arXiv:2111.12077v2 [cs.CV] 24 Nov 2021

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Jonathan T. Barron!

!Google Research

Abstract

Though neural radiance fields (NeRF) have demon-
strated impressive view synthesis results on objects and
small bounded regions of space, they struggle on “un-
bounded” scenes, where the camera may point in any di-
rection and content may exist at any distance. In this set-
ting, existing NeRF-like models often produce blurry or
low-resolution renderings (due to the unbalanced detail and
scale of nearby and distant objects), are slow to train, and
may exhibit artifacts due to the inherent ambiguity of the
task of reconstructing a large scene from a small set of
images. We present an extension of mip-NeRF (a NeRF
variant that addresses sampling and aliasing) that uses a
non-linear scene parameterization, online distillation, and
a novel distortion-based regularizer to overcome the chal-
lenges presented by unbounded scenes. Our model, which
we dub “mip-NeRF 360 as we target scenes in which the
camera rotates 360 degrees around a point, reduces mean-
squared error by 54% compared to mip-NeRF, and is able to
produce realistic synthesized views and detailed depth maps
for highly intricate, unbounded real-world scenes.

Neural Radiance Fields (NeRF) synthesize highly realis-
tic renderings of scenes by encoding the volumetric density
and color of a scene within the weights of a coordinate-
based multi-layer perceptron (MLP). This approach has
enabled significant progress towards photorealistic view
synthesis [30]. However, NeRF models the input to the
MLP using infinitesimally small 3D points along a ray,
which causes aliasing when rendering views of varying res-
olutions. Mip-NeRF rectified this problem by extending
NeRF to instead reason about volumetric frustums along
a cone [3]]. Though this improves quality, NeRF and mip-
NeRF struggle when dealing with unbounded scenes, where
the camera may face any direction and scene content may
exist at any distance. We present an extension to mip-NeRF
we call “mip-NeRF 360” that is capable of producing real-
istic renderings of these unbounded scenes (Figure|I)).

Applying NeRF-like models to large unbounded scenes
raises three critical issues, which we review in detail below:

Ben Mildenhall!
Pratul P. Srinivasan®

Dor Verbin!?
Peter Hedman'
2Harvard University

(a) mip-NeRF [3]l, SSIM=0.526 (b) Our Model, SSIM=0.804

Figure 1. (a) Though mip-NeRF is able to produce accurate ren-
derings of objects, for unbounded scenes it often generates blurry
backgrounds and low-detail foregrounds. (b) Our model produces
detailed realistic renderings of these unbounded scenes, as evi-
denced by the renderings (top) and depth maps (bottom) from both
models. See the supplemental video for additional results.

1. Parameterization. Unbounded 360 degree scenes can
occupy an arbitrarily large region of Euclidean space,
but mip-NeRF requires that 3D scene coordinates be
mapped to a bounded domain.

2. Efficiency. Large and detailed scenes require more
network capacity, but densely querying a larger MLP
along each ray during training is expensive.

3. Ambiguity. Background regions of unbounded 360
scenes are observed by significantly sparser rays than
the central region. This exacerbates the inherent ambi-
guity of reconstructing 3D content from 2D images.

Parameterization. Due to perspective projection, an ob-
ject placed far from the camera will occupy a small portion
of the image plane, but will occupy more of the image and
be visible in detail if placed nearby. Therefore, an ideal pa-
rameterization of a 3D scene should allocate more capacity
to nearby content and less capacity to distant content. Out-
side of NeRF, traditional view-synthesis methods address
this by parameterizing the scene in projective panoramic
space [2,/4,/8L{141[24,33,/43)51]] or by embedding scene con-

tent within some proxy geometry [15/23,38] recovered us-
ing multi-view stereo.

One aspect of NeRF’s success is its pairing of specific
scene types with appropriate 3D parameterizations. The
original NeRF paper [30]] focused on 360 degree captures
of objects with masked backgrounds and on front-facing
scenes where all images face roughly the same direction.
For isolated objects, NeRF directly parameterizes the scene
in 3D Euclidean space. For front-facing scenes, however,
NeRF uses coordinates defined in projective space (normal-
ized device coordinates, or “NDC” [5[]). NDC works well
in this context as it warps an infinitely deep camera frustum
into a bounded cube, where distance along the z-axis corre-
sponds to disparity (inverse distance). Using this parameter-
ization reallocates the NeRF MLP’s capacity in a way that
is consistent with the geometry of perspective projection.

However, scenes that are unbounded in all directions,
not just in a single direction, require a different parame-
terization. This idea was explored by NeRF++ [48]], which
used an additional network to model distant objects, and
DONEeRF [31]] which proposed a space-warping procedure
to shrink distant points towards the origin. Both of these
approaches behave somewhat analogously to NDC but in
every direction, rather than just along the z-axis. In this
work, we extend this line of thinking to mip-NeRF, present-
ing a method for applying any smooth parameterization to
volumes (rather than points), as well as our own parameter-
ization tailored for 360 unbounded scenes.

Efficiency. One fundamental challenge in dealing with
unbounded scenes is that such scenes are often large and
detailed. Though NeRF-like models can accurately repro-
duce objects or regions of scenes using a surprisingly small
number of weights, the capacity of the NeRF MLP saturates
when faced with increasingly intricate scene content. Ad-
ditionally, larger scenes require significantly more samples
along each ray to accurately localize surfaces. For exam-
ple, when scaling NeRF from objects to buildings, Martin-
Brualla et al. [27] doubled the number of MLP hidden units
and increased the number of MLP evaluations by 8x. This
increase in model capacity is expensive — a NeRF already
takes multiple hours to train, and multiplying this time by
an additional ~40x is prohibitively slow for most uses.
This training cost is exacerbated by the coarse-to-fine re-
sampling strategy used by NeRF and mip-NeRF: MLPs are
evaluated multiple times using “coarse” and “fine” ray in-
tervals, and are supervised using an image reconstruction
loss on both passes. This approach is somewhat wasteful,
as the “coarse” rendering of the scene does not contribute to
the final image. Instead of training a single NeRF MLP that
is supervised at multiple scales, we will instead train two
MLPs, a “proposal MLP” and a “NeRF MLP”. The pro-
posal MLP predicts volumetric density but not color. Those

densities are used to resample new intervals that are pro-
vided to the NeRF MLP, which then renders the image.
Crucially, the weights produced by the proposal MLP are
not supervised using the input image, but are instead su-
pervised to be consistent with the weights generated by the
NeRF MLP. This allows us to use a large NeRF MLP that
is evaluated relatively few times, alongside a small proposal
MLP that is evaluated many more times. As a result, our full
model’s total capacity is significantly larger than mip-NeRF
(~ 15x), resulting in greatly improved rendering quality,
but our sampling strategy means that training time only in-
creases modestly (~2Xx).

We can think of this approach as a kind of “online distil-
lation” [[17]]: while “distillation” commonly refers to train-
ing a small network to match the output of an already-
trained large network, here we distill the structure of the
weights predicted by the NeRF MLP into the proposal
MLP “online” as we train both networks simultaneously.
NeRV [44] performs a similar kind of online distillation for
an entirely different task: training MLPs to approximate
rendering integrals for the purpose of modeling visibility
and indirect illumination. Our online distillation approach
is similar in spirit to the “sampling oracle networks” used
in DONeREF, though that approach uses ground-truth depth
for supervision [31]]. A related idea was used in TermiN-
eRF [36], though that approach only accelerates inference
and actually slows training (a NeRF is trained to conver-
gence, and an additional model is trained afterwards). A
learned “proposer” network was explored in NeRF in De-
tail [1]] but only achieves a speedup of 25%, while our ap-
proach accelerates training by 300%.

Several works have attempted to distill or “bake” a
trained NeRF into a format that can be rendered quickly
[16,37,47], but these techniques do not accelerate training.
The idea of accelerating ray-tracing through a hierarchical
data structure such as octrees [40]] or bounding volume hi-
erarchies [39] is well-explored in the rendering literature,
though these approaches assume a-priori knowledge of the
geometry of the scene and therefore do not naturally gener-
alize to an inverse rendering context in which the geometry
of the scene is unknown and must be recovered. Indeed,
despite building an octree acceleration structure while opti-
mizing a NeRF model, Neural Sparse Voxel Fields does not
significantly reduce training time [25]].

