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In this paper we present a computational model of dynamic visual attention on the sphere which com-
bines static (intensity,chromaticity, orientation) and motion features in order to detect salient locations
in omnidirectional image sequences while working directly in spherical coordinates. We build the motion
pyramid on the sphere by applying block matching and varying the block size. The spherical motion con-
spicuity map is obtained by fusing together the spherical motion magnitude and phase conspicuities.
Furthermore, we combine this map with the static spherical saliency map in order to obtain the dynamic
saliency map on the sphere. Detection of the spots of attention based on the dynamic saliency map on the
sphere is applied on a sequence of real spherical images. The effect of using only the spherical motion
magnitude or phase for defining the spots of attention on the sphere is examined as well. Finally, we test
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the spherical versus Euclidean spots detection on the omnidirectional image sequence.
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1. Introduction

Visual attention (VA) is the ability of the human visual system
(HVS) to rapidly select the most salient objects in a given scene.
VA represents also a fundamental mechanism for computer vision
where similar speed up of the processing can be envisaged. The
motion is clearly involved in visual attention, where rapid detec-
tion of moving objects is essential for adequate interaction with
the environment [1]. Over the last decade, several investigations
focused on the architecture of the computer model of dynamic vi-
sual attention. In order to deal with image sequences, the current
dynamic models generally integrate additional motion compo-
nents to the classical saliency-based model proposed in [2]. A dy-
namic model that combines the static features (intensity, color,
orientation) and dynamic features (temporal changes) for four ori-
entations (0°, 45°, 90°, 135°) is considered in [3]. There a compar-
ison with the human vision is performed experimentally, by
comparing the models with respect to the eye movement patterns
of human subjects. Combining in different ways color, intensity,
orientation and motion magnitude is examined in [4] and an eval-
uation is performed on single synthetic sequences. Another dy-
namic model based on motion contrast that is computed as the
difference between local (hierarchical block matching) and domi-
nant motion is proposed in [6]. The main conclusion withdrawn
from these works is that the motion contrast is much more
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relevant than other features for predicting human attentional
behavior.

A feature contrast in the sense of VA refers to a contrast be-
tween a center and surrounding region according to a specific fea-
ture such as intensity, chromaticity, orientation. Consequently, the
motion contrast refers to the difference in the motion between a
center and surrounding region. It was illustrated in [7] that the
attention is linked to the motion contrast in magnitude, since each
direction is represented in a hierarchical way by several speed
selectivities ranges. In addition, this representation is composed
of a set of direction selectivities, which are linked to motion con-
trast in phase.

There are several ways for computing the motion conspicuity
maps but all of them serve conventional images, i.e. images ob-
tained with conventional cameras and which we call Euclidean.
By now, there is no proposed algorithm for computing dynamic vi-
sual attention in omnidirectional video. Nowadays, the demand of
omnidirectional imaging is increasing because of its larger field of
view and it is widely used in robotics, surveillance etc. It is clear
that the omnidirectional sensors are related to the spherical geom-
etry. In fact, there exists an equivalence between the central cata-
dioptric projection and the two-step mapping onto the sphere [8].
On the other hand, the multi-camera sensors output images di-
rectly in spherical coordinates [9].

This paper presents a computational model of dynamic visual
attention on the sphere which combines static and dynamic fea-
tures in order to detect salient locations in omnidirectional image
sequences. More specifically, it extends our previous work by pro-
viding a methodology for computing motion contrast and motion
conspicuity that is suited to image sequences in spherical coordi-
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nates. Consequently, this model computes a spherical saliency map
that is related to static features and a saliency map derived from
motion scene features and then combines them into a dynamic sal-
iency map which encodes stimulus saliency. The different steps of
the model are shown on Fig. 1 and explained in the following sec-
tions. Furthermore, the effect of the motion magnitude and phase
is tested with respect to the final spherical saliency map. For this
reason, spherical video with still and moving background is used.

