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ABSTRACT

Some forms of novel visual media enable the viewer to explore a 3D scene from
essentially arbitrary viewpoints, by interpolating between a discrete set of original
views. Compared to 2D imagery, these types of applications require much larger
amounts of storage space, which we seek to reduce. Existing approaches for com-
pressing 3D scenes are based on a separation of compression and rendering: each
of the original views is compressed using traditional 2D image formats; the re-
ceiver decompresses the views and then performs the rendering. We unify these
steps by directly compressing an implicit representation of the scene, a function
that maps spatial coordinates to a radiance vector field, which can then be queried
to render arbitrary viewpoints. The function is implemented as a neural network
and jointly trained for reconstruction as well as compressibility, in an end-to-end
manner, with the use of an entropy penalty on the parameters. Our method signif-
icantly outperforms a state-of-the-art conventional approach for scene compres-
sion, achieving simultaneously higher quality reconstructions and lower bitrates.
Furthermore, we show that the performance at lower bitrates can be improved by
jointly representing multiple scenes using a soft form of parameter sharing.

1 INTRODUCTION

The ability to render 3D scenes from arbitrary viewpoints can be seen as a big step in the evolution
of digital multimedia, and has applications such as mixed reality media, graphic effects, design, and
simulations. Often such renderings are based on a number of high resolution images taken of some
original scene, and it is clear that to enable many applications, the data will need to be stored and
transmitted efficiently over low-bandwidth channels (e.g., to a mobile phone for augmented reality).

Traditionally, the need to compress this data is viewed as a separate need from rendering. For exam-
ple, light field images (LFI) consist of a set of images taken from multiple viewpoints. To compress
the original views, often standard video compression methods such as HEVC (Sullivan et al., 2012)
are repurposed (Jiang et al., 2017; Barina et al., 2019). Since the range of views is narrow, light field
images can be effectively reconstructed by “blending” a smaller set of representative views (Astola
& Tabus, 2018; Jiang et al., 2017; Zhao et al., 2018; Bakir et al., 2018; Jia et al., 2019). Blending
based approaches, however, may not be suitable for the more general case of arbitrary-viewpoint 3D
scenes, where a very diverse set of original views may increase the severity of occlusions, and thus
would require storage of a prohibitively large number of views to be effective.

A promising avenue for representing more complete 3D scenes is through neural representation
functions, which have shown a remarkable improvement in rendering quality (Mildenhall et al.,
2020; Sitzmann et al., 2019; Liu et al., 2020; Schwarz et al., 2020). In such approaches, views
from a scene are rendered by evaluating the representation function at sampled spatial coordinates
and then applying a differentiable rendering process. Such methods are often referred to as implicit
representations, since they do not specify explicitly the surface locations and properties within the
scene, which would be required to apply some conventional rendering techniques like rasterization
(Akenine-Möller et al., 2019). However, finding the representation function for a given scene re-
quires training a neural network. This makes this class of methods difficult to use as a rendering
method in the existing framework, since it is computationally infeasible on a low-powered end de-
vice like a mobile phone, which are often on the receiving side. Due to the data processing inequality,
it may also be inefficient to compress the original views (the training data) rather than the trained
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Figure 1: Overview of cNeRF. The sender trains an entropy penalized neural representation function
on a set of views from a scene, minimizing a combination of rate and distortion. The receiver can
use the compressed model to render novel views.

representation itself, because the training process may discard some information that is ultimately
not necessary for rendering (such as redundancy in the original views, noise, etc.).

In this work, we propose to apply neural representation functions to the scene compression problem
by compressing the representation function itself. We use the NeRF model (Mildenhall et al., 2020),
a method which has demonstrated the ability to produce high-quality renders of novel views, as
our representation function. To reduce redundancy of information in the model, we build upon the
model compression approach of Oktay et al. (2020), applying an entropy penalty to the set of discrete
reparameterized neural network weights. The compressed NeRF (cNeRF) describes a radiance field,
which is used in conjunction with a differentiable neural renderer to obtain novel views (see Fig. 1).
To verify the proposed method, we construct a strong baseline method based on the approaches seen
in the field of light field image compression. cNeRF consistently outperforms the baseline method,
producing simultaneously superior renders and lower bitrates. We further show that cNeRF can be
improved in the low bitrate regime when compressing multiple scenes at once. To achieve this,
we introduce a novel parameterization which shares parameters across models and optimize jointly
across scenes.