Ambiguity. Though NeRFs are traditionally optimized
using many input images of a scene, the problem of re-
covering a NeRF that produces realistic synthesized views
from novel camera angles is still fundamentally undercon-
strained — an infinite family of NeRFs can explain away
the input images, but only a small subset produces accept-
able results for novel views. For example, a NeRF could
recreate all input images by simply reconstructing each im-

age as a textured plane immediately in front of its respec-
tive camera. The original NeRF paper regularized ambigu-
ous scenes by injecting Gaussian noise into the density head
of the NeRF MLP before the rectifier [|30], which encour-
ages densities to gravitate towards either zero or infinity.
Though this reduces some “floaters” by discouraging semi-
transparent densities, we will show that it is insufficient for
our more challenging task. Other regularizers for NeRF
have been proposed, such as a robust loss on density [16]
or smoothness penalties on surfaces [32,|50]], but these so-
lutions address different problems than ours (slow render-
ing and non-smooth surfaces, respectively). Additionally,
these regularizers are designed for the point samples used
by NeRF, while our approach is designed to work with the
continuous weights defined along each mip-NeRF ray.

These three issues will be addressed in Sections 2] [} and
H]respectively, after a review of mip-NeRF. We demonstrate
our improvement over prior work with a new dataset con-
sisting of challenging indoor and outdoor scenes. We urge
the reader to view our supplemental video, as our results are
best appreciated when animated.

1. Preliminaries: mip-NeRF

Let us first describe how a fully-trained mip-NeRF [3]]
renders the color of a single ray cast into the scene r(t) =
o+td, where o and d are the origin and direction of the ray
respectively, and ¢ denotes distance along the ray. In mip-
NeREF, a sorted vector of distances t is defined and the ray is
split into a set of intervals T; = [t;,t;41). For each interval
i we compute the mean and covariance (p, X) = r(7;) of
the conical frustum (the radius of which is determined by
the ray’s pixel size on the image plane) corresponding cor-
responding to the interval, and featurize those values using
an integrated positional encoding:

L-1
sin(2°p) exp(—22¢~1 diag(X)
(B, E) = { LOS(ZZZ) exg((_?él diai(ﬁ)))} }e—o v

This is the expectation of the encodings used by NeRF with
respect to a Gaussian approximating the conical frustum.
These features are used as input to an MLP parameterized
by Onerr that outputs a density 7 and color c:

(Tk» cx) = MLP(y(x(T3)); Onerr) - (2)

The view direction d is also provided as input to the MLP,
but we omit this for simplicity. With these densities and
colors we approximate the volume rendering integral using
numerical quadrature [28]]:

C(r,t) = Y wyey, 3)
k

VT; € t,

wy = (1 _ €_Tk(tk+1_tk))€7 Zk:’<k Th! (tk,/+17tk/) (4)

where C(r,t) is the final rendered pixel color. By con-
struction, the alpha compositing weights w are guaranteed
to sum to less than or equal to 1.

The ray is first rendered using evenly-spaced “coarse”
distances t¢, which are sorted samples from a uniform dis-
tribution spanning [t,,, ¢ ¢], the camera’s near and far planes:

¢ ~Ultn, tr], t°=sort({t}). ®)
During training this sampling is stochastic, but during eval-
uation samples are evenly spaced from ¢,, to t;. After the
MLP generates a vector of “coarse” weights w¢, “fine” dis-
tances t/ are sampled from the histogram defined by t¢ and
w¢ using inverse transform sampling:
t/ ~hist(t¢, we), t/ =sort({t'}). (6)
Because the coarse weights w* tend to concentrate around
scene content, this strategy improves sampling efficiency.

A mip-NeRF is recovered by optimizing MLP param-
eters Onerrp Via gradient descent to minimize a weighted
combination of coarse and fine reconstruction losses:

%Lrecon((}(r, t9), C*(r)) + Lrecon (C(r, tf)v C*(r)) (1)
reR

where R is the set of rays in our training data, C*(r) is
the ground truth color corresponding to ray r taken from an
input image, and L,¢con 1S mean squared error.

2. Scene and Ray Parameterization

Though there exists prior work on the parameterization
of points for unbounded scenes, this does not provide a
solution for the mip-NeRF context, in which we must re-
parameterize Gaussians. To do this, first let us define
f(x) as some coordinate transformation that maps from
R™ — R" (in our case, n = 3). We can compute the linear
approximation of this function:

fx) = f(u) +J5(p)(x = 1) (8)

Where J¢(pt) is the Jacobian of f at . With this, we can
apply f to (u, X) as follows:

F,) = (f(p), Tp(p)BT p () "))

This is functionally equivalent to the classic Extended
Kalman filter [[19]], where f is the state transition model.
Our choice for f is the following contraction:

x x|l <1

contract(x) = {(2 B ﬁ) (ﬁ) x| > 1 (10)

This design shares the same motivation as NDC: distant
points should be represented linearly in disparity (inverse

24 == Camera

Euclidean Gaussians
Contracted Domain
Unaffected Domain
11 Contracted Gaussians

Figure 2. A 2D visualization of our scene parameterization. We
define a contract(-) operator (Equation shown as arrows) that
maps coordinates onto a ball of radius 2 (orange), where points
within a radius of 1 (blue) are unaffected. We apply this contrac-
tion to mip-NeRF Gaussians in Euclidean 3D space (gray ellipses)
similarly to a Kalman filter to produce our contracted Gaussians
(red ellipses), whose centers are guaranteed to lie within a ball of
radius 2. The design of contract(-) combined with our choice to
space ray intervals linearly according to disparity means that rays
cast from a camera located at the origin of the scene will have
equidistant intervals in the orange region, as demonstrated.

distance), rather than metric distance. In our model, instead
of using mip-NeRF’s IPE features in Euclidean space as per
Equation [I] we use similar features (see appendix) in this
contracted space: (contract(u,X)). See Figure [2] for a
visualization of this parameterization.

In addition to the question of how 3D coordinates should
be parameterized, there is the question of how ray distances
t should be selected. In NeRF this is usually done by sam-
pling uniformly from the near and far plane as per Equa-
tion[5] However, if an NDC parameterization is used, this
uniformly-spaced series of samples is actually uniformly
spaced in inverse depth (disparity). This design decision
is well-suited to unbounded scenes when the camera faces
in only one direction, but (as discussed) is not applicable to
scenes that are unbounded in all directions. We will there-
fore explicitly sample our distances t linearly in disparity
(see [29] for a detailed motivation of this spacing).

To parameterize a ray in terms of disparity we define an
invertible mapping between Euclidean ray distance ¢ and a
“normalized” ray distance s:

A g(t) — g(tn)

Gt gl 159 o)+ (1= s) (b)), (1)

S
where g(+) is some invertible scalar function. This gives us
“normalized” ray distances s € [0,1] that map to [t,,t¢].
Throughout this paper we will refer to distances along a ray
in either ¢-space or s-space, depending on which is more
convenient or intuitive. By setting g(z) = 1/z and con-
structing ray samples that are uniformly distributed in s-
space, we produce ray samples that are distributed linearly
in disparity in ¢-space (additionally, setting g(z) = log(z)

Figure 3. A comparison of our model’s architecture with mip-
NeRF’s. Mip-NeRF uses one multi-scale MLP that is repeatedly
queried (only two repetitions shown here) for weights that are re-
sampled into ¢-intervals for the next stage, and supervises render-
ings produced by all scales. We use a “proposal MLP” that emits
weights (but not color) that are repeatedly resampled, then in the
final stage we use a “NeRF MLP” to produce weights and col-
ors that result in the rendered image, which we supervise. The
proposal MLP is trained to produce proposal weights W that are
consistent with the NeRF MLP’s w output. By using a small pro-
posal MLP and a large NeRF MLP we obtain a combined model
with a high capacity that is still tractable to train.

yields DONeRF’s logarithmic spacing [31]]). In our model,
instead of performing the sampling in Equations [5] and [6]
using t distances, we do so with s distances. This means
that, not only are our initial samples spaced linearly in dis-
parity, but subsequent resamplings from individual inter-
vals of the weights w will also be distributed similarly. As
can be seen from the camera in the center of Figure 2] this
linear-in-disparity spacing of ray samples counter-balances
contract(-). In essence, we have co-designed our scene co-
ordinates with our inverse-depth spacing, which gives us a
parameterization of unbounded scenes that closely resem-
bles the highly-effective setting of the original NeRF paper:
evenly-spaced ray intervals within a bounded space.