The paper is organized as follows. In Section 2, we remind the
basic steps in the static VA on the sphere computed using the
intensity, chromatic and orientation features. Then, in Section 3,
we present an algorithm for computing the motion saliency map
on the sphere. Finally, the fusion of the static and motion spherical
saliency maps and obtaining the dynamic saliency on the sphere is

presented in Section 4. We apply the proposed algorithm on a real
omnidirectional image sequence obtained by a multicamera sys-
tem in Section 5 together with examination of the motion magni-
tude vs. motion phase on the sphere. Finally, in the same section,
we test the spherical versus Euclidean spots detection based on
the proposed algorithm and the standard (Euclidean) one,
respectively.

2. Static spherical saliency map
Now, let us define the procedures for obtaining the different cue

conspicuity maps on the sphere which are then combined in order
to obtain the static spherical saliency map.

omnidirectional image sequence
mapped on the sphere
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Fig. 1. Model of dynamic VA on the sphere which combines static and motion scene features in order to detect salient locations in omnidirectional image sequences.
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Let us have as an input a spherical image f(0, @) € L*($?) with
0 € [0,m] and @ € [0,27) and of bandwidth g such that its Fourier
coefficients f(l,m) =0, VI > . In fact, this image is defined on
2B x 2B(B € N) squared grid of, respectively, equi-angular resolu-
tion in 0 and ¢:
2p+ 1)1 T
G = {(0P7(pq) : HP :%% :%
Furthermore, each of the spherical image features are extracted.
Then, a conspicuity map for each feature is built. Finally, the spher-
ical saliency map is obtained by fusing together all the spherical
cue conspicuity maps. Precise details on computing the static
spherical saliency map can be found in [10] but here we remind
some basic points.

P.q eZ[zm}. (1)

2.1. Computing several features on the sphere

First, we need to define each of the static features j=1,...,7 in
the spherical image, f; as follows:

. Intensity: fy,; = 0.3r +0.59g + 0.11b.
. Yellow-blue: fzy = %:”/2)

. Red-green: frc = “f%f).
. Four orientations:ff)o ,fase, foo-, f135-. They are obtained applying a

Gabor pyramid on f;;; where the spherical Gabor filter [5] reads

AW N =

l1b4gl1bzzr(07 ®, d)) =12 (97 a)eiku%tan% COS(¢ - (p)e}%ng% <1 +(37 tan’ g) ’

(2)

with 0 € [0,7], @ € [0,27), ¢ € {0°,45°,90°,135°}, respectively and
ko =30, a =0.03 and /(0,a) is a normalization factor.

2.2. Spherical conspicuity map for each feature

Let us have a spherical image f, defined on a grid of size
2™2 % 2"2 The procedure for computing the spherical feature
conspicuity map C; relies on the spherical Gaussian pyramid and
the center-surround mechanism. It includes the following steps:

1. Construct the n-level spherical Gaussian pyramid.
2. Compute the multiscale maps:

A= hefs|, .=l fsl,
My =\f30f|, AMs=I|fs0fl,

M3 = |fs © fel,
Me = If4 @f8|7 (3)

where © refers to a cross-scale difference operator that interpo-
lates the coarser scale to the finer one and then performs a point-
by-point substraction.

3. Compute the weight coefficients wy and normalize the maps as
follows:

N 2 (C(0, @) = wg - C(0, @), )

with
We — 4ntMax(C(6, @))
TS 5.C(0, @) sing’
0 @

where C(0, @) is the corresponding spherical conspicuity map.
4. Compute the final spherical feature conspicuity map C; using

w

.
G =S niu), (5)
1

=
I

where ./ is the multiscale map defined above.

This procedure is applied to each of the features in order to
compute seven spherical conspicuity maps C;,j=1,...,7.

