sec) with (F(3,264) = 5.74, p = .025). The overall
trend of attention on the lecture screen is similar to virtual instructor
with the intermediate conditions being higher than the extreme con-
ditions. There were no interaction effects found for attention time
on screen.

5 DISCUSSION

We discuss experimental results particularly for social interaction
and dynamics in VR classrooms, usability of eye tracking data, and
the advantages of such classrooms along with their limitations.

5.1 Social Dynamics in VR Classroom
We discuss our findings about social dynamics in the VR classroom
in three parts, particularly based on H1, H2, and H3 which are
related to different sitting positions, different avatar visualization
styles, and different hand-raise behaviors of peer-learners, respec-
tively.

In our analyses, we found that the participants seated in the front
of the classroom attended less on the peer-learners than the partici-
pants in the back, which was expected because they had fewer peers
in their FOV, unless they turn back of the classroom. Assuming
that during the course of the lecture, participants are supposed to
listen and pay attention to the topics told by the instructor, the vi-
sual attention we observed is normal. Briefly, this is an indication
that participants focus on the lecture content or instructor instead
of visually interacting with their peers when seated in the front.
Further, as a supporting evidence to aforementioned result, front
seated participants had spent significantly more time visually attend-
ing the instructor and the screen than the participants seated in the
back. We assume that these results are due to being closer to them
and having fewer occluding objects in the frontal participants’ FOV.
These findings confirm our H1. Additionally, the results from the
interaction effects support this hypothesis. The differences in visual
attention on their virtual peer-learners for the avatar visualization
style and hand-raising depend on the sitting position. Participants

located in the back of the classroom have more peer-learners in their
line of sight and therefore recognize the behaviour of the virtual
peer-learners more, than participants seated in the front.

Our results indicate that students visually attended for longer
on the peer-learners when avatars in the classroom were presented
in cartoon styles. Considering the number of peer-learners in the
environment and the ages of our participants being between 10-
13, we argue that participants may have felt like engaging more
with their peer-learners due to the emotional reasons as cartoon-
styled peers are more appropriate to their ages. Realistic-styled
peer-learners may be too ordinary for student engagement with
peers in our setup, which led to less amount of attention. On the
contrary, participants visually spent more time on the instructor
when realistic-styled avatars were used. We conceive that if the
avatar styles are ordinary, then the visual attention shifts to the
instructor instead of interacting with the peer-learners. Lastly, as
we did not find any statistical difference in attention time on the
screen between different avatar visualization styles, we conclude
that visual attention on the screen is not affected by such avatar
visualization styles. Realism that is provided by the avatar styles may
introduce additional computational complexity as such visualizations
can be computationally expensive or can require additional effort
to implement in advance. If the interaction with peer-learners is
the main focus of the lecture, then practitioners can opt for cartoon-
styled avatars. This also decreases the effort of generating the avatars.
Overall, these findings confirm our H2.

In the analysis on different hand-raising behaviors of the peer-
learners, we found mixed effects. In the attention time towards
peer-learners, we found a clear evidence that attention time in the
extreme hand-raising conditions, namely when 80% or 20% of the
virtual peer-learners raise their hands after the questions were asked
by the virtual instructor is longer than in the intermediate conditions
(35% and 65%). The extreme conditions may represent either more
or less capable groups of peer-learners in the learning environment
and participants may have a higher self-concept when surrounded
by a less capable group and the other way around, which is related
to the Big-fish-little-pond effect [28]. Having reasonably higher
attention on peer-learners on these conditions also indicates that
VR can present an opportunity to create digital environments to
further study students’ self-concept. On the other hand, intermediate
hand-raising conditions may help students to focus more on learning
related objects in the classroom instead of peer-learners such as
lecture content or instructor as experimentally indicated. However,
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(a) Comparison between sitting positions. (b) Comparison between visualization types. (c) Comparison between hand-raising behaviors.

Figure 5: Attention towards screen for different classroom manipulation configurations. ∗, ∗∗∗, and ∗∗∗∗ correspond to the significance levels of
p < .05, p < .001, and p < .0001, respectively.

we expected an approximately linear increase in terms of attention
time towards higher hand-raising conditions in the attention time on
peer-learners. While we obtained an expected result between the
65% and 80% hand-raising conditions, the results regarding the 20%
hand-raising condition do not support our hypothesis H3. This might
be due to a moment of surprise when only a handful of peer-learners
raises their hands indicating that few number of peer-learners know
the answers of the questions. Furthermore, we found that attention
time on the instructor tended to be longer in the intermediate levels of
hand-raising than in the extreme conditions. Statistically significant
results are only found for the difference between the 65% and 80%
condition. While a decreasing linear trend towards the higher hand-
raising percentages exists between the 65% and 80% for attention
on the instructor, the overall trend is against our hypothesis, even
though they are aligned with the attention time on peer-learners.
Lastly, the experimental results on attention time on the screen is
similar as compared to the attention time on the instructor. However,
the 35% hand-raising condition drew significantly less attention than
the 65% condition, which does not support our hypothesis. Overall,
while some of our expectations are verified, H3 is not confirmed.
Still, the resulting behaviors should be further investigated with
regard to effects on students’ self-concepts during VR learning and
considered when creating a classroom students are habituated to.