2 BACKGROUND

We define a multi-view image dataset as a set of tuplesD = {(Vn, Xn)}Nn=1, where Vn is the camera
pose and Xn is the corresponding image from this pose. We refer to the 3D ground truth that the
views capture as the scene. In what follows, we first provide a brief review of the neural rendering
and the model compression approaches that we build upon while introducing the necessary notation.

Neural Radiance Fields (NeRF) The neural rendering approach of Mildenhall et al. (2020) uses
a neural network to model a radiance field. The radiance field itself is a learned function gθ :
R5 → (R3,R+), mapping a 3D spatial coordinate and a 2D viewing direction to a RGB value and
a corresponding density element. To render a view, the RGB values are sampled along the relevant
rays and accumulated according to their density elements. The learned radiance field mapping gθ is
parameterized with two multilayer perceptrons (MLPs), which Mildenhall et al. (2020) refer to as
the “coarse” and “fine” networks, with parameters θc and θf respectively. The input locations to the
coarse network are obtained by sampling regularly along the rays, whereas the input locations to the
fine network are sampled conditioned on the radiance field of the coarse network. The networks are
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trained by minimizing the distance from their renderings to the ground truth image:

L =
N∑
n=1

∥∥X̂c
n(θc;Vn)−Xn

∥∥2

2︸ ︷︷ ︸
Lc(θc)

+
N∑
n=1

∥∥X̂f
n(θf ;Vn, θc)−Xn

∥∥2

2︸ ︷︷ ︸
Lf (θf ; θc)

(1)

Where || · ||2 is the Euclidean norm and the X̂n are the rendered views. Note that the rendered view
from the fine network X̂f

n relies on both the camera pose Vn and the coarse network to determine
the spatial locations to query the radiance field. We drop the explicit dependence of Lf on θc in the
rest of the paper to avoid cluttering the notation. During training, we render only a minibatch of
pixels rather than the full image. We give a more detailed description of the NeRF model and the
rendering process in Appendix Sec. A.

Model Compression through Entropy Penalized Reparameterization The model compression
work of Oktay et al. (2020) reparameterizes the model weights Θ into a latent space as Φ. The
latent weights are decoded by a learned function F , i.e. Θ = F(Φ). The latent weights Φ are
modeled as samples from a learned prior q, such that they can be entropy coded according to this
prior. To minimize the rate, i.e. length of the bit string resulting from entropy coding these latent
weights, a differentiable approximation of the self-information I(φ) = − log2(q(φ)) of the latent
weights is penalized. The continuous Φ are quantized before being applied in the model, with
the straight-through estimator (Bengio et al., 2013) used to obtain surrogate gradients of the loss
function. Following Ballé et al. (2017), uniform noise is added when learning the continuous prior
q(φ + u) where ui ∼ U(− 1

2 ,
1
2 ) ∀ i. This uniform noise is a stand-in for the quantization, and

results in a good approximation for the self-information through the negative log-likelihood of the
noised continuous latent weights. After training, the quantized weights Φ̃ are obtained by rounding,
Φ̃ = bΦe, and transmitted along with discrete probability tables obtained by integrating the density
over the quantization intervals. The continuous weights Φ and any parameters in q itself can then be
discarded.

3 METHOD

To achieve a compressed representation of a scene, we propose to compress the neural scene repre-
sentation function itself. In this paper we use the NeRF model as our representation function. To
compress the NeRF model, we build upon the model compression approach of Oktay et al. (2020)
and jointly train for rendering as well as compression in an end-to-end trainable manner. We subse-
quently refer to this approach as cNeRF. The full objective that we seek to minimize is:

L(Φ,Ψ) = Lc(Fc(Φ̃c)) + Lf (Ff (Φ̃f ))︸ ︷︷ ︸
Distortion

+λ
∑

φ∈Φ
I(φ)︸ ︷︷ ︸

Rate

(2)

where Ψ denotes the parameters of F as well any parameters in the prior distribution q, and we
have explicitly split Φ into the coarse Φc and fine Φf components such that Φ = {Φc,Φf}. λ is
a trade-off parameter that balances between rate and distortion. A rate–distortion (RD) plot can be
traced by varying λ to explore the performance of the compressed model at different bitrates.