3. Coarse-to-Fine Online Distillation

As discussed, mip-NeRF uses a coarse-to-fine resam-
pling strategy (Figure [3) in which the MLP is evaluated
once using “coarse” ray intervals and again using “fine” ray
intervals, and is supervised using image reconstruction loss
for both passes. We instead train two MLPs, a “proposal
MLP” Oprop and a “NeRF MLP” Oncrr (Which behaves
similarly to the MLPs used by NeRF and mip-NeRF). The
proposal MLP predicts volumetric density, which is con-
verted into a proposal weight vector w according to Equa-
tion 4] but does not predict color. These proposal weights
w are used to sample s-intervals that are then provided to
the NeRF MLP, which predicts its own weight vector w
(and color estimates, for use in rendering an image). Crit-
ically, the weights produced by the proposal MLP are not

trained to reproduce the input image, but are instead trained
to bound the weights produced by the NeRF MLP. Both
MLPs are initialized randomly and trained jointly, so this
supervision can be thought of as a kind of “online distilla-
tion” of the NeRF MLP’s knowledge into the proposal MLP.
We use a large NeRF MLP and a small proposal MLP, and
repeatedly evaluate and resample from the proposal MLP
with many samples (some figures and discussion illustrate
only a single resampling for clarity) but evaluate the NeRF
MLP only once with a smaller set of samples. This gives us
an overall model that behaves as though it has a much higher
capacity than mip-NeRF but is only moderately more ex-
pensive to train. Using a small MLP to model the proposal
distribution does not reduce accuracy (as we will show) sug-
gesting that distilling the weights produced by the NeRF
MLP is significantly easier than view synthesis.

This online distillation requires a loss function that en-
courages the histograms emitted by the proposal MLP
(t, W) and the NeRF MLP (t, w) to consistent. At first this
problem may seem trivial, as minimizing the dissimilarity
between two histograms is a well-established task, but recall
that the “bins” of those histograms t and t need not be sim-
ilar — indeed, if the proposal MLP successfully culls the
range of distances where dense scene content exists, t and
t will be highly dissimilar. Though the literature contains
numerous approaches for measuring the difference between
two histograms with identical bins [11}26,35]], our case is
relatively underexplored. This problem is challenging be-
cause we cannot assume anything about the distribution of
contents within one histogram bin: an interval with non-
zero weight may indicate a uniform distribution of weight
over that entire interval, a delta function located anywhere
in that interval, or myriad other distributions. We there-
fore construct our loss under the following assumption: If
it is in any way possible that both histograms can be ex-
plained using any single distribution of mass, then the loss
must be zero. A non-zero loss can only be incurred if it is
impossible that both histograms are reflections of the same
“true” continuous underlying distribution of mass. See the
appendix for visualizations of this concept.

To do this, we first define a function that computes the
sum of all proposal weights that overlap with interval 7"

>y (12)

G TNT; #2

bound (f, w, T) =

If the two histograms are consistent with each other, then
it must hold that w; < bound (f:, w, T7) for all intervals
(T;,w;) in (t,w). This property is similar to the additivity
property of an outer measure in measure theory [13[]. Our
loss therefore penalizes any surplus histogram mass that vi-
olates this inequality and exceeds this bound:

, (13)

_ Z maX(O, w; — b011nd(f:,\?v,Ti))2

- wW;
i

Proposal 1
| — Proposal 2
| — NeRF

(a) 0% optimized (b) 4% optimized (c) 100% optimized

Figure 4. A visualization of the histograms (t, w) emitted from
the NeRF MLP (black) and the two sets of histograms (t, W) emit-
ted by the proposal MLP (yellow and orange) for a single ray from
our dataset’s bicycle scene over the course of training. Below we
visualize the entire ray with fixed x and y axes, but above we crop
both axes to better visualize details near the surface. Weights are
plotted as distributions that integrate to 1. (a) When training be-
gins, all weights are randomly distributed evenly with respect to
ray distance ¢. (b, ¢) As training progresses the NeRF weights be-
gin to concentrate around a surface, and the proposal weights form
a kind of “envelope” around those NeRF weights.

This loss resembles a half-quadratic version of the classic
chi-squared histogram distance that is often used in statis-
tics and computer vision [35]. This loss is asymmetric be-
cause we only want to penalize the proposal weights for
underestimating the distribution implied by the NeRF MLP
— overestimates are to be expected, as the proposal weights
will likely be more coarse than the NeRF weights, and will
therefore form an upper envelope over it. The division by
w,; guarantees that the gradient of this loss with respect to
the bound is a constant value when the bound is zero, which
leads to a well-behaved optimization landscape. Because t
and t are sorted, Equation |13[can be computed efficiently
through the use of summed-area tables [10]]. Note that this
loss is invariant to monotonic transformations of distance ¢
(assuming that w and W have already been computed in
t-space) so it behaves identically whether applied to Eu-
clidean ray ¢-distances or normalized ray s-distances.

We impose this loss between the NeRF histogram (t, w)
and all proposal histograms (t*, w*). The NeRF MLP is
supervised using a reconstruction loss with the input im-
age Lrecon, as in mip-NeRF. We place a stop-gradient on
the NeRF MLP’s outputs t and w when computing L;op
so that the NeRF MLP “leads” and the proposal MLP “fol-
lows” (otherwise the NeRF may be encouraged to produce a
worse reconstruction of the scene so as to make the proposal
MLP’s job less difficult). The effect of this proposal super-
vision can be seen in Figure 4] where the NeRF MLP grad-
ually localizes its weights w around a surface in the scene,
while the proposal MLP “catches up” and predicts coarse
proposal histograms that envelope the NeRF weights.

(a) no Lyjst (b) no Lgjst, with noise (c) with Lgjst

Figure 5. Our regularizer suppresses “floaters” (pieces of semi-
transparent material floating in space, which are easy to identify
in the depth map) and prevents a phenomenon in which surfaces
in the background “collapse” towards the camera (as can be seen
in the bottom left of (a)). The noise-injection approach of Milden-
hall et al. [30] reduces image quality and only partially eliminates
these artifacts (note the lack of detail in the depths of the distant
trees). See the supplemental video for more visualizations.

4. Regularization for Interval-Based Models

Due to ill-posedness, trained NeRFs often exhibit two
characteristic artifacts we will call “floaters” and “back-
ground collapse”, both shown in Figure [5(a). By “floaters”
we refer to small disconnected regions of volumetrically
dense space which serve to explain away some aspect of
a subset of the input views, but when viewed from another
angle look like blurry clouds. By “background collapse”
we mean a phenomenon in which distant surfaces are incor-
rectly modeled as semi-transparent clouds of dense content
close to the camera.

Our regularizer has a straightforward definition in terms
of the step function defined by the set of (normalized) ray
distances and weights that parameterize each ray:

Laist (s, W) / ws(u)ws(v)|u —v|dy dy (14)

— 00

where wg(u) is interpolation into the step function defined
by the interval of s, w at u: wg(u) = >, wil, o) ().
We use normalized ray distances s as using t significantly
upweighs distant intervals and causes nearby intervals to
be effectively ignored. This loss is the integral of the dis-
tances between all pairs of points along this 1D step func-
tion, scaled by the weight w assigned to each point by the
NeRF MLP. We refer to this as “distortion”, as it resem-
bles a continuous version of the distortion minimized by
k-means. This loss is minimized by setting w = 0 (re-
call that w sums to no more than 1, not exactly 1). If that
is not possible (i.e., the ray is non-empty), it is minimized
by consolidating weights into as small a region as possible.
Figure[6]illustrates this behavior by showing the gradient of
this loss on a toy histogram.

0.4

O we()
0.3 B V. L

al T _V_ Vi Las
’ >
3 =— B=
0.1
e t f =

\

s
Figure 6. A visualization of V Lgist, the gradient of our regular-
ization, as a function of s and w on a toy step function. This loss
encourages each ray to be as compact as possible by 1) minimiz-
ing the width of each interval, 2) pulling distant intervals towards
each other, 3) consolidating weight into a single interval or a small
number of nearby intervals, and 4) driving all weights towards zero
when possible (such as when the entire ray is unoccupied).

Though Equation [I4] is straightforward to define, it is
non-trivial to compute. But because wg(-) has a constant
value within each interval we can rewrite Equation|14]as:

=

. Zw Si41 — 52) (1)

S; + 524_1 _ Sj + Sj4+1

2

ﬁdlst S W

In this form, our distortion loss is trivial to compute. This
reformulation also provides some intuition for how this loss
behaves: the first term minimizes the weighted distances
between all pairs of interval midpoints, and the second term
minimizes the weighted size of each individual interval. As
shown in Figure[3]this regularizer is effective at eliminating
floaters and preventing background collapse, significantly
moreso than NeRF’s noise injection approach [30].