2.3. Spherical cue conspicuity maps

Using all feature conspicuity maps as obtained in Section 2.2,
the following cue conspicuity maps are computed:

1. Cine = C1. )
. Cetrom = M where C; is the red-green spherical con-
spicuity map and Cs is the yellow-blue conspicuity map. They
are normalized according Eq. (4).
3. Corient = ) (Cs):lr V2 (Ce)+1V o (57)‘ where C,, Cs,Cs,C; are
obtained after applying the procedure in Section 2.2 on the four

orientation features, they are also normalized according Eq. (4).

Finally, the static spherical saliency map is computed by fusing
together all cue conspicuity maps obtained in Section 2.3:

Se = > N (Ceue)s (6)

cuecint,chrom,orient

where .17() is the normalization step according to Eq. (4). Due to the
different nature of the spherical cue conspicuity maps, the conspi-
cuity cues are previously scaled at the same range values by apply-
ing a peak-to-peak normalization.

3. Motion spherical saliency map

Since motion is involved in the VA mechanism, a computational
VA model that is designed for omnidirectional video sequences
must consider both static and dynamic features on the sphere.
The dynamic spherical saliency map D is meant to highlight the
moving scene constituents on the sphere, and consequently in
omnidirectional images. In fact, we assume that the location where
something moves is salient.

From a physical point of view, the motion 7 at a location on the
sphere w = (0, ) € S*, 0 € [0,7], @ € [0,27) and time t is defined
as the derivative of w over the time, which reads

S . d do

vl = lim 5 =3¢ @
i.e. the motion can be seen as the displacement d on the sphere by
an infinitesimal time interval At.

From image processing point of view, each image pixel corre-
sponds to the intensity value obtained by projection of the 3D
space onto the image plane. Motion can be induced either by the
displacement of the object in 3D space or the displacement of
the sensor plane, or both. Due to the discrete nature of the video
stream, motion 7 is defined as the displacement between two con-
secutive frames (spherical images):

. d

V= E7 (8)
and the motion in the omnidirectional image plane is often repre-
sented by a vector field M = {7(w)}.

We compute the motion vector at different scales taking advan-
tage of the spherical gaussian pyramid. This multi-scale approach
allows the detection of small displacements at fine scales, whereas
large displacements are detected at coarser scales.

In general, the relative motion is the difference between the lo-
cal and the dominant motion. The local motion V,q at each point
on the sphere w = (0, ) (or the motion vector) can be obtained by,
for instance, a block matching. It is computed through series of lev-
els (resolutions) each providing the input for the next. Moreover,
on each resolution, the block matching is done for a certain neigh-
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borhood (window) size, that increases with the hierarchy level. In
fact, the local motion does not necessary represent the motion con-
trast but it is the case when the dominant motion is null, i.e. the
camera is fixed.

3.1. Block matching on the sphere

An approach for computing the motion estimation in spherical
images integrated into a multi-resolution scheme was first devel-
oped in [11] in order to find a prediction image. Here we concen-
trate on simple block matching, i.e. it takes place at a single level
and we do not need to propagate the motion vector in a pyramidal
structure. It is clear that the local motion estimation algorithm
takes place in the spherical domain. The algorithm simply pairs so-
lid angles from two spherical signals and we call it spherical block
matching algorithm (sBMA). It aims at computing the motion field
between two spherical images.

Let us define two spherical images as f(0, ¢) and g(0, ¢) and
sample them on an equi-angular grid:

(2p+1)m qr
4—Bj7q)jq :Fj ) 9)

p.q € {n € N:n < 2B;} for some range of bandwidth B = {B; € 2N,
j € 7}. This grid allows us to perfectly sample any band-limited
function f € L*(S?) of bandwidth B;. Moreover, this class of sampling
grids is associated to a fast spherical fourier transform.