Compressing a single scene When training cNeRF to render a single scene, we have to choose
how to parameterize and structure F and the prior distribution q over the network weights. Since
the networks are MLPs, the model parameters for a layer l consist of the kernel weights and biases
{Wl, bl}. We compress only the kernel weights Wl, leaving the bias uncompressed since it is much
smaller in size. The quantized kernel weights W̃l are mapped to the model weights by Fl, i.e.
Wl = Fl(W̃l). Fl is constructed as an affine scalar transformation, which is applied elementwise to
W̃l:

Fl(W̃l,ij) = αlW̃l,ij + βl (3)
We take the prior to be factored over the layers, such that we learn a prior per linear kernel ql. Within
each kernel, we take the weights in W̃l to be i.i.d. from the univariate distribution ql, parameterized
by a small MLP, as per the approach of Ballé et al. (2017). Note that the parameters of this MLP
can be discarded after training (once the probability mass functions have been built).
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Ground truth 32 bits per parameter 4.38 bpp 0.99 bpp

Ground truth 32 bits per parameter 6.13 bpp 1.09 bpp

Lego

Fern

Figure 2: Renderings of the synthetic Lego scene and real Fern scene from the uncompressed NeRF
model, at 32 bits per parameter (bpp), and from cNeRF with λ ∈ {0.0001, 0.01}.

Compressing multiple scenes While the original NeRF model is trained for a single scene, we
hypothesize that better rate–distortion performance can be achieved for multiple scenes, especially
if they share information, by training a joint model. For a dataset of M scenes, we parameterize the
kernel weights of model m, layer l as:

Wm
l = Fml (W̃m

l , S̃l)

= αml W̃
m
l + βml + γlS̃l (4)

Compared to Eqn. 3, we have added a shift, parameterized as a scalar linear transformation of a
discrete shift S̃l , that is shared across all models m ∈ {1, ...,M}. S̃l has the same dimensions
as the kernel Wm

l , and as with the discrete latent kernels, S̃l is coded by a learned probability
distribution. The objective for the multi-scene model becomes:

L(Φ,Ψ) =
M∑
m=1

[
Lmc (Fmc (Φ̃mc , Φ̃

s
c)) + Lmf (Fmf (Φ̃mf , Φ̃

s
f )) + λ

∑
φ∈Φm

I(φ)

]
+ λ

∑
φ∈Φs

I(φ) (5)

where Φs is the set of all discrete shift S̃ parameters, and the losses, latent weights and affine
transforms are indexed by scene and model m. Note that this parameterization has more parameters
than the total of the M single scene models, which at first appears counter-intuitive, since we wish
to reduce the overall model size. It is constructed as such so that the multi-scene parameterization
contains the M single scene parameterizations - they can be recovered by setting the shared shifts to
zero. If the shifts are set to zero then their associated probability distributions can collapse to place
all their mass at zero. So we expect that if there is little benefit to using the shared shifts then they
can be effectively ignored, but if there is a benefit to using them then they can be utilized. As such,
we can interpret this parameterization as inducing a soft form of parameter sharing.
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Figure 3: A comparison of four (zoomed in) renderings from cNeRF with λ = 0.0001 and HEVC
+ LLFF with QP=30. HEVC + LLFF shows obvious artifacts such as ghosting around edges and an
overall less crisp rendering.

4 EXPERIMENTS

Datasets To demonstrate the effectiveness of our method, we evaluate on two sets of scenes used
by Mildenhall et al. (2020):

• Synthetic. Consisting of 800× 800 pixel2 views taken from either the upper hemisphere or
entire sphere around an object rendered using the Blender software package. There are 100
views taken to be in the train set and 200 in the test set.

• Real. Consisting of a set of forward facing 1008 × 756 pixel2 photos of a complex scene.
The number of images varies per scene, with 1/8 of the images taken as the test images.

Since we are interested in the ability of the receiver to render novel views, all distortion results (for
any choice of perceptual metric) presented are given on the test sets.