In summary, the three different manipulations that we studied
have important effects on students’ visual behavior in immersive VR
classrooms in terms of social dynamics. For instance, in practice,
students’ self-concept can be affected by consistent hand-raising
behaviors of virtual avatars over the time. While this may be less
problematic in real classrooms as peer students may have different
capabilities in different themes, it should carefully considered in the
virtual setting, because we could present always the same behavior of
the peer-learners. An adaptive strategy for hand-raising behaviors of
the virtual peer-learners may be considered in practice. In addition,
seating the students in the front along with realistic-styled avatars
may help to increase visual attention on the lecture content. However,
if a more interactive classroom environment is focused on visual
interaction, practitioners can either seat students in locations where
they can see their peer-learners clearly or design VR classrooms
differently in terms of seating plans.

5.2 Usability of Eye Tracking Data

As eye tracking data is considered a noisy data source, we discuss our
insights into the usability of this data, for particularly the immersive

VR classroom setups. As aforementioned, we defined the visual
attention on the different objects by using an attention threshold,
which was 200 ms. In the end, in almost all conditions, the total
amount of time that was spent on only the three types of objects was
in the vicinity of half of the complete experiment duration despite
having a relatively higher attention threshold value compared to
fixation detection algorithms in the eye tracking literature. Such
amount of total attention time on these three objects empirically
validates our assumption of independence between them as well.
We removed a significant number of samples from eye movement
data due to sensory issues (e.g., lower eye tracking ratio) in order
to obtain high-quality data and accurate attention mapping on the
objects in the virtual classroom. While this may not be necessary for
larger objects such as virtual screen in the classroom, it might cause
mapping the attention wrongly for the smaller objects such as virtual
avatars if the data quality is low. Considering that the participants
were children in our experiments and they did not have experience
with virtual reality and eye tracking, number of data removals due
to such issues would be more than the experiments that are carried
out with adults. In addition, unlike pre- or post-tests, eye tracking
allows researchers to analyze time-dependent and temporal visual
behavior changes, which can help assess students’ states during
virtual lectures and adapt to the environment accordingly. Therefore,
despite the drawbacks, we suggest using eye movement data in such
classrooms as long as an accurate calibration is applied in advance.
A further iteration could take relationship of eye movement-based
visual attention into consideration or analyze perceived relevance
of lecture content along with eye-gaze behaviors such as in [12]
and [45], respectively.

5.3 Advantages and Limitations

One of the advantages of immersive VR classroom setups is the
opportunity of simulating different classroom manipulations in re-
mote settings, which are difficult to do in real world, and evaluate
students’ behaviors and learning under such manipulations. Another
advantage of such setups is the possibility of preserving the privacy
of students since the videos that include faces are not recorded in
such settings. In real world classrooms, it is troublesome to record
and store videos of the class while lecturing, even though there are
some efforts supporting the automated anonymization [43] of such
data. In contrast, data collected from virtual classrooms can be
pseudo-anonymized. However, one should be aware of the amount
of personal information that can be extracted from eye movement
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data and how to manipulate it [7, 8, 15]. Furthermore, one should
take the relationship between iris texture and biometrics into ac-
count and how to preserve privacy in case eye videos are recorded
and stored [10]. In addition, we observed during experiments that
some of the students intended to raise their hands when seeing the
hand-raising behaviors of the virtual peer-learners. While we did not
record hand tracking data in our study, it is possible to accurately
assess the intentions of students towards questions asked by the
virtual instructor by using a hand tracker device on the HMD, which
is another advantage of VR setups compared to real classrooms.
Although, hand-raising is a good indicator of children’s participation
during a lecture, we do not know if students interpret this behaviour
of their virtual peers as a sign of competence, engagement, or moti-
vation.

Despite the advantages, there are other technical limitations re-
garding the use of VR classrooms. Long periods of exposure to VR
lectures can lead to immense levels of cybersickness. In addition,
a vast amount of HMD movement on the head may cause a drift in
eye tracker calibration, leading to incorrect sensor readings. This
can affect interaction experience if gaze-aware features are included
in virtual environments. These should be taken into consideration
when designing a virtual classroom and lecture. Particularly, the
duration of the lecture should be chosen carefully to minimize these
effects.

6 CONCLUSION

To understand the visual attention in VR classrooms in different
manipulations, we analyzed object-of-interest information based on
eye-gaze. We found that participants seated in the front attended
more time to the virtual instructor and the screen displaying lec-
ture content. In addition, participants focused on the cartoon-styled
peer-learners more than realistic-styled ones, whereas in the realistic-
styled avatar manipulation the virtual instructor drew more visual
attention. The extreme conditions of hand-raising behaviors drew
more attention towards virtual peer-learners, whereas in the interme-
diate conditions visual attention was focused more on the instructor
and screen. These findings are based on the eye movements of the
participants and correspond to the social dynamics of VR classrooms
such as students’ self-concept or peer-learner interaction; however,
such manipulations may also affect learning outcomes. While our
results provide primitive but fundamental cues about how to design
immersive VR classrooms by taking students’ visual behaviors into
account for different goals in digital teaching, effects of such manip-
ulations on the learning outcome should be further investigated.

As future work, we plan to specifically investigate the relation-
ship between different manipulations with temporal gaze dynamics
as an immediate response to asked questions and related students’
performances.
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