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Abstract

We present a generalization of the Cauchy/Lorentzian,
Geman-McClure, Welsch/Leclerc, generalized Charbon-
nier, Charbonnier/pseudo-Huber/L1-L2, and L2 loss func-
tions. By introducing robustness as a continuous param-
eter, our loss function allows algorithms built around ro-
bust loss minimization to be generalized, which improves
performance on basic vision tasks such as registration and
clustering. Interpreting our loss as the negative log of a
univariate density yields a general probability distribution
that includes normal and Cauchy distributions as special
cases. This probabilistic interpretation enables the training
of neural networks in which the robustness of the loss auto-
matically adapts itself during training, which improves per-
formance on learning-based tasks such as generative im-
age synthesis and unsupervised monocular depth estima-
tion, without requiring any manual parameter tuning.

Many problems in statistics and optimization require ro-
bustness — that a model be less influenced by outliers than
by inliers [18, 20]. This idea is common in parameter es-
timation and learning tasks, where a robust loss (say, ab-
solute error) may be preferred over a non-robust loss (say,
squared error) due to its reduced sensitivity to large errors.
Researchers have developed various robust penalties with
particular properties, many of which are summarized well
in [3, 40]. In gradient descent or M-estimation [17] these
losses are often interchangeable, so researchers may exper-
iment with different losses when designing a system. This
flexibility in shaping a loss function may be useful because
of non-Gaussian noise, or simply because the loss that is
minimized during learning or parameter estimation is dif-
ferent from how the resulting learned model or estimated
parameters will be evaluated. For example, one might train
a neural network by minimizing the difference between the
network’s output and a set of images, but evaluate that net-
work in terms of how well it hallucinates random images.

In this paper we present a single loss function that is a
superset of many common robust loss functions. A single
continuous-valued parameter in our general loss function
can be set such that it is equal to several traditional losses,

and can be adjusted to model a wider family of functions.
This allows us to generalize algorithms built around a fixed
robust loss with a new “robustness” hyperparameter that can
be tuned or annealed to improve performance.

Though new hyperparameters may be valuable to a prac-
titioner, they complicate experimentation by requiring man-
ual tuning or time-consuming cross-validation. However,
by viewing our general loss function as the negative log-
likelihood of a probability distribution, and by treating the
robustness of that distribution as a latent variable, we show
that maximizing the likelihood of that distribution allows
gradient-based optimization frameworks to automatically
determine how robust the loss should be without any manual
parameter tuning. This “adaptive” form of our loss is par-
ticularly effective in models with multivariate output spaces
(say, image generation or depth estimation) as we can intro-
duce independent robustness variables for each dimension
in the output and thereby allow the model to independently
adapt the robustness of its loss in each dimension.

The rest of the paper is as follows: In Section 1 we de-
fine our general loss function, relate it to existing losses,
and enumerate some of its useful properties. In Sec-
tion 2 we use our loss to construct a probability distri-
bution, which requires deriving a partition function and a
sampling procedure. Section 3 discusses four representa-
tive experiments: In Sections 3.1 and 3.2 we take two

Figure 1. Our general loss function (left) and its gradient (right)
for different values of its shape parameter α. Several values of α
reproduce existing loss functions: L2 loss (α = 2), Charbonnier
loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α =
−2), and Welsch loss (α = −∞).
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vision-oriented deep learning models (variational autoen-
coders for image synthesis and self-supervised monocular
depth estimation), replace their losses with the negative log-
likelihood of our general distribution, and demonstrate that
allowing our distribution to automatically determine its own
robustness can improve performance without introducing
any additional manually-tuned hyperparameters. In Sec-
tions 3.3 and 3.4 we use our loss function to generalize
algorithms for the classic vision tasks of registration and
clustering, and demonstrate the performance improvement
that can be achieved by introducing robustness as a hyper-
parameter that is annealed or manually tuned.