Architecture and Optimization We maintain the same architecture for the NeRF model as Milden-
hall et al. (2020), consisting of 13 linear layers and ReLU activations. For cNeRF we use Adam
(Kingma & Ba, 2015) to optimize the latent weights Φ and the weights contained in the decoding
functions F . For these parameters we use initial learning rate of 5× 10−4 and a learning rate decay
over the course of learning, as per Mildenhall et al. (2020). For the parameters of the learned prob-
ability distributions q, we find it beneficial to use a lower learning rate of 5 × 10−5, such that the
distributions do not collapse prematurely. We initialize the latent linear kernels using the scheme of
Glorot & Bengio (2010), the decoders F near the identity.

Baseline We follow the general methodology exhibited in light field compression and take the
compressed representation of the scene to be a compressed subset of the views. The receiver then
decodes these views, and renders novel views conditioned on the reconstructed subset. We use the
video codec HEVC to compress the subset of views, as is done by Jiang et al. (2017). To render
novel views conditioned on the reconstructed set of views, we choose the Local Light Field Fusion
(LLFF) approach of Mildenhall et al. (2019). LLFF is a state-of-the-art learned approach in which
a novel view is rendered by promoting nearby views to multiplane images, which are then blended.
We refer to the full baseline subsequently as HEVC + LLFF.

4.1 RESULTS

Single scene compression To explore the frontier of achievable rate–distortion points for cNeRF,
we evaluate at a range of entropy weights λ for four scenes – two synthetic (Lego and Ficus) and
two real (Fern and Room). To explore the rate–distortion frontier for the HEVC + LLFF baseline
we evaluate at a range of QP values for HEVC. We give a more thorough description of the exact
specifications of the HEVC + LLFF baseline and the ablations we perform to select the hyperpa-
rameter values in Appendix Sec. B. We show the results in Fig. 4. We also plot the performance of
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Figure 4: Rate–distortion curves for both the cNeRF and HEVC + LLFF approaches, on two real
(left) and two synthetic (right) scenes. We truncate the curves for HEVC + LLFF, since increasing
the bitrate further does not improve PSNR. See Fig. 7 for the full curves.

NeRF cNeRF (λ = 1e−4) HEVC + LLFF (QP=30)
Scene PSNR PSNR Size (KB) Reduction PSNR Size (KB)
Chair 33.51 32.28 621 8.32× 24.38 5,778
Drums 24.85 24.85 870 5.94× 20.25 5,985
Ficus 30.58 30.35 701 7.37× 21.49 3,678
Hotdog 35.82 34.95 916 5.65× 30.18 2,767
Lego 32.61 31.98 707 7.31× 23.92 4,665
Materials 29.71 29.17 670 7.71× 22.49 3,134
Mic 33.68 32.11 560 9.23× 28.95 3,032
Ship 28.51 28.24 717 7.21× 24.95 5,881
Room 31.06 30.65 739 7.00× 26.27 886
Fern 25.23 25.17 990 5.22× 22.16 2,066
Leaves 21.10 20.95 1,154 4.48× 18.15 3,162
Fortress 31.65 31.15 818 6.32× 26.57 1,149
Orchids 20.18 20.09 1,218 4.24× 17.87 2,357
Flower 27.42 27.21 938 5.51× 23.46 1,009
T-Rex 27.24 26.72 990 5.22× 22.30 1,933
Horns 27.80 27.28 995 5.20× 20.71 2,002

Table 1: Results comparing the uncompressed NeRF model,cNeRF and HEVC + LLFF baseline.
We pick λ and QP to give a reasonable trade-off between bitrate and PSNR. The reduction column
is the reduction in the size of cNeRF as compared to the uncompressed NeRF model, which has a
size of 5,169KB. Note that for all scenes, cNeRF achieves both a higher PSNR and a lower bitrate
than HEVC + LLFF.

the uncompressed NeRF model – demonstrating that by using entropy penalization the model size
can be reduced substantially with a relatively small increase in distortion. For these scenes we plot
renderings at varying levels of compression in Fig. 2 and Fig. 8. The visual quality of the renderings
does not noticeably degrade when compressing the NeRF model down to bitrates of roughly 5-6 bits
per parameter (the precise bitrate depends on the scene). At roughly 1 bit per parameter, the visual
quality has degraded significantly, although the renderings are still sensible and easily recognisable.
We find this to be a surprising positive result, given that assigning a single bit per parameter is ex-
tremely restrictive for such a complex regression task as rendering. Indeed, to our knowledge no
binary neural networks have been demonstrated to be effective on such tasks.

Although the decoding functions F (Eqn. 3) are just relatively simple scalar affine transformations,
we do not find any benefit to using more complex decoding functions. With the parameterization
given, most of the total description length of the model is in the coded latent weights, not the param-
eters of the decoders or entropy models. We give a full breakdown in Tab. 5.

Fig. 4 shows that cNeRF clearly outperforms the HEVC + LLFF baseline, always achieving lower
distortions at a (roughly) equivalent bitrate. Reconstruction quality is reported as peak signal-to-
noise ratios (PSNR). The results are consistent with earlier demonstrations that NeRF produces
much better renderings than the LLFF model (Mildenhall et al., 2020). However, it is still interesting
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Figure 5: Rate–distortion curves for comparing the multi-scene model with a single shared shift to
the single scene models. The models are shown for two synthetic (left) and two real scenes (right).

to see that this difference persists even at much lower bitrates. To evaluate on the remaining scenes,
we select a single λ value for cNeRF and QP value for HEVC + LLFF. We pick the values to
demonstrate a reasonable trade-off between rate and distortion. The results are shown in Tab. 1.
For every scene the evaluated approaches verify that cNeRF achieves a lower distortion at a lower
bitrate. We can see also that cNeRF is consistently able to reduce the model size significantly
without seriously impacting the distortion. Further, we evaluate the performance of cNeRF and
HEVC + LLFF for other perceptual quality metrics in Tab. 3 and 4. Although cNeRF is trained to
minimize the squared error between renderings and the true images (and therefore maximize PSNR),
cNeRF also outperforms HEVC + LLFF in both MS-SSIM (Wang et al., 2003) and LPIPS (Zhang
et al., 2018). This is significant, since the results of Mildenhall et al. (2020) indicated that for SSIM
and LPIPS, the LLFF model had a similar performance to NeRF when applied to the real scenes.
We display a comparison of renderings from cNeRF and HEVC + LLFF in Fig. 3.

Multi-scene compression For the multi-scene case we compress one pair of synthetic scenes and
one pair of real scenes. We train the multi-scene cNeRF using a single shared shift per linear kernel,
as per Eqn. 4. To compare the results to the single scene models, we take the two corresponding
single scene cNeRFs, sum the sizes and average the distortions. We plot the resulting rate–distortion
frontiers in Fig. 5. The results demonstrate that the multi-scene cNeRF improves upon the single
scene cNeRFs at low bitrates, achieving higher PSNR values with a smaller model. This meets
our expectation, since the multi-scene cNeRF can share parameters via the shifts (Eqn. 4) and so
decrease the code length of the scene-specific parameters. At higher bitrates we see no benefit to
using the multi-scene parameterization, and in fact see slightly worse performance. This indicates
that in the unconstrained rate setting, there is no benefit to using the shared shifts, and that they may
slightly harm optimization.

5 RELATED WORK

Scene Compression A 3D scene is typically represented as a set of images, one for each view. For
a large number of views, compressing each image individually using a conventional compression
method can require a large amount of space. As a result, there is a body of compression research
which aims to exploit the underlying scene structure of the 3D scene to reduce space requirements.
A lot of research has been focused on compressing light field image (LFI) data (Astola & Tabus,
2018; Jiang et al., 2017; Bakir et al., 2018; Jia et al., 2019; Zhao et al., 2018). LFI data gener-
ally consists of multiple views with small angular distances separating them. This set of views can
be used to reconstruct a signal on the 4D domain of rays of the light field itself, thus permitting
post-processing tasks such as novel view synthesis and refocusing. A majority of works select a
representative subset of views to transmit from the scene. These are compressed and transmitted,
typically using a video codec, with the receiver decoding these images and then rendering any novel
view for an unobserved (during training) camera pose. Reconstruction for novel camera poses can
be performed using traditional methods, such as optical flow (Jiang et al., 2017), or by using recent
learned methods that employ convolutional neural networks (Zhao et al., 2018) and generative ad-
versarial networks (Jia et al., 2019). A contrasting approach to multi-view image compression is
proposed by Liu et al. (2019), in which a pair of images from two viewpoints is compressed by con-
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ditioning the coder of the second image on the coder of the first image. It is important to emphasise
that we are not studying this kind of approach in this work, since we wish the receiver to have the
ability to render novel views.