5. Optimization

Now that we have described our model components in
general terms, we can detail the specific model used in all
experiments. We use a proposal MLP with 4 layers and
256 hidden units and a NeRF MLP with 8 layers and 1024
hidden units, both of which use ReLLU internal activations
and a softplus activation for density 7. We do two stages of
evaluation and resampling of the proposal MLP each using
64 samples to produce (8%, w°) and (8!, w'), and then one
stage of evaluation of the NeRF MLP using 32 samples to
produce (s, w). We minimize the following loss:

‘CreCOIl(C(t) C*) + /\[’dist (S, W)+

1
> Liop(s,w, 8%, wF) (16)

k=0

averaged over all rays in each batch (rays are not included
in this notation). The hyperparameter A balances our data
term Lyecon and our regularizer Lgis; we set A = 0.01 in
all experiments. This stop-gradient used in Lo, makes
the optimization of O, independent from the optimiza-
tion of Onerr, and as such there is no need for a hyper-
parameter to balance the effect of Lo, and Lyecon. For
Lrecon, We achieve slightly more stable optimization by
replacing the mean squared error used in mip-NeRF with
Charbonnier loss [9]: \/(z — 2*)% 4+ €2 with ¢ = 0.001.
We train our model (and all reported NeRF-like baselines)
using a slightly modified version of mip-NeRF’s learning
schedule: 250k iterations of optimization with a batch size
of 214, using Adam [21] with hyperparameters 3; = 0.9,
Bz = 0.999, ¢ = 1075, a learning rate that is annealed log-
linearly from 2 x 1072 to 2 x 10~ with a warm-up phase
of 512 iterations, and gradient clipping to a norm of 1073,

6. Results

We evaluate our model on a novel dataset: 9 scenes (5
outdoors and 4 indoors) each containing a complex cen-
tral object or area and a detailed background. During cap-
ture we attempted to prevent photometric variation by fix-
ing camera exposure settings, minimizing lighting varia-
tion, and avoiding moving objects — we do not intend to
probe all challenges presented by “in the wild” photo col-
lections [27]], only scale. Camera poses are estimated using
COLMAP [42]], as in NeRF. See the appendix for details.

Compared methods. We compare our model with
NeRF [30] and mip-NeRF [3]], both using additional po-
sitional encoding frequencies so as to bound the entire
scene inside the coordinate space used by both models.
We evaluate against NeRF++ [48]], which uses two MLPs
to separately encode the “inside” and “outside” of each
scene. We also evaluate against a version NeRF that
uses DONeRF’s [31] scene parameterization, which uses
logarithmically-spaced samples and a different contraction
from our own. We also evaluate against mip-NeRF and
NeRF++ variants in which the MLP(s) underlying each
model have been scaled up to roughly match our own

PSNR 1 SSIM 1 LPIPS | |Time (hrs) |# Params
NeRF [12130 2385 0.605 0451 4.16 1.5M
NeRF w/ DONeRF [31] parameterization | 24.03 0.607 0.455 4.59 1.4M
mip-NeRF (3] 24.04 0616 0441 3.17 0.7M
NeRF++ [48 2511 0.676 0375 9.45 2.4M
Deep Blending |15 2370 0.666 0.318 - -
Point-Based Neural Rendering [23 23.71 0.735 0.252
Stable View Synthesis |38 2533 0.771 0.211 - -
mip-NeRF [3] w/bigger MLP 26.19 0.748 0.285 22.71 9.0M
NeRF++ [48] w/bigger MLPs 2639 0.750 0.293 19.88 9.0M
Our Model 2738 0.782 0.238 5.97 9.9M
Our Model w/GLO 26.11 0.778 0.238 6.04 9.9M

Table 1. A quantitative comparison of our model with several prior
works using the dataset presented in this paper.

model in terms of number of parameter count (1024 hid-
den units for mip-NeRF, 512 hidden units for both MLPs in
NeRF++). We evaluate against Stable View Synthesis [38]],
a non-NeRF model that represents the state-of-the-art of a
different view-synthesis paradigm in which neural networks
are trained on external scenes and combined with a proxy
geometry produced by structure-from-motion [42]]. We ad-
ditionally compare with the publicly available SIBR imple-
mentations [7]] of Deep Blending [[15]] and Point-Based Neu-
ral Rendering [23|], two real-time IBR-based view synthesis
approaches that also depend on an external proxy geometry.
Alongside our model as described previously, we present a
variant of our own model in which we use the latent ap-
pearance embedding (4 dimensions) presented in NeRF-
W [6,27] which we found to ameliorate artifacts caused
by inconsistent lighting conditions over the course of scene
capture (as our scenes do not contain transient objects, we
do not benefit from NeRF-W’s other components).

Comparative evaluation. In Table [, we report mean
PSNR, SSIM [46], and LPIPS [49] across the test images
in our dataset. For all NeRF-like models, we report train
times from a TPU v2 with 32 cores [[18], as well as model
size (the train times and model sizes of SVS, Deep Blend-
ing, and Point-Based Neural Rendering are not presented,
as this comparison would not be particularly meaningful).
Our model outperforms all prior NeRF-like models by a
significant margin, and we see a 54% reduction in mean
squared error relative to mip-NeRF with only a 1.92x in-
crease in train time. The mip-NeRF and NeRF++ baselines
that use larger MLPs are more competitive, but are ~ 4x
slower to train and still achieve lower accuracy. Our model
outperforms Deep Blending and Point-Based Neural Ren-
dering across all error metrics. It also outperforms SVS
for PSNR and SSIM, but not LPIPS. This may be due to
SVS being supervised to directly minimize an LPIPS-like
perceptual loss, while we minimize a per-pixel reconstruc-
tion loss. See the appendix for renderings from SVS that
achieve lower LPIPS scores than our model despite having
reduced image quality [20]]. Our model has several advan-
tages over SVS and Deep Blending in addition to image
quality: those models require external training data while
our model does not, those models require the proxy geom-
etry produced by a MVS package (and may fail when that
geometry is incorrect) while we do not, and our model pro-
duces extremely detailed depth maps while SVS and Deep
Blending do not (the “SVS depths” we show were produced
by COLMAP [42] and are used as input to the model). Fig-
ure [/| shows model outputs, though we urge the reader to
view our supplemental video.

Ablation study. In Table [2] we present an ablation study
of our model on the bicycle scene in our dataset, the find-

Depth Map

Color Image

(a) Ground-Truth Test-Set Image| (b) Our Model, SSIM=0.738

(c) SVS [38142], SSIM=0.680 (d) NeRF++ [48]], SSIM=0.622 (e) mip-NeRF [3|], SSIM=0.522

Figure 7. (a) A test-set image from our dataset’s stump scene, with (b) our model’s rendered image and depth map (median ray termination
distance [34]]). Cropped patches are shown to highlight details. Compared to prior work (c-e) our renderings more closely resemble the
ground-truth and our depths look more plausible (though no ground-truth depth is available). See the appendix for more results.

PSNR 1 SSIM 1 LPIPS | | Time (hrs) |# Params

A) No Lyrop 1873 0344 0.612 5.10 9.9M
B) No Lais 2327 0625 0357 5.96 9.9M
C) No Lgist, w/noise injection 24.00 0.655 0.328 5.96 9.9M
D) No Proposal MLP 2420 0675 0309 18.13 9.6M
E) No Proposal MLP w/mip-NeRF’s Supervision | 22.94 0.609 0.371 17.29 9.6M
F) Small NeRF MLP 22.78 0.516 0.476 3.06 1.IM
G) No IPE 2375 0.653 0333 5.93 9.9M
H) No Contraction 2359 0633 0346 7.19 11.8M
T) w/DONeRFs Contraction 31 24.05 0.656 0.325 6.05 9.9M

J) w/NeRF++s Parameterization [48 24.70 0.690 0.292 12.30 9.2M

Our Complete Model 23.99 0.666 0.298 5.97 9.9M

Table 2. An ablation study in which we remove or replace model
components to measure their effect. See the text for details.

ings of which we summarize here. A) Removing Lop
causes catastrophic failure as the proposal MLP is entirely
unsupervised. B) Removing Lg;s; reduces image quality by
introducing artifacts (see Figure [5)), and C) the regulariza-
tion proposed by Mildenhall et al. [30] of injecting Gaus-
sian noise (¢ = 1) into density underperforms our regu-
larizer. D) Removing the proposal MLP and using a sin-
gle MLP to model both the scene and the proposal weights
does not degrade performance but increases training time
by ~ 3x, hence our small proposal MLP. E) Removing the
proposal MLP and training our model using mip-NeRF’s
approach (applying Lyecon at all coarse scales instead of
Lorop) Worsens both speed and accuracy, justifying our
supervision strategy. F) Using a small NeRF MLP (256
hidden units instead of our 1024 hidden units) accelerates
training but reduces quality, demonstrating the value of a
high-capacity MLP when modeling detailed scenes. G) Re-
moving IPE completely and using NeRF’s positional encod-
ing [30] reduces performance, showing the value in build-
ing upon mip-NeRF instead of NeRF. H) Ablating the con-
traction and instead adding positional encoding frequencies

to bound the scene decreases accuracy and speed. I) Us-
ing the parameterization and logarithmic ray-spacing pre-
sented in DONeRF [31] reduces accuracy, J) though using
the two-MLP parameterization proposed in NeRF++ [48]]
outperforms our technique — at the cost of doubling train-
ing time, as MLP evaluations are doubled (to maintain a
constant model capacity we divide the number of hidden
units of both MLPs by \/5).

Limitations. Though mip-NeRF 360 significantly outper-
forms mip-NeRF and other prior work, it is not perfect.
Some thin structures and fine details may be missed, such as
the tire spokes in the bicycle scene (Figure [5), or the veins
on the leaves in the stump scene (Figure[7). View synthesis
quality will likely degrade if the camera is moved far from
the center of the scene. And, like most NeRF-like models,
recovering a scene requires several hours of training on an
accelerator, precluding on-device training.

7. Conclusion

We have presented mip-NeRF 360, a mip-NeRF ex-
tension designed for real-world scenes with unconstrained
camera orientations. Using a novel Kalman-like scene pa-
rameterization, an efficient proposal-based coarse-to-fine
distillation framework, and a regularizer designed for mip-
NeRF ray intervals, we are able to synthesize realistic novel
views and complex depth maps for challenging unbounded
real-world scenes, with a 54% reduction in mean-squared
error compared to mip-NeRF.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

Relja Arandjelovi¢ and Andrew Zisserman. NeRF in detail:
Learning to sample for view synthesis. arXiv:2106.05264,
2021.

Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian
Richardt, and James Tompkin. = MatryODShka: Real-
time 6DoF video view synthesis using multi-sphere images.
ECCV, 2020.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A Multiscale Representation for Anti-Aliasing
Neural Radiance Fields. ICCV, 2021. [1} Bl [7 [8] [T} [12} [13]
[Tel 7

Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian
Richardt. OmniPhotos: Casual 360° VR photography. ACM
Transactions on Graphics, 2020. |I|

J.E. Blinn. A trip down the graphics pipeline: pixel coor-
dinates. IEEE Computer Graphics and Applications, 1991.
Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and
Arthur Szlam. Optimizing the latent space of generative net-
works. ICML, 2018.[]]

Sebastien Bonopera, Peter Hedman, Jerome Esnault, Sid-
dhant Prakash, Simon Rodriguez, Theo Thonat, Mehdi Be-
nadel, Gaurav Chaurasia, Julien Philip, and George Dret-
takis. sibr: A system for image based rendering, 2020. |Z|
Michael Broxton, John Flynn, Ryan Overbeck, Daniel Er-
ickson, Peter Hedman, Matthew DuVall, Jason Dourgarian,
Jay Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. SIGGRAPH,
2020.[

Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and
Michel Barlaud. Two deterministic half-quadratic regular-
ization algorithms for computed imaging. International Con-
ference on Image Processing, 1994. 1]

Franklin C Crow. Summed-area tables for texture mapping.
SIGGRAPH, 1984.[3]

Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. CVPR, 2005. 3]

Boyang Deng, Jonathan T. Barron, and Pratul P. Srini-
vasan. JaxNeRF: an efficient JAX implementation of NeRF,
2020. http://github.com/google-research/
google-research/tree/master/Jjaxnerfl [1[16
7

Lawrence C Evans and Ronald F Garzepy. Measure theory
and fine properties of functions. Routledge, 2018. |§]

Peter Hedman, Suhib Alsisan, Richard Szeliski, and Jo-
hannes Kopf. Casual 3D Photography. SIGGRAPH Asia,
2017.M

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. SIGGRAPH Asia,
2018. 2I[7[16]

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. /CCV, 2021. [

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv:1503.02531, 2015. |Z|
Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter per-
formance analysis of a tensor processing unit. International
Symposium on Computer Architecture, 2017.[]]

Rudolph Emil Kalman. A new approach to linear filter-
ing and prediction problems. Journal of Basic Engineering,
1960. 3]

Markus Kettunen, Erik Hirkonen, and Jaakko Lehtinen. E-
Ipips: robust perceptual image similarity via random trans-
formation ensembles. arXiv:1906.03973, 2019. [11[13]
Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015.[7]

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
I3} [T51 7]

Georgios Kopanas, Julien Philip, Thomas Leimkiihler, and
George Drettakis. Point-based neural rendering with per-
view optimization. Computer Graphics Forum, 2021. 2} 7]
L6l

Kai-En Lin, Zexiang Xu, Ben Mildenhall, Pratul P Srini-
vasan, Yannick Hold-Geoffroy, Stephen DiVerdi, Qi Sun,
Kalyan Sunkavalli, and Ravi Ramamoorthi. Deep multi
depth panoramas for view synthesis. ECCV, 2020. []
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020.

Subhransu Maji, Alexander C Berg, and Jitendra Malik.
Classification using intersection kernel support vector ma-
chines is efficient. CVPR, 2008. 3]

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the Wild: Neural Radiance Fields for Un-
constrained Photo Collections. CVPR, 2021. 2 [7[13]
Nelson Max. Optical models for direct volume rendering.
IEEE TVCG, 1995. 3]

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local Light Field Fusion: Practical View
Synthesis with Prescriptive Sampling Guidelines. ACM
Transactions on Graphics (TOG), 2019. E

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. ECCV, 2020. [T} 2} Bl 6 [Bl [31 [T [T7]

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Computer Graphics
Forum, 2021. 2L B [71 Bl [T6] [T7]

Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. /CCV, 2021. |§|

http://github.com/google-research/google-research/tree/master/jaxnerf
http://github.com/google-research/google-research/tree/master/jaxnerf

(33]

(34]

(35]
(36]

(37]

(38]

(39]

[40]
(41]
[42]
[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

Ryan S Overbeck, Daniel Erickson, Daniel Evangelakos,
Matt Pharr, and Paul Debevec. A system for acquiring, pro-
cessing, and rendering panoramic light field stills for virtual
reality. ACM Transactions on Graphics, 2018. |I|

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable Neural Radiance
Fields. ICCV, 2021.

Ofir Pele and Michael Werman. The quadratic-chi histogram
distance family. ECCV, 2010. [3]

Martin Piala and Ronald Clark. Terminerf: Ray termination
prediction for efficient neural rendering. 3DV, 2021. 2]
Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. ICCV, 2021. 2]

Gernot Riegler and Vladlen Koltun. Stable view synthesis.
CVPR, 2021. 2 [7} B [13} [T3] [T6 [T7]

Steven M. Rubin and Turner Whitted. A 3-dimensional
representation for fast rendering of complex scenes. SIG-
GRAPH, 1980. 2]

Hanan Samet. The design and analysis of spatial data struc-
tures. Addison-Wesley, 1990. 2]

Christophe Schlick. Fast alternatives to perlin’s bias and gain
functions. Graphics Gems 1V, 1994. [T1]

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. CVPR, 2016. [7[8] [[21 [13]
Heung-Yeung Shum and Li-Wei He. Rendering with con-
centric mosaics. SIGGRAPH, 1999. [T]

Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
NeRV: Neural reflectance and visibility fields for relighting
and view synthesis. CVPR, 2021. 2]

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020. [[2]

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE TIP, 2004.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. ICCV, 2021. 2]

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NeRF++: Analyzing and Improving Neural Radi-
ance Fields. arXiv:2010.07492, 2020. 2 [7} [8l [T6} [T7]
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. CVPR, 2018. [7}[13]
Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul
Debevec, William T. Freeman, and Jonathan T. Barron. NeR-
Factor: Neural Factorization of Shape and Reflectance Under
an Unknown Illumination. SIGGRAPH Asia, 2021. 3]

Ke Colin Zheng, Sing Bing Kang, Michael F Cohen, and
Richard Szeliski. Layered depth panoramas. CVPR, 2007. [T]

10

A. Proposal Supervision Visualization

The loss used to supervise our proposal MLP is moti-
vated by bounds that can be established between histograms
of 1D data. The bound used by our loss is guaranteed to
hold if two histograms are constructed from the same under-
lying “true” distribution of data. By minimizing any excess
histogram mass that violates this bound, we can encourage
two histograms with differently-spaced bin locations to be
consistent with each other. In Figure[§| we provide an illus-
tration of this concept, and the supplemental video contains
additional explanatory illustrations.

B. Additional Model Details

Our model contains some small components not dis-
cussed in the main paper that improve performance slightly.

Parameterization. The Jacobian J(p) used by our
Kalman-like reparameterization can be computed straight-
forwardly using most autodiff frameworks. A less expen-
sive alternative (as it does not require the explicit construc-
tion of a Jacobian matrix) is to instead construct a func-
tion whose application corresponds to matrix multiplication
with J¢(pe). In Jax [?], this can be accomplished using the
linearize operator, and applying it twice in sequence to
3, with the dimensions of the covariance matrix transposed
after each application.

Annealing. Before resampling ray-intervals from pro-
posal weights w, we anneal those weights by raising them
to a power. With n training steps, at step ¢ we compute

. R bi/n
W; o¢ W B=Di/nF1

a7
and use w; when drawing samples. The exponent is
Schlick’s bias function [41] applied to i/n € [0, 1], which
curves the exponent such that it quickly rises from 0 and
saturates towards 1. We set the bias hyperparameter b = 10
in all experiments. At the beginning of training the expo-
nent is 0, which yields a flat distribution (W o 1), and at
the end of training that power is 1, which yields the pro-
posal distribution (w,, = w). This annealing encourages
“exploration” during training, by causing the NeRF MLP to
be presented with a wider range of proposal intervals than it
otherwise would towards the beginning of training. Anneal-
ing has a modest positive effect: ablating it causes LPIPS
error on the bicycle scene to increase from 0.298 to 0.311.

Off-Axis Positional Encoding. When constructing inte-
grated positional encoding features, we must select a ba-
sis P. In mip-NeRF [3]], this basis is selected as the iden-
tity matrix. This is convenient, because it means that only

11

t,w bound

(a) ‘Cprop (t,W7 fJ,VAV) =0

(b) [/prop (t7 w, E, W) =0.75

Figure 8. A visualization of the motivation behind Lp;p, the loss
used to supervise our proposal MLP to bound the weights emitted
by our NeRF MLP. In both plots we have two different histograms
(t,w) (shown in orange) and (t, W) (shown in blue) generated
from points {x} and {Z} respectively, as well as a plot of the
bound described in the paper. (a) If {z} = {Z}, the bound im-
plied by (t, W) is guaranteed to be an upper bound on (t, w), and
our loss must be zero. (b) If {x} # {} (in this case, only 16 of 20
points are shared between {z} and {#}) then (t, w) may exceed
the upper bound implied by (t, W), and a loss may be incurred
(shown in red). From this we see how minimizing £Lyop encour-
ages the proposal weights (f, W) to describe the same distribution
as the NeRF weights (t, w), despite their histogram bin endpoints
being different.

the diagonal of the covariance matrix X is required to con-
struct IPE features, and off-diagonal components need not
be computed. However, the reparameterization used by our
model requires access to a full covariance matrix, as oth-
erwise the Kalman-like warping we use would be inaccu-
rate in the presence of highly anisotropic Gaussians (which
are exceedingly common in distant parts of the scene).
So given that we are required to construct a full ¥ ma-
trix, we take advantage of the extra information presented
therein, and encode not just axis-aligned IPE features but
off-axis IPE features as well. As our basis P, instead of an
identity matrix we use a large skinny matrix that contains
the unit-norm vertices of a twice-tessellated icosahedron,
where “mirrored” negative copies of vertices are removed.

For reproducibility’s sake this matrix is:

[0.8506508 0 0.5257311 |
0.809017 0.5 0.309017
0.5257311 0.8506508 0

1 0 0
0.809017 0.5 —0.309017
0.8506508 0 —0.5257311
0.309017 0.809017 -0.5

0 0.5257311 —0.8506508

0.5 0.309017 —0.809017
0 1 0
P = |-0.5257311 0.8506508 0
—0.309017 0.809017 -0.5

0 0.5257311 0.8506508
—0.309017 0.809017 0.5
0.309017 0.809017 0.5

0.5 0.309017 0.809017
0.5 —0.309017 0.809017
0 0 1
-0.5 0.309017 0.809017
—0.809017 0.5 0.309017
| —0.809017 0.5 —0.309017 |

(18)
Computing IPE features with a matrix as large as this us-
ing the procedure described in mip-NeRF (diag(PXP7))
is prohibitively expensive, but it can be made tractable
by instead computing the equivalent expression sum(P™ o
(XPT),0) where o is an element-wise product and
sum(-,0) is summation over rows. With this small opti-
mization, off-axis IPE features are only modestly more ex-
pensive to compute than the axis-aligned IPE features used
in mip-NeRF. These off-axis features allow the model to en-
code the shape of anisotropic Gaussians (with a similar in-
tuition as the random Fourier features explored by Tancik ef
al. [45]]) which otherwise are indistinguishable using axis-
aligned IPE features, as shown in Figure[9] Ablating these
off-axis features reduces performance slightly, with LPIPS
error for the bicycle scene rising from 0.298 to 0.307.

Dilation. We slightly “dilate” the proposal histogram
(E, w) before resampling it to produce the intervals used by
the NeRF MLP. This is likely because the proposal MLP is
supervised using only rays that correspond to input pixels,
so its predicted bound may only hold for certain angles —
in a sense, the proposal network is rotationally aliased. By
widening the intervals of the proposal MLP we help coun-
teract this aliasing, though some such aliasing is still some-
times visible in the form of stairstep-like artifacts at object
boundaries. To dilate a histogram (t, w) we first compute
p where p; = w;/ (fi+1 - fi) which is a probability density
that integrates to 1 (rather than a histogram that sums to 1).

12

A N A

48

(W (=

(b) Off-Axis IPE

N

(a) Axis-Aligned IPE [3]

Figure 9. The axis-aligned positional encoding approach used by
mip-NeRF [3] does not capture the correlation of the Gaussian be-
ing encoded. To illustrate this, we plot three bivariate Gaussians
colored red, green, and blue (a) with axis-aligned IPE and (b) with
our off-axis IPE, and show the marginal distributions produced by
projecting these Gaussians according to bases used by both en-
codings. Because these Gaussians have identical marginal distri-
butions, mip-NeRF’s axis-aligned IPE produces identical features
for all three of them, while the off-axis projections of our approach
allow the Gaussians to be disambiguated.

We then dilate this by computing

dilate(p(t),e) = max p(t)

t—e<t' <t+e

19)

where p(t) is interpolation into the step function defined by
t,p at t. dilate(-,€) can be computed efficiently by con-
structing a new set of intervals sort({t — ¢,t,t + ¢}) and
computing the max of all intervals in that expanded set. Af-
ter dilation, we convert p back into a histogram by multiply-
ing each p; by £i+1 — t;, and we renormalize this histogram
to sum to 1. We set ¢ = 0.001 in all experiments.

C. Additional Results

Our Dataset. We captured our dataset using two different
mirrorless digital cameras. The outdoor scenes were cap-
tured with a Sony NEX C-3 equipped with a 18-55mm lens,
using the widest possible zoom level. For the indoor scenes,
we used a Fujifilm X100V camera with a fixed 22mm lens.
For each scene, we used the first camera location as a refer-
ence view, where we configured ISO, white balance, shutter
speed, aperture size, and focus. We then kept these settings
locked during capture, to limit the photometric variation
between images of the same scene. To further limit color
harmonization issues, we captured the outdoor scene when
the sky was overcast, making sure that the camera operator
casts soft shadows that minimally affect the illumination in
the scene. For the indoor scenes, we relied on large diffuse
light sources (e.g. daylight reflecting off white walls) and
avoided casting shadows onto the scene.

We captured between 100 and 330 images in each scene.
This took between 1 and 20 minutes, depending on whether
we used burst mode or not. To obtain camera poses, we
use the publicly available COLMAP software [42]]. We use

#hidden | PSNRT SSIM 1 LPIPS | [Time (hrs) |# Params
mip-NeRF [3] 256 33.09 0.961 0.043 2.89 0.61M
Our Model 32.87 0.959 0.043 1.86 0.84M
mip-NeRF [3] 512 33.03 0.964 0.037 7.03 22T
Our Model) 33.31 0.962 0.039 3.42 3.23M

Table 3. Performance on the Blender dataset used in NeRF [30] as
we vary the number of hidden units in the NeRF MLP.

shared intrinsics between all images in a scene, and cal-
ibrate using the OpenCV radial distortion model. Before
training a NeRF, we use COLMAP to undistort the images,
and downsample them to a reasonable resolution of 1.0-1.6
MPixels using ImageMagick. We use 1 in 8 of the input im-
ages as our test set, regularly subsampled to cover as many
viewpoints as possible.

Post-capture, we apply a rigid transform and rescaling
to COLMAP’s reconstructed poses in order to better fit the
captured scene content to our parameterization. In order
to match the global coordinate frame to the capture pattern
(assumed to be approximately circular rings orbiting a fixed
point in space), we subtract the mean camera position and
calculate the principal components of the recentered camera
position vectors. We then use these three orthogonal vectors
to form a new basis where the smallest principal component
becomes the world-space “up” vector. After recentering all
camera poses using this transformation, we rescale the cam-
era positions such that they lie within the [—1,1]® cube. If
the input poses lie approximately on a sphere, this usually
causes them to lie within the uniformly parameterized re-
gion of space contained by the sphere of radius 1.

In Table] we show an expanded table of results for our
dataset where we enumerate PSNRs, SSIMs, and LPIPS
scores for each individual scene. Each technique’s per-
scene performance is roughly consistent with its average
performance as reported in the main paper.

As discussed in the paper, Stable View Synthesis [38]
is the only baseline model we evaluate against that outper-
forms our model on any metric, which is LPIPS [49]]. Upon
visually inspecting the results of SVS on our dataset, we
observed that LPIPS is often dramatically inconsistent with
our own visual perception. See Figure|l2] where we visual-
ize the renderings (and depths) of our model versus SVS on
one scene where SVS yielded a lower LPIPS metric than
our model. Contrary to what the LPIPS scores indicate,
our model’s rendering is significantly more realistic and ex-
hibits significantly fewer artifacts than SVS, particularly in
the background of the scene. We believe this is due to SVS
having been trained to minimize a perceptual loss that re-
sembles LPIPS, causing it to produce results that are able to
minimize LPIPS effectively despite being visually unsatis-
fying. This is consistent with recent work that has demon-
strated vulnerabilities in LPIPS [20].

13

NeRF’s Blender Dataset. For completeness, in Table
we evaluate our model on the Blender dataset from Milden-
hall et al. [30], on which mip-NeRF is the state-of-the-
art. This dataset consists entirely of small synthetic objects
in front of a white background, unlike the large and un-
bounded scenes which motivated our model’s design. Our
model is not designed to improve accuracy on these scenes,
and as such our model’s accuracy is comparable to mip-
NeRF across all error metrics. However, we see that (due
to our use of proposal networks) our model is significantly
faster to train than mip-NeRF, and that this relative acceler-
ation increases as the capacity of the model rises.

Tanks and Temples. The “Tanks and Temples” dataset
is a popular dataset for 3D geometry and view synthesis
tasks [22]. It contains several scenes with a large central
object with the camera moving around that object. At first
glance this dataset may appear to be ideal for our purposes,
but it has significant issues that motivated the construction
of our own dataset. As shown in Figure [I0] the photomet-
ric properties of the camera are not constant across each
scene capture (unlike our own). We believe this is due to
the camera’s autoexposure or auto white balance being al-
lowed to vary between images. Additionally, large amounts
of this dataset consist of overexposed images, resulting in
“clipped” RGB values (also visible in Figure[I0). These is-
sues make evaluation difficult, as measuring the accuracy of
a view synthesis algorithm becomes an ill-posed task when
faced with photometric variation — which photometric con-
dition should the model attempt to replicate? This chal-
lenge posed by “in the wild” images has been extensively
investigated by Martin-Brualla et al. [27] who construct
specialized training and evaluation procedures for dealing
with (and we use one model component, the GLO appear-

Figure 10. Crops from two images taken from the “Tanks and
Temples” dataset. The capture process used in acquiring this
dataset seems to have allowed autoexposure and/or auto white bal-
ance to vary across images, which results in the same object hav-
ing a different appearance across scenes. This issue partially mo-
tivated the construction of our own dataset, in which great care is
taken to prevent such photometric variation.

ance embedding, in a variant of our own model). But we
view this challenge as orthogonal to the challenges posed by
the unbounded nature of a scene, hence the construction of
our own dataset where our camera is photometrically fixed
within each capture, and where scenes are chosen to mini-
mize saturated pixels.

Despite the mismatch between this dataset and the goals
of our work, we evaluated our model on this dataset against
our NeRF-like baselines and against SVS (which is both
the state of the art for this dataset as well as the most com-
petitive baseline for our own dataset), the results of which
are shown in Tables [5] and [6] and visualized in Figure [IT]
The metrics used elsewhere in this paper (PSNR, SSIM, and
LPIPS) are difficult to draw meaningful conclusions from
due to the aforementioned photometric variation. In partic-
ular, our top-performing “w/GLO” model variant performs
quite poorly according to those metrics, because that model
variant learns a per-image embedding for each scene and
uses that embedding within the NeRF MLP when predict-
ing color. When we evaluate this model variant at test-time,
we set the embedding vector to 0. This gives us a pleas-
ing looking reconstruction that roughly corresponds to the
photometric average of all input cameras, and that is consis-
tent across all images, which we believe to be a good goal
for view synthesis. However, SVS (and to a lesser extent,
the non-GLO NeRF baselines) do not behave this way, and
instead these techniques attempt to “explain away” photo-
metric variation due to the camera by modifying the bright-
ness and color of the scene as a function of viewing direc-
tion. Effectively, SVS does not attempt to synthesize a view,
it attempts to synthesize a view and the most likely cam-
era settings for that view. This motivated us to implement
“color corrected” variants of each metric. To do this, before
evaluating each metric we solve a per-image least squares
problem that fits a quadratic polynomial expansion of the
rendering’s RGB values to the true image, while ignoring
saturated pixels. By doing this, we partially reduce the ef-
fect of photometric variation on these results, and we get re-
sults in which SVS and our model (with GLO) are roughly
quantitatively comparable.

Even when using these color-corrected metrics, SVS
slightly outperforms our model on this benchmark. That be-
ing said, it is worth reiterating the advantages that SVS has
over our model on this benchmark: 1) SVS has been trained
on the training set of this dataset, while our model does not
use that training data — and indeed uses no training data
at all. 2) SVS relies on a proxy geometry produced by an
external system (and may fail when that geometry is incor-
rect), while we use no proxy geometry and in fact produce
high-quality depth maps ourselves. 3) SVS has been trained
with a perceptual loss, while our model is trained using only
a per-pixel loss on RGB. 4) Our model is extremely com-
pact, and requires only 10 million parameters to perform

14

view synthesis, while SVS requires multiple large CNNs
and access to all training images (because it operates by
blending training images together) to render views.

From Table [6] we see that SVS outperforms our model
on all but the playground scene. Notably, that scene is the
only test-set scene that mostly consists of natural content,
while the other three scenes predominately feature large ve-
hicles. We speculate that SVS may be better-suited to large
piecewise planar objects (which makes sense, given SVS’s
reliance on a proxy geometry that is itself a piecewise planar
mesh) while ours may be better suited to scenes containing
natural content (trees, grass, flowers, etc).

SVS

Our Model w/GLO

M60 Playground Train Truck

Figure 11. A visualization of our model with Stable View Synthesis [38]] on scenes from the Tanks and Temples dataset [22]]. Image
quality is roughly comparable across the two techniques, though our renderings exhibits different failure modes than SVS’s in the absence
of observations (as in M60) and, because our model neutralizes most photometric variation during training, our renderings may have a
different global brightness or color shift (as in Train).

(a) Our Model, PSNR =16.67, SSIM = 0.493, LPIPS = 0.422 (b) SVS [38], PSNR = 16.11, SSIM = 0.488, LPIPS = 0.396

Figure 12. A rendering from (a) our model, and (b) Stable View Synthesis [[38]] on a scene from our dataset. The PSNR, SSIM, and
LPIPS metrics for this image are shown in each subcaption. Despite SVS producing a blurry background, it achieves a lower LPIPS score,
suggesting that this metric may be an unreliable signal in this setting. We also visualize (a) the depth map produced by our model alongside
(b) the depth map produced by COLMAP [42] which is used by SVS. The poor reconstruction quality of COLMAP in the distant trees
may explain why SVS struggles with this scene.

15

PSNR

Outdoor Indoor
bicycle flowers garden stump treehill | room counter kitchen bonsai
NeRF [[12/[30] 21.76 19.40 23.11 2173 21.28 28.56 25.67 26.31 26.81
NeRF w/ DONeRF [31]] parameterization | 21.67 19.48 2329 2338 21.70 | 28.28 25.74 2542 27.32
mip-NeRF [3]] 21.69 19.31 23.16 23.10 21.21 28.73 25.59 26.47 27.13
NeRF++ [48] 22.64 20.31 2432 2434 2220 | 28.87 26.38 27.80 29.15
Deep Blending [|15] 21.09 18.13 23.61 2408 20.80 | 27.20 26.28 25.02 27.08
Point-Based Neural Rendering [[23]] 21.64 19.28 2250 2390 20.98 26.99 25.23 24.47 28.42
Stable View Synthesis [38] 22.79 20.15 2599 2439 21.72 | 28.93 26.40 28.49 29.07
mip-NeRF [3] w/bigger MLP 22.90 20.79 2585 23.64 21.71 30.67 28.61 29.95 31.59
NeRF++ [48|] w/bigger MLPs 23.75 21.11 2591 2548 @ 2277 30.13 27.79 29.85 30.68
Our Model 23.99 21.35 26.10 2627 22.47 31.53 29.51 32.13 33.06
Our Model w/GLO 23.66 21.35 25.10 2599 2216 | 28.24 28.13 29.99 30.38
SSIM
Outdoor Indoor
bicycle flowers garden stump treehill | room counter kitchen bonsai
NeRF [[12}[30] 0.455 0.376 0.546 0453 0459 | 0.843 0.775 0.749 0.792
NeRF w/ DONeRF [31]] parameterization | 0.454 0.379 0.542 0522 0461 0.841 0.776 0.678 0.813
mip-NeRF [3]] 0.454 0.373 0.543 0517 0466 | 0.851 0.779 0.745 0.818
NeRF++ 48] 0.526 0.453 0.635 0.594 0.530 | 0.852 0.802 0.816 0.876
Deep Blending [|15] 0.466 0.320 0.675 0.634 0.523 0.868 0.856 0.768 0.883
Point-Based Neural Rendering [23]] 0.608 0.487 0.735 0.651 0.579 | 0.887 0.868 0.876 0.919
Stable View Synthesis [38]] 0.663 0.541 0.818 0.683 0.606 | 0.905 0.886 0910 0.925
mip-NeRF [3]] w/bigger MLP 0.612 0.514 0.777 0.643 0.577 | 0.903 0.877 0.902 0.928
NeRF++ [48]] w/bigger MLPs 0.630 0.533 0.761 0.687 0.597 | 0.883 0.857 0.888 0913
Our Model 0.666 0.568 0.785 0.741 0.615 0.914 0.894 0.920 0.937
Our Model w/GLO 0.671 0.575 0.779 0.738 0.604 | 0.904 0.888 0.915 0.931
LPIPS
Outdoor Indoor
bicycle flowers garden stump treehill | room counter kitchen bonsai
NeRF [[12}[30] 0.536 0.529 0415 0.551 0.546 | 0.353 0.394 0.335 0.398
NeRF w/ DONeRF [31]] parameterization | 0.542 0.539 0436 0.492 0.545 0.368 0.394 0.410 0.368
mip-NeRF [3]] 0.541 0.535 0422 0490 0.538 | 0.346 0.390 0.336 0.370
NeRF++ 48] 0.455 0.466 0.331 0416 0466 | 0.335 0.351 0.260 0.291
Deep Blending [|15] 0.377 0.476 0.231 0.351 0.383 0.266 0.258 0.246 0.275
Point-Based Neural Rendering [23]] 0.313 0.372 0.197 0303 0.325 0216 0.209 0.160 0.178
Stable View Synthesis [38] 0.243 0.317 0.137 0.281 0.286 | 0.182 0.168 0.125 0.164
mip-NeRF [3]] w/bigger MLP 0.372 0.407 0.205 0357 0401 0.229 0.239 0.152 0.204
NeRF++ [48]] w/bigger MLPs 0.356 0.395 0.223 0328 0.386 | 0.270 0.270 0.177 0.230
Our Model 0.298 0.350 0.175 0259 0.338 | 0.210 0.204 0.126 0.184
Our Model w/GLO 0.292 0.344 0.176 = 0.259 0.342 0.210 0.207 0.129 0.187

Table 4. Here we present an expanded version of Table 1 from the main paper, where we evaluate our model and multiple NeRF and
non-NeRF baselines on our new dataset, but where we report metrics for each scene separately. Though some scenes are more challenging
than others, the overall ranking of all techniques on each scene is generally consistent with the ranking suggested by the average metrics.

16

Color Corrected

PSNR1 SSIM1 LPIPS| | PSNRT SSIM1 LPIPS | | Time (hrs) |# Params
NeRF [121[30] 18.72 0.609 0.473 19.67 0.616 0.473 4.15 1.5M
NeRF w/ DONeRF [31] parameterization 18.85 0.618 0.477 20.00 0.624 0.477 4.70 1.4M
mip-NeRF [3] 18.86 0.620 0.463 19.93 0.625 0.464 3.23 0.7M
NeRF++ [48]] 19.32 0.647 0.425 20.52 0.652 0.427 9.71 2.4M
mip-NeRF [3|] w/bigger MLP 19.85 0.697 0.340 21.09 0.702 0.343 22.75 9.0M
NeRF++ [48] w/bigger MLPs 19.83 0.693 0.358 21.15 0.697 0.362 19.94 9.0M
Stable View Synthesis [38] 21.13 0.777 0.209 22.76 0.778 0.216 - -
Our Model 19.25 0.690 0.346 20.59 0.694 0.352 6.27 9.9M
Our Model w/GLO 19.31 0.723 0.290 22.20 0.746 0.284 6.33 9.9M

Table 5. The average performance of our model and all NeRF baselines, as well as the top-performing non-NeRF baseline on our own
dataset (Stable View Synthesis), on the “Tanks and Temples” dataset [22]. This dataset exhibits significant photometric variation across
images (see Figure [T0), making it ill-suited to our goals. To partially ameliorate this we present additional “color corrected” metrics, in
which this photometric variation has been minimized. Our model outperforms all NeRF baselines, but is slightly outperformed by SVS
(which was designed for this dataset, and which was trained on the training set of this dataset), though this appears to be partially due to
SVS being better able to predict the photometric variation of this dataset, while the “w/ GLO” variant of our model learns to be invariant
to that photometric variation.

Color Corrected PSNR
M60 Playground Train Truck
NeRF [[12/[30] 17.59 21.72 19.17 20.21
NeRF w/ DONeRF [31] parameterization | 17.31 23.13 18.76 20.81
mip-NeRF [3]] 17.58 22.21 19.42 20.50
NeRF++ [48] 18.09 23.05 19.50 21.44
mip-NeRF [3] w/bigger MLP 19.14 23.65 19.82 21.74
NeRF++ [48] w/bigger MLPs 18.81 24.01 19.84 21.94
Stable View Synthesis [38]] 19.94 25.50 21.76 23.85
Our Model 17.67 24.10 19.29 21.30
Our Model w/GLO 18.48 26.79 21.05 22.48
Color Corrected SSIM
M60 Playground Train Truck
NeRF [[12/[30] 0.619 0.624 0.575 0.646
NeRF w/ DONeRF [31] parameterization | 0.622 0.659 0.559 0.657
mip-NeRF [3]] 0.629 0.638 0.582 0.650
NeRF++ [48]] 0.644 0.676 0.586 0.704
mip-NeRF [3|] w/bigger MLP 0.694 0.726 0.642 0.747
NeRF++ [48] w/bigger MLPs 0.682 0.724 0.630 0.751
Stable View Synthesis [38]] 0.756 0.788 0.731 0.836
Our Model 0.671 0.738 0.625 0.742
Our Model w/GLO 0.696 0.797 0.693 0.799
Color Corrected LPIPS
M60 Playground Train Truck
NeRF [[12[[30] 0.466 0.473 0493 0458
NeRF w/ DONeRF [31] parameterization | 0.466 0.458 0.514 0.468
mip-NeRF [3]] 0.462 0.461 0.483 0.449
NeRF++ [48]] 0.432 0.418 0473 0.387
mip-NeRF [3] w/bigger MLP 0.367 0.330 0.379 0.296
NeRF++ [48] w/bigger MLPs 0.383 0.348 0.409 0.308
Stable View Synthesis [38]] 0.251 0.212 0.247 0.152
Our Model 0.390 0.309 0.384 0.324
Our Model w/GLO 0.358 0.242 0.305 0.230

Table 6. Performance on the “Tanks and Temples” dataset, reported for each individual test-set scene, using “color corrected” error metrics.

17

	1 . Preliminaries: mip-NeRF
	2 . Scene and Ray Parameterization
	3 . Coarse-to-Fine Online Distillation
	4 . Regularization for Interval-Based Models
	5 . Optimization
	6 . Results
	7 . Conclusion
	A . Proposal Supervision Visualization
	B . Additional Model Details
	C . Additional Results