1. Loss Function
The simplest form of our loss function is:

f (x, α, c) =
|α− 2|
α

( (x/c)
2

|α− 2|
+ 1

)α/2

− 1

 (1)

Here α ∈ R is a shape parameter that controls the robust-
ness of the loss and c > 0 is a scale parameter that controls
the size of the loss’s quadratic bowl near x = 0.

Though our loss is undefined when α = 2, it approaches
L2 loss (squared error) in the limit:

lim
α→2

f (x, α, c) =
1

2
(x/c)

2 (2)

When α = 1 our loss is a smoothed form of L1 loss:

f (x, 1, c) =
√

(x/c)2 + 1− 1 (3)

This is often referred to as Charbonnier loss [6], pseudo-
Huber loss (as it resembles Huber loss [19]), or L1-L2 loss
[40] (as it behaves like L2 loss near the origin and like L1
loss elsewhere).

Our loss’s ability to express L2 and smoothed L1 losses
is shared by the “generalized Charbonnier” loss [35], which
has been used in flow and depth estimation tasks that require
robustness [7, 24] and is commonly defined as:(

x2 + ε2
)α/2

(4)

Our loss has significantly more expressive power than the
generalized Charbonnier loss, which we can see by set-
ting our shape parameter α to nonpositive values. Though
f (x, 0, c) is undefined, we can take the limit of f (x, α, c)
as α approaches zero:

lim
α→0

f (x, α, c) = log

(
1

2
(x/c)

2
+ 1

)
(5)

This yields Cauchy (aka Lorentzian) loss [2]. By setting
α = −2, our loss reproduces Geman-McClure loss [14]:

f (x,−2, c) =
2 (x/c)

2

(x/c)
2

+ 4
(6)

In the limit as α approaches negative infinity, our loss be-
comes Welsch [21] (aka Leclerc [26]) loss:

lim
α→−∞

f (x, α, c) = 1− exp

(
−1

2
(x/c)

2

)
(7)

With this analysis we can present our final loss function,
which is simply f (·) with special cases for its removable
singularities at α = 0 and α = 2 and its limit at α = −∞.

ρ (x, α, c) =



1
2 (x/c)

2 if α = 2

log
(

1
2 (x/c)

2
+ 1
)

if α = 0

1− exp
(
− 1

2 (x/c)
2
)

if α = −∞
|α−2|
α

((
(x/c)2

|α−2| + 1
)α/2
− 1

)
otherwise

(8)
As we have shown, this loss function is a superset of
the Welsch/Leclerc, Geman-McClure, Cauchy/Lorentzian,
generalized Charbonnier, Charbonnier/pseudo-Huber/L1-
L2, and L2 loss functions.

To enable gradient-based optimization we can derive the
derivative of ρ (x, α, c) with respect to x:

∂ρ

∂x
(x, α, c) =



x
c2 if α = 2

2x
x2+2c2 if α = 0
x
c2 exp

(
− 1

2 (x/c)
2
)

if α = −∞
x
c2

(
(x/c)2

|α−2| + 1
)(α/2−1)

otherwise
(9)

Our loss and its derivative are visualized for different values
of α in Figure 1.

The shape of the derivative gives some intuition as to
how α affects behavior when our loss is being minimized by
gradient descent or some related method. For all values of α
the derivative is approximately linear when |x| < c, so the
effect of a small residual is always linearly proportional to
that residual’s magnitude. If α = 2, the derivative’s magni-
tude stays linearly proportional to the residual’s magnitude
— a larger residual has a correspondingly larger effect. If
α = 1 the derivative’s magnitude saturates to a constant 1/c
as |x| grows larger than c, so as a residual increases its ef-
fect never decreases but never exceeds a fixed amount. If
α < 1 the derivative’s magnitude begins to decrease as |x|
grows larger than c (in the language of M-estimation [17],
the derivative, aka “influence”, is “redescending”) so as the
residual of an outlier increases, that outlier has less effect
during gradient descent. The effect of an outlier diminishes
as α becomes more negative, and as α approaches −∞ an
outlier whose residual magnitude is larger than 3c is almost
completely ignored.