Neural Rendering is an emerging research area which combines learned components with render-
ing knowledge from computer graphics. Recent work has shown that neural rendering techniques
can generate high quality novel views of a wide range of scenes (Mildenhall et al., 2020; Sitzmann
et al., 2019; Liu et al., 2020; Schwarz et al., 2020). In this work we build upon the method of Milden-
hall et al. (2020), coined as a Neural Radiance Field (NeRF), for single scene compression and then
extend it with a novel reparameterization for jointly compressing multiple scenes. Training neural
representation networks jointly across different scenes (without compression) has been explored by
Sitzmann et al. (2019) and Liu et al. (2020), who use a hypernetwork (Ha et al., 2017) to map a
latent vector associated with each scene to the parameters of the representation network. Liu et al.
(2020) note that the hypernetwork approach results in significant degradation of performance when
applied to the NeRF model (a loss of more than 4 dB PSNR). In contrast, our approach of shared
reparameterization is significantly different from these methods.

Model Compression There is a body of research for reducing the space requirements of deep neural
networks. Pruning tries to find a sparse set of weights by successively removing a subset of weights
according to some criterion (Han et al., 2016; Li et al., 2017). Quantization reduces the precision
used to describe the weights themselves (Courbariaux et al., 2016; Li et al., 2016). In this work we
focus instead on weight coding approaches (Havasi et al., 2019; Oktay et al., 2020) that code the
model parameters to yield a compressed representation.

6 DISCUSSION AND CONCLUSION

Our results demonstrate that cNeRF produces far better results as a compressed representation than
a state-of-the-art baseline, HEVC+LLFF, which follows the paradigm of compressing the original
views. In contrast, our method compresses a representation of the radiance field itself. This is
important for two reasons:

• Practically, compressing the views themselves bars the receiver from using more complex
and better-performing rendering methods such as NeRF, because doing this would require
training to be performed at the receiving side after decompression, which is computation-
ally infeasible in many applications.
• Determining the radiance field and compressing it on the sending side may have coding

and/or representational benefits, because of the data processing inequality: the cNeRF pa-
rameters are a function of the original views, and as such must contain equal to or less
information than the original views (the training data). The method is thus relieved of the
need to encode information in the original views that is not useful for the rendering task.

It is difficult to gather direct evidence for the latter point, as the actual entropy of both representations
is difficult to measure (we can only upper bound it by the compressed size). However, the substantial
performance improvement of our method compared to HEVC+LLFF suggests that the radiance field
is a more economical representation for the scene.

Linked to our choice is also the fact that we adopt a more realistic evaluation methodology than
many scene compression techniques. Rather reporting the bitrate and reconstruction quality of the
original views, we evaluate our method (and the baseline) by reporting the reconstruction quality of
a held-out set of views of each scene, which was not used for training. Since in a free-viewpoint
scenario, the vast majority of rendered views will not correspond to one of the original ones, we
believe this more accurately measures success of the compared methods.

The encoding time for cNeRF is long, given that a new scene must be trained from scratch. Impor-
tantly though, the decoding time is much less, as it is only required to render the views using the
decompressed NeRF model. cNeRF enables neural scene rendering methods such as NeRF to be
used for scene compression, as it shifts the complexity requirements from the receiver to the sender.
In many applications, it is more acceptable to incur high encoding times than high decoding times,
as one compressed data point may be decompressed many times, allowing amortization of the en-
coding time, and since power-constrained devices are often at the receiving side. Thus, our method
represents a big step towards enabling neural scene rendering in practical applications.
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A NEURAL RADIANCE FIELDS

The neural rendering approach of Mildenhall et al. (2020) uses a neural network to model a radiance
field. The radiance field itself is a learned mapping gθ : R5 → (R3,R+), where the input is a 3D
spatial coordinate p = (x, y, z) ∈ R3 and a 2D viewing direction d = (θ, φ) ∈ R2. The NeRF
model also makes use of a positional encoding into the frequency domain, applied elementwise to
spatial and directional inputs

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)) (6)
This type of encoding has been shown to be important for implicit models, which take as input low
dimensional data which contains high frequency information (Tancik et al., 2020; Sitzmann et al.,
2020).

The network output is an RGB value c = (r, g, b) ∈ R3 and a density element σ ∈ R+. To render a
particular view, the RGB values are sampled along the relevant rays and accumulated according to
their density elements. In particular, the color c(r) of a ray r = {o + td : t ≥ 0}, in direction d
from the camera origin o, is computed as

c(r) =
K∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp
(
−
∑i−1
j=1 σjδj

)
, (7)

where (ci, σi) is the output of the mapping evaluated at (pi,d), where pi = o+tid, ti is the distance
of sample i from the origin along the ray, and δi = ti+1 − ti is the distance between samples. The
color c(r) can be interpreted as the expected color of the point along the ray in the scene closest to
the camera, if the points in the scene are distributed along the ray according to an inhomogeneous
Poisson process. Since in a Poisson process with density σi, the probability that there are no points
in an interval of length δi is exp(−σiδi). Thus Ti is the probability that there are no points between
t1 and ti, and (1 − exp(−σiδi)) is the probability that there is a point between ti and ti+1. The
rendered view X̂ comprises pixels whose colors c(r) are evaluated at rays emanating from the same
camera origin o but having slightly different directions d, depending on the camera pose V .

B HEVC + LLFF SPECIFICATION AND ABLATIONS

There are many hyperparameters to select for the HEVC + LLFF baseline. The first we consider
is the number of images to compress with HEVC. If too many images are compressed with HEVC
then at some point the performance of LLFF will saturate and an unnecessary amount of space will
be used. On the other hand, if too few images are compressed with HEVC, then LLFF will find it
difficult to blend these (de)compressed images to form high quality renders. To illustrate this effect,
we run an ablation on the Fern scene where we vary the number of images we compress with HEVC,
rendering a held out set of images conditioned on the reconstructions. The results are displayed in
Fig. 6. We can clearly see the saturation point at around 10 images, beyond which there is no benefit
to compressing extra images. Thus when picking the number of images to compress for new scenes,
we do not use more than 4 per test image (which corresponds to compressing 12 images in our
ablation).

The second effect we study is the order in which images are compressed with HEVC, which affects
the performance as HEVC is a video codec and thus sensitive to image ordering. It stands to reason
that the more the sequence of images resemble a natural video, the better coding will be. As such,
we consider two orderings: firstly the “snake scan” ordering, in which images are ordered vertically
by their camera pose, going alternately left to right then right to left. The second is the “lozenge”
ordering (Jiang et al., 2017), in which images are ordered by the camera pose in a spiral outwards
from their centre. Both orderings appear sensible since they always step from a given camera pose to
an adjacent pose. We compare results compressing and reconstructing a set of images using HEVC
across a range of Quantization Parameter (QP) values for the Fern scene in Tab. 2. The difference
between the two orderings is very small. Since snake scan is simpler to implement, we use this in
all our experiments.

The effect of changing QP is demonstrated in Fig. 7, and we select QP=30 for the experiments in
which we choose one rate–distortion point to evaluate, since it achieves almost the same performance
as QP=20 and QP=10 with considerably less space.

11



Under review as a conference paper at ICLR 2021

6 8 10 12 14 16
Number images compressed with HEVC

20

21

22

23

PS
N

R

Figure 6: Test performance of the HEVC + LLFF baseline across different number of images com-
pressed with HEVC. The decompressed images are used by LLFF to reconstruct the test views.
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Figure 7: Full rate–distortion curves for HEVC + LLFF, with labels showing the effect of the QP
parameter. To avoid clutter, only the Lego QP labels are given, and the other scenes are similarly
ordered from QP=10 on the right to QP=50 on the left.

C EXTRA RESULTS

Here we present some further results from our experiments, including results on different perception
metrics, a breakdown of the cNeRF model size and extra comparisons of renderings.
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QP Snake scan Lozenge
10 50.9 50.8
20 42.5 42.4
30 33.9 33.8
40 26.7 26.8
50 22.6 22.5

Table 2: PSNR values from compressing and reconstructing a set of images from the Fern scene,
with two different orderings on the images.

cNeRF (λ = 1e−4) HEVC + LLFF (QP=30)
Scene PSNR(Y) PSNR(UV) PSNR(Y) PSNR(UV)
Chair 36.64 45.21 33.41 42.46
Drums 26.68 37.17 21.72 34.72
Ficus 31.77 43.50 24.05 37.00
Hotdog 36.31 42.70 31.98 41.62
Lego 29.89 40.56 24.94 35.92
Materials 26.82 38.53 16.23 35.04
Mic 33.36 48.02 29.87 48.64
Ship 28.27 38.46 26.48 38.48
Room 32.59 44.94 27.05 42.50
Fern 25.16 40.33 22.15 38.06
Leaves 21.17 36.09 18.43 34.52
Fortress 31.60 44.70 27.31 41.67
Orchids 20.43 34.65 18.17 32.11
Flower 27.91 38.25 24.27 33.90
T-Rex 26.77 42.64 22.42 40.07
Horns 27.68 42.65 22.57 40.13

Table 3: PSNR values comparing cNeRF to HEVC + LLFF. The images are rendered in the YUV
color encoding and the PSNR is computed in the Y channel and average of the UV channels. cNeRF
is superior to HEVC + LLFF in PSNR(Y) and PSNR(UV) for all scenes except PSNR(UV) for Mic
and Ship. Note that the bitrates are the same as for Tab. 1.

cNeRF (λ = 1e−4) HEVC + LLFF (QP=30)
Scene MS-SSIM(Y) MS-SSIM(RGB) LPIPS MS-SSIM(Y) MS-SSIM(RGB) LPIPS
Chair 0.997 0.997 0.014 0.989 0.989 0.026
Drums 0.953 0.952 0.070 0.910 0.909 0.109
Ficus 0.986 0.986 0.023 0.925 0.924 0.069
Hotdog 0.992 0.990 0.041 0.983 0.981 0.070
Lego 0.983 0.980 0.034 0.951 0.945 0.080
Materials 0.971 0.970 0.047 0.833 0.832 0.172
Mic 0.992 0.992 0.022 0.988 0.988 0.026
Ship 0.891 0.889 0.201 0.879 0.883 0.174
Room 0.979 0.977 0.087 0.950 0.948 0.168
Fern 0.934 0.932 0.187 0.862 0.862 0.239
Leaves 0.909 0.905 0.204 0.843 0.842 0.244
Fortress 0.966 0.962 0.090 0.918 0.914 0.165
Orchids 0.852 0.849 0.220 0.720 0.721 0.320
Flower 0.945 0.941 0.138 0.911 0.906 0.171
T-Rex 0.962 0.961 0.101 0.905 0.903 0.182
Horns 0.953 0.951 0.169 0.886 0.884 0.238

Table 4: MS-SSIM and LPIPS values comparing cNeRF to HEVC + LLFF. MS-SSIM is given in
both the Y channel (from the YUV color encoding) and RGB. LPIPS is given for RGB, as it is only
defined for such. In all cases, cNeRF is superior to HEVC + LLFF in MS-SSIM and LPIPS. Note
that the bitrates are the same as for Tab. 1
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Entropy weight λ Rate (KB) Overhead (KB)
1× 10−2 119 23
1× 10−3 293 27
1× 10−4 673 34
1× 10−5 1061 42

Table 5: Breakdown of the cNeRF size across four entropy weights trained on the Lego scene. The
size is divided into the size of the coded latent weights (the rate) and everything else (the overhead).
The overhead consists of description lengths of the probability built from the prior q, the parameters
of the decoding functions F and any bias parameters.

Ground truth 32 bits per parameter 6.64 bpp 1.83 bpp

Ground truth 32 bits per parameter 4.57 bpp 1.15 bpp

Ficus

Room

Figure 8: Renderings of the synthetic Ficus scene and real Room scene from the uncompressed
NeRF model, at 32 bits per parameter (bpp), and from cNeRF with λ ∈ {0.0001, 0.01}.
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