Y = {(91‘177 P €51 O =

Algorithm 1. Block matching on the sphere

M; = [0,0], Vi, 6y =%, o, =2, B = full resolution divide g into I
uniform blocks of size Mdg x Noy; i = 0;
repeat
(P, ;) — position of g;
Q — {(p,q)}such that
p e [pi+M;(1) — %2 4 1,p; + M;(1) + %] and
g€ o+ Mi2) ~ %52 + 1, + Mi(2) + *32];
fi = argmingMSE(g;. f);
(wj, t;) < position of f;;
M; — [p; +wi, q; + ti];
i—i+1;
until i > |

Then, the spherical image g is divided into uniform solid angles
of size Md, x No,, that form blocks g;. These are paired with the
best matching blocks with the same size in the reference spherical
image f within a search window of size Wé, x W¢,, around the
location of the block g'. A full search of each block g; determines
the corresponding motion vectors M. We must note that even
the blocks g; are all distinct, the blocks f; may be overlapping. This
algorithm also takes into account the periodicity in azimuthal
direction.

3.2. Motion pyramid on the sphere

In the sense of VA, center-surround contrast refers to a differ-
ence between a center and surround region. Regarding static fea-
tures, the alternative approach proposed in [10] approximates
the multiscale center-surround contrast using pyramid and
cross-scale differences. What concerns the motion feature, a paral-
lel approach can be performed similarly. The basics of the center—
surround contrast computation lay in creating a pyramidal struc-
ture on the motion. In fact, computing the motion field at different
levels of this pyramid on the sphere is obtained by varying the
block size in the sSBMA.

In order to compute motion contrasts, the idea is basically to
define two average motion vectors from the motion pyramid, 7,
and 7, which represent the motion of center and surround regions,
respectively. The multi-scale motion field pyramid M, is composed
of n motion maps M; corresponding to the motion estimation at
diferent scales i =1,...,n. Coarse scale maps detect motion of
large regions while fine scale maps detect motion of small regions.
The initial resolution of the first level M; is m; x n; and the resolu-
tion of the consecutive levels is decreasing over the pyramid by a
factor two between each level. Average motion vectors 7. and 7
are obtained from M, according to their corresponding levels.

3.3. Motion conspicuity operators

Once the motion average vectors 7. and 7 have been estimated
from the motion pyramid, the next step toward computing the mo-
tion conspicuity is to apply on them a motion conspicuity operator
in order to detect center-surround contrasts. There are three pos-
sible such operators:

3.3.1. Motion contrast in phase and magnitude
This operator computes the norm of the motion vector
difference:

Dcs(au 775) = ”771:(07 QD)H - ”775(07 QD)H (10)

It is clear that it considers both the phase and the magnitude of
the motion vector.

3.3.2. Motion contrast in magnitude
It consists in computing the norm of the center and surround
motion vectors and then to take the absolute difference. This reads:

Acs(Te, Ts) = [12:(0, @)l = 11256, )|l (11)

where 7. is the motion vector at the center level M; and 7; is the
motion vector at the surround level which is up-sampled to the cor-
responding resolution.

3.3.3. Motion contrast in phase
This operator is sensitive to motion phase difference.

o o 14 14
Bes(Te, D) = O (arctanﬂ — arctan ﬂ) , (12)
Usp Usp

o, ifo<agm,
O(a) = .

(2m — o), otherwise,
where (v, v5,) and (v, vs,) are the 0, @ components of the vectors

7. and 7s. O(a) is used to shift the phase difference when the phase
exceeds 7.

(13)

3.4. Algorithm for computing the spherical motion conspicuity map

In this section we propose an algorithm for computing the
spherical motion conspicuity map using spherical motion pyramid.
Its block diagram is shown on Fig. 2 and comprises the following
steps:

e Build the multi-scale motion pyramid on the sphere M, as in Sec-
tion 3.2.

e Compute the spherical motion magnitude conspicuity map
Ce by applying the magnitude conspicuity operator A, from

'magitude
Eq. (11) to the multi-scale motion pyramid M;.
e Compute the spherical motion phase conspicuity map Cszl by
phase

applying the phase conspicuity operator B, from Eq. (12) to
the multi-scale motion pyramid M;.
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Fig. 2. The spherical phase and magnitude motion model based on the motion pyramid on the sphere. The spherical motion conspicuity map is computed with decoupled

phase and magnitude contrast.

e Combine in classical manner the two previously obtained
conspicuity maps and obtain the motion spherical conspicuity
map:

Mg

p&em

= /(Cq

'phase

)+ 4 (Co ), (14)

'magitude ”

where CS,Z,W = >/ (By) and Cg

‘magnitude

= Ty (Ay).

The intermediate phase conspicuity maps B; highlight phase
differences between a center level i and a surround level j, while
the intermediate magnitude conspicuity maps A; highlight the
magnitude differences at the same corresponding levels. Further-
more, the obtained motion map on the sphere is combined with
the static spherical saliency map in order to obtain the dynamic
saliency map on the sphere as explained in the next section.

4. Fusion of static and motion spherical maps

In this section, we aim at integrating the static spherical sal-
iency map Se and the dynamic one M. in order to obtain the final
spherical saliency map Dg. Such a combination is difficult but nec-
essary when several maps are considered. This yields a single mea-
sure of interest for each location regardless of which feature has
contributed to the saliency.

Indeed, the static saliency map is computed on each sphere
from the sequence, while the dynamic one is computed on two
successive spheres. The data driven competition mechanism pre-
sented in Section 2 is a suitable integration concept for both cues.
Therefore, the final spherical saliency map is computed according
the equation

Dsz = Wsssz + WdIVISz7 (15)

where the coefficients ws ans w, are computed according weighting
function w presented in (4).

Once we have obtained the final spherical saliency map, the
most salient locations on the sphere are selected by applying the
“Winer-Take-All” (WTA) network in the same manner as in the
case of static visual attention on the sphere. The complete details
can be found in [10].

5. Experimental results

In this section we first apply the spherical dynamic visual atten-
tion algorithm on real spherical videos. We have tested it on ten
different sequences but here we show only some of them. The
working sequences are obtained with multi-camera omnidirec-
tional sensor [9], which directly outputs them in spherical coordi-
nates (6, ). Each of these images is defined on 1024 x 1024-
spherical grid and cover almost 75% from the sphere. The first
experiment is straightforward and concerns a general application
of our algorithm to real omnidirectional image sequences. Second,
we examine the effect of the amplitude and the direction (phase) of
the spherical motion on computing the spherical saliency map and
consequently their effect on defining the spots of attention. Finally,
we compare our algorithm to the standard one by applying the
spherical and conventional dynamic visual attention algorithm
on the same omnidirectional video.
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5.1. Spots of attention in real omnidirectional video

Let us take a sequence of 17 spherical images. The scene is taken
in an office where the camera is pointing down the table on which
a toy-car is moving. While crossing the table, the car passes
through the north pole of the sphere. For this example, we show
some of the intermediate results for better illustration of the entire
dynamic visual attention mechanism on the sphere. Applying the
sBMA with a varying block size of respectively 4 x 4, 8 x 8, 16x
16, 32 x 32, 64 x 64, we obtain a five-level motion pyramid on
the sphere. After applying the procedure described in Section 3.4,
where both the magnitude and phase of the spherical motion field
are considered, we obtain the spherical motion cue. It is shown on
Fig. 3 for some of the frames in this sequence.

The final spherical saliency map is obtained by summing to-
gether the spherical motion and static cues and is shown on Fig. 4.

Consequently, based on the final spherical saliency map, the
spots of attention on the sphere are detected. The first three most
salient locations on the sphere are shown on Fig. 5. The spot of atten-
tion with rank one is shown in red?, which in our case is the car. Again,
it is important to note that even when the car is passing through the

2 For interpretation of color in Figs. 3-9, the reader is referred to the web version of
this article.
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(d)

Fig. 3. Spherical motion cue: (a) frame 8; (b) frame 10; (c) frame 12 and (d) frame 14.

north Pole of the sphere, as expected, it remains salient and thus spot
of attention. Furthermore, in frame 16, the car is not detected as the
most salient objectin the scene. In factitis not moving anymore. In this
frame, the most salient location is one of the red chairs around the ta-
ble. This suggests that the motion is dominant in determining the sal-
iency evenin spherical coordinates. When there is no motionina given
scene, the saliency is determined by the color opponency.

5.1.1. Motion magnitude versus motion direction on the sphere

In order to better examine the influence of the motion magni-
tude and direction (phase) on the dynamic visual attention in
spherical coordinates, we perform the following experiment. For
building the motion cue only the motion amplitude or only the
motion phase is considered. Furthermore, both ways of computing
the motion cue on the sphere is applied on omnidirectional video,
obtained with static and moving omnidirectional sensor, respec-
tively, i.e. with still or moving background. These omnidirectional
video is obtained in a corridor where different kind of posters are
presented on the walls.

First, the still background video is examined. The motion cue is
computed while considering only the spherical motion contrast in
magnitude. In Fig. 6 are illustrated some of the frames in the "cor-
ridor” sequence. Apart the salient objects in the posters fixed on
the walls, another two simultaneous motions are available: two
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Fig. 4. Final spherical saliency map on some of the frames in the sequence: (a) frame 8; (b) frame 10; (c) frame 12 and (d) frame 14.

persons are going out of the office. For purpose of visualization the
unwrapped spherical image is shown and only the first five de-
tected spots of attention are given. Their rank is as follows: 1-
red, 2-green, 3-blue, 4-yellow, 5-magenda. One can easily observe
that when considering only the magnitude in still background
omnidirectional video, the most salient location is determined
mainly from the color opponency even a motion is available in
the scene. Throughout the sequence, it is the red object that is con-
stantly the most salient location. When a motion appears Fig. 6c¢, it
determines the second spot in the corresponding frame but imme-
diately afterwards none of the two motions determine any saliency
(Fig. 6e and g). On another hand, when the spherical motion con-
trast in phase is considered, the most salient object is the walking
person Fig. 6d and it remains as such in the following frames where
there is a motion Fig. 6f and h. Even-though the rank of the atten-
tion spots changes in (h), the motion remains dominant. In conclu-
sion, what concerns still background spherical image sequences,
the motion phase highly influences the final saliency on the sphere.

The second experiment is carried out on moving background
omnidirectional video. The sequence is obtained while the sensor
is placed on a moving table. In the same time, there is a walking
person who moves in parallel to the table. The same reasoning
for computing the spherical motion conspicuity is considered, i.e.

the motion magnitude and phase are examined separately. Again,
the unwrapped spherical version is shown on Fig. 7 with the first
five spots of attention. In this figure on the left, the magnitude is
considered while on the right - only the phase is used for comput-
ing the spherical motion cue.

It is interesting to note that in this case, when the motion con-
trast in magnitude is considered, the face of the person is always
detected as salient even with a different rank (Fig. 7a, ¢, e and g)
while this is not the case when only the spherical motion phase
is used. On the other hand, the majority of the spots are in the
background when the contrast is in the phase (Fig. 7b, d, f and h).

5.2. Spherical versus euclidean dynamic visual attention

In this section we perform a simple experiment using the "car”
omnidirectional sequence of spherical images. In Fig. 8 are shown
the spots of attention as detected by the spherical VA algorithm
and present them in their unwrapped version, where ¢ € [0,2m)
is at the horizontal axis and 0 € [0, 7] is at the vertical axis. Let us
remind that the beginning and the end of the vertical axis corre-
spond to the North and the South pole of the sphere, respectively.
Frames 6, 8, 10, 12, 14 are shown with the corresponding first three
spots of attention detected by applying the VA in spherical coordi-
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(e)

(f)

Fig. 5. Spots of attention in some of the frames in the spherical image sequence: (a) frame 6; (b) frame 8; (c) frame 10; (d) frame 12; (e) frame 14 and (f) frame 16. The most
salient object in this image sequence is given in red. The motion is dominant in determining the dynamic spherical saliency.

nates. The spots look distorted in this unwrapped version while
they represent a disk. For instance, the red spot tends to a line
while in spherical coordinates it is a disk approaching the sphere’s
pole. We can see, that as expected, the car is detected as the most
salient object (in red) along the sequence while moving even when
it is passing through the north pole of the sphere (Fig. 8c-e). After
the car stops, the most salient spot is the red chair (Fig. 8f). In fact,

when there are no moving objects in the scene, the static spherical
saliency map is dominant in the context of computing the final
spherical saliency map.

Let us now, consider the unwrapped spherical image as if it
were an Euclidean one and apply on it the Euclidean dynamic vi-
sual attention model. The Euclidean motion cue is obtained using
both the magnitude and phase of the motion vector. The motion
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(g) (h)

Fig. 6. Spots of attention in still-background omnidirectional video. For computing
the spherical motion conspicuity, only the magnitude (on the left) and only the
phase (on the right) is considered.

is detected using block-matching algorithm as well. The obtained
results are depicted in Fig. 9.

In fact, the car is completely distorted while passing through
the north pole. Here, we refer to a distortion, as any deformation
in the scene resulting from unwrapping of the spherical image.
Such distortion would persist even in the case of mapping any
omnidirectional image to a cylinder, i.e. creating a panoramic ver-
sion of the omnidirectional image. Even-though, the car is the only

(g) (h)

Fig. 7. Spots of attention in moving background omnidirectional video. Left: motion
magnitude. Right: spherical motion phase.

moving object in the scene it is detected as the most salient loca-
tion only in frame 6 (a) and partly in frame 12 (d). While it is com-
pletely distorted on the north pole, it is not perceived as a unique
object from Euclidean point of view and this is the main reason it is
not detected as salient object at all.

In conclusion, through this experiment we have demonstrated
that the dynamic spherical VA algorithm performs better in omni-
directional images compared to the standard (Euclidean) VA
algorithm.
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Fig. 8. Euclidean versus spherical dynamic VA: the spots of attention are detected using the VA on the sphere and the first three detected objects are shown. While moving
even through the north pole of the sphere, the car is the most salient object in this sequence. In the last frame (f), the most salient object is a red chair since the car is not
moving anymore.

Fig. 9. Euclidean versus spherical dynamic VA: the Euclidean VA algorithm is applied on the unwrapped omnidirectional sequence. The first three most salient locations are
shown and ranked. Even the car is the only moving object in the scene it is detected as the most salient location only in frame 6 (a) and partly in frame 12 (d).
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6. Conclusions

In this paper we have proposed an algorithm for computing the
spherical motion conspicuity map. It is based on extracting the mo-
tion vector between two consecutive spherical images where block
matching in spherical coordinates is performed. Then, the dynamic
spherical saliency map has been computed using the motion conspi-
cuity map. The dynamic saliency map on the sphere is obtained by
fusing together the static and motion spherical saliency maps. Fur-
thermore, this algorithm has been applied on a real sequence of
spherical images and the spots of attention based on the final spher-
ical saliency map have been detected. The spherical motion magni-
tude and phase have been examined separately while using
spherical video with still and moving background. Finally, a compar-
ison of the dynamic spherical spots detection versus the Euclidean
spots detection has been done and thus the advantages of the dy-
namic VA on the sphere against the Euclidean dynamic VA have been
confirmed. Furthermore, the proposed algorithm is universal in
omnidirectional image sense because it can be applied on different
kind of such images once they have been mapped on the sphere.
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