We can also reason about α in terms of averages. Be-
cause the empirical mean of a set of values minimizes total
squared error between the mean and the set, and the empir-
ical median similarly minimizes absolute error, minimizing



our loss with α = 2 is equivalent to estimating a mean, and
with α = 1 is similar to estimating a median. Minimizing
our loss with α = −∞ is equivalent to local mode-finding
[36]. Values of α between these extents can be thought of
as smoothly interpolating between these three kinds of av-
erages during estimation.

Our loss function has several useful properties that we
will take advantage of. The loss is smooth (i.e., in C∞)
with respect to x, α, and c > 0, and is therefore well-suited
to gradient-based optimization over its input and its param-
eters. The loss is zero at the origin, and increases monoton-
ically with respect to |x|:

ρ (0, α, c) = 0
∂ρ

∂|x|
(x, α, c) ≥ 0 (10)

The loss is invariant to a simultaneous scaling of c and x:

∀k>0 ρ(kx, α, kc) = ρ(x, α, c) (11)

The loss increases monotonically with respect to α:

∂ρ

∂α
(x, α, c) ≥ 0 (12)

This is convenient for graduated non-convexity [4]: we can
initialize α such that our loss is convex and then gradually
reduce α (and therefore reduce convexity and increase ro-
bustness) during optimization, thereby enabling robust esti-
mation that (often) avoids local minima.

We can take the limit of the loss as α approaches infinity,
which due to Eq. 12 must be the upper bound of the loss:

ρ (x, α, c) ≤ lim
α→+∞

ρ (x, α, c) = exp

(
1

2
(x/c)

2

)
− 1

(13)
We can bound the magnitude of the gradient of the loss,
which allows us to better reason about exploding gradients:∣∣∣∣∂ρ∂x (x, α, c)

∣∣∣∣ ≤
 1
c

(
α−2
α−1

)(α−1
2 )
≤ 1

c if α ≤ 1
|x|
c2 if α ≤ 2

(14)

L1 loss is not expressible by our loss, but if c is much
smaller than x we can approximate it with α = 1:

f (x, 1, c) ≈ |x|
c
− 1 if c� x (15)

See Appendix E for other potentially-useful properties that
are not used in our experiments.

2. Probability Density Function
With our loss function we can construct a general prob-

ability distribution, such that the negative log-likelihood
(NLL) of its PDF is a shifted version of our loss function:

p (x | µ, α, c) =
1

cZ (α)
exp (−ρ (x− µ, α, c)) (16)

Z (α) =

∫ ∞
−∞

exp (−ρ (x, α, 1)) (17)

where p (x | µ, α, c) is only defined if α ≥ 0, as Z (α) is
divergent when α < 0. For some values of α the partition
function is relatively straightforward:

Z (0) = π
√

2 Z (1) = 2eK1(1)

Z (2) =
√

2π Z (4) = e
1/4K1/4(1/4) (18)

where Kn(·) is the modified Bessel function of the second
kind. For any rational positive α (excluding a singularity at
α = 2) where α = n/d with n, d ∈ N, we see that

Z
(n
d

)
=
e|

2d
n −1|

√∣∣ 2d
n − 1

∣∣
(2π)(d−1)

G 0,0
p,q

(
ap
bq

∣∣∣∣ ( 1

n
− 1

2d

)2d
)

bq =

{
i

n

∣∣∣∣ i = −1

2
, ..., n− 3

2

}
∪
{

i

2d

∣∣∣∣ i = 1, ..., 2d− 1

}
ap =

{
i

n

∣∣∣∣ i = 1, ..., n− 1

}
(19)

where G(·) is the Meijer G-function and bq is a multiset
(items may occur twice). Because the partition function
is difficult to evaluate or differentiate, in our experiments
we approximate log(Z (α)) with a cubic hermite spline (see
Appendix C for details).

Just as our loss function includes several common loss
function as special cases, our distribution includes several
common distributions as special cases. When α = 2 our
distribution becomes a normal (Gaussian) distribution, and
when α = 0 our distribution becomes a Cauchy distri-
bution. These are also both special cases of Student’s t-
distribution (ν =∞ and ν = 1, respectively), though these
are the only two points where these two families of distribu-
tions intersect. Our distribution resembles the generalized
Gaussian distribution [29, 34], except that it is “smoothed”
so as to approach a Gaussian distribution near the origin re-
gardless of the shape parameter α. The PDF and NLL of our
distribution for different values of α can be seen in Figure 2.

In later experiments we will use the NLL of our general
distribution− log(p(·|α, c)) as the loss for training our neu-
ral networks, not our general loss ρ (·, α, c). Critically, us-
ing the NLL allows us to treat α as a free parameter, thereby
allowing optimization to automatically determine the de-
gree of robustness that should be imposed by the loss be-
ing used during training. To understand why the NLL must
be used for this, consider a training procedure in which we
simply minimize ρ (·, α, c) with respect to α and our model
weights. In this scenario, the monotonicity of our general
loss with respect to α (Eq. 12) means that optimization can
trivially minimize the cost of outliers by setting α to be as
small as possible. Now consider that same training pro-
cedure in which we minimize the NLL of our distribution



Figure 2. The negative log-likelihoods (left) and probability den-
sities (right) of the distribution corresponding to our loss function
when it is defined (α ≥ 0). NLLs are simply losses (Fig. 1) shifted
by a log partition function. Densities are bounded by a scaled
Cauchy distribution.

instead of our loss. As can be observed in Figure 2, reduc-
ing α will decrease the NLL of outliers but will increase
the NLL of inliers. During training, optimization will have
to choose between reducing α, thereby getting “discount”
on large errors at the cost of paying a penalty for small er-
rors, or increasing α, thereby incurring a higher cost for
outliers but a lower cost for inliers. This tradeoff forces op-
timization to judiciously adapt the robustness of the NLL
being minimized. As we will demonstrate later, allowing
the NLL to adapt in this way can increase performance on
a variety of learning tasks, in addition to obviating the need
for manually tuning α as a fixed hyperparameter.

Sampling from our distribution is straightforward given
the observation that − log (p (x | 0, α, 1)) is bounded from
below by ρ(x, 0, 1) + log(Z(α)) (shifted Cauchy loss). See
Figure 2 for visualizations of this bound when α = ∞,
which also bounds the NLL for all values of α. This lets
us perform rejection sampling using a Cauchy as the pro-
posal distribution. Because our distribution is a location-
scale family, we sample from p (x | 0, α, 1) and then scale
and shift that sample by c and µ respectively. This sam-
pling approach is efficient, with an acceptance rate between
∼ 45% (α = ∞) and 100% (α = 0). Pseudocode for sam-
pling is shown in Algorithm 1.

Algorithm 1 Sampling from our general distribution
Input: Parameters for the distribution to sample {µ, α, c}
Output: A sample drawn from p (x | µ, α, c).

1: while True:
2: x ∼ Cauchy(x0 = 0, γ =

√
2)

3: u ∼ Uniform(0, 1)

4: if u < p(x | 0,α,1)
exp(−ρ(x,0,1)−log(Z(α))) :

5: return cx+ µ

3. Experiments
We will now demonstrate the utility of our loss function

and distribution with four experiments. None of these re-
sults are intended to represent the state-of-the-art for any
particular task — our goal is to demonstrate the value of our
loss and distribution as useful tools in isolation. We will
show that across a variety of tasks, just replacing the loss
function of an existing model with our general loss function
can enable significant performance improvements.

In Sections 3.1 and 3.2 we focus on learning based vi-
sion tasks in which training involves minimizing the differ-
ence between images: variational autoencoders for image
synthesis and self-supervised monocular depth estimation.
We will generalize and improve models for both tasks by
using our general distribution (either as a conditional dis-
tribution in a generative model or by using its NLL as an
adaptive loss) and allowing the distribution to automatically
determine its own degree of robustness. Because robustness
is automatic and requires no manually-tuned hyperparame-
ters, we can even allow for the robustness of our loss to
be adapted individually for each dimension of our output
space — we can have a different degree of robustness at
each pixel in an image, for example. As we will show, this
approach is particularly effective when combined with im-
age representations such as wavelets, in which we expect to
see non-Gaussian, heavy-tailed distributions.

In Sections 3.3 and 3.4 we will build upon existing al-
gorithms for two classic vision tasks (registration and clus-
tering) that both work by minimizing a robust loss that is
subsumed by our general loss. We will then replace each
algorithm’s fixed robust loss with our loss, thereby intro-
ducing a continuous tunable robustness parameter α. This
generalization allows us to introduce new models in which
α is manually tuned or annealed, thereby improving per-
formance. These results demonstrate the value of our loss
function when designing classic vision algorithms, by al-
lowing model robustness to be introduced into the algorithm
design space as a continuous hyperparameter.

3.1. Variational Autoencoders

Variational autoencoders [23, 31] are a landmark tech-
nique for training autoencoders as generative models, which
can then be used to draw random samples that resemble
training data. We will demonstrate that our general distribu-
tion can be used to improve the log-likelihood performance
of VAEs for image synthesis on the CelebA dataset [27]. A
common design decision for VAEs is to model images us-
ing an independent normal distribution on a vector of RGB
pixel values [23], and we use this design as our baseline
model. Recent work has improved upon this model by us-
ing deep, learned, and adversarial loss functions [9, 16, 25].
Though it’s possible that our general loss or distribution
can add value in these circumstances, to more precisely iso-



late our contribution we will explore the hypothesis that the
baseline model of normal distributions placed on a per-pixel
image representation can be improved significantly with the
small change of just modeling a linear transformation of a
VAE’s output with our general distribution. Again, our goal
is not to advance the state of the art for any particular im-
age synthesis task, but is instead to explore the value of our
distribution in an experimentally controlled setting.

In our baseline model we give each pixel’s normal distri-
bution a variable scale parameter σ(i) that will be optimized
over during training, thereby allowing the VAE to adjust the
scale of its distribution for each output dimension. We can
straightforwardly replace this per-pixel normal distribution
with a per-pixel general distribution, in which each output
dimension is given a distinct shape parameter α(i) in ad-
dition to its scale parameter c(i) (i.e., σ(i)). By letting the
α(i) parameters be free variables alongside the scale param-
eters, training is able to adaptively select both the scale and
robustness of the VAE’s posterior distribution over pixel
values. We restrict all α(i) to be in (0, 3), which allows
our distribution to generalize Cauchy (α = 0) and Normal
(α = 2) distributions and anything in between, as well as
more platykurtic distributions (α > 2) which helps for this
task. We limit α to be less than 3 because of the increased
risk of numerical instability during training as α increases.
We also compare against a Cauchy distribution as an ex-
ample of a fixed heavy-tailed distribution, and against Stu-
dent’s t-distribution as an example of a distribution that can
adjust its own robustness similarly to ours.

Regarding implementation, for each output dimension
i we construct unconstrained TensorFlow variables {α(i)

` }
and {c(i)` } and define

α(i) = (αmax − αmin) sigmoid
(
α
(i)
`

)
+ αmin (20)

c(i) = softplus
(
c
(i)
`

)
+ cmin (21)

αmin = 0, αmax = 3, cmin = 10−8 (22)

The cmin offset avoids degenerate optima where likelihood
is maximized by having c(i) approach 0, while αmin and
αmax determine the range of values that α(i) can take. Vari-
ables are initialized such that initially all α(i) = 1 and
c(i) = 0.01, and are optimized simultaneously with the au-
toencoder’s weights using the same Adam [22] optimizer
instance.

Though modeling images using independent distribu-
tions on pixel intensities is a popular choice due to its sim-
plicity, classic work in natural image statistics suggest that
images are better modeled with heavy-tailed distributions
on wavelet-like image decompositions [10, 28]. We there-
fore train additional models in which our decoded RGB per-
pixel images are linearly transformed into spaces that bet-
ter model natural images before computing the NLL of our

Normal Cauchy t-dist. Ours
Pixels + RGB 8,662 9,602 10,177 10,240
DCT + YUV 31,837 31,295 32,804 32,806
Wavelets + YUV 31,505 35,779 36,373 36,316

Table 1. Validation set ELBOs (higher is better) for our varia-
tional autoencoders. Models using our general distribution better
maximize the likelihood of unseen data than those using normal
or Cauchy distributions (both special cases of our model) for all
three image representations, and perform similarly to Student’s t-
distribution (a different generalization of normal and Cauchy dis-
tributions). The best and second best performing techniques for
each representation are colored orange and yellow respectively.

Normal Cauchy t-distribution Ours
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Figure 3. Random samples from our variational autoencoders. We
use either normal, Cauchy, Student’s t, or our general distributions
(columns) to model the coefficients of three different image rep-
resentations (rows). Because our distribution can adaptively inter-
polate between Cauchy-like or normal-like behavior for each co-
efficient individually, using it results in sharper and higher-quality
samples (particularly when using DCT or wavelet representations)
and does a better job of capturing low-frequency image content
than Student’s t-distribution.

distribution. For this we use the DCT [1] and the CDF 9/7
wavelet decomposition [8], both with a YUV colorspace.
These representations resemble the JPEG and JPEG 2000
compression standards, respectively.

Our results can be seen in Table 1, where we report the
validation set evidence lower bound (ELBO) for all com-
binations of our four distributions and three image repre-
sentations, and in Figure 3, where we visualize samples
from these models. We see that our general distribution per-



forms similarly to a Student’s t-distribution, with both pro-
ducing higher ELBOs than any fixed distribution across all
representations. These two adaptive distributions appear to
have complementary strengths: ours can be more platykur-
tic (α > 2) while a t-distribution can be more leptokurtic
(ν < 1), which may explain why neither model consis-
tently outperforms the other across representations. Note
that the t-distribution’s NLL does not generalize the Char-
bonnier, L1, Geman-McClure, or Welsch losses, so unlike
ours it will not generalize the losses used in the other tasks
we will address. For all representations, VAEs trained with
our general distribution produce sharper and more detailed
samples than those trained with normal distributions. Mod-
els trained with Cauchy and t-distributions preserve high-
frequency detail and work well on pixel representations,
but systematically fail to synthesize low-frequency image
content when given non-pixel representations, as evidenced
by the gray backgrounds of those samples. Comparing
performance across image representations shows that the
“Wavelets + YUV” representation best maximizes valida-
tion set ELBO — though if we were to limit our model to
only normal distributions the “DCT + YUV” model would
appear superior, suggesting that there is value in reason-
ing jointly about distributions and image representations.
After training we see shape parameters {α(i)} that span
(0, 2.5), suggesting that an adaptive mixture of normal-like
and Cauchy-like distributions is useful in modeling natural
images, as has been observed previously [30]. Note that
this adaptive robustness is just a consequence of allowing
{α(i)

` } to be free variables during training, and requires no
manual parameter tuning. See Appendix G for more sam-
ples and reconstructions from these models, and a review of
our experimental procedure.

3.2. Unsupervised Monocular Depth Estimation

Due to the difficulty of acquiring ground-truth direct
depth observations, there has been recent interest in “unsu-
pervised” monocular depth estimation, in which stereo pairs
and geometric constraints are used to directly train a neural
network [11, 12, 15, 42]. We use [42] as a representative
model from this literature, which is notable for its estima-
tion of depth and camera pose. This model is trained by
minimizing the differences between two images in a stereo
pair, where one image has been warped to match the other
according to the depth and pose predictions of a neural net-
work. In [42] that difference between images is defined as
the absolute difference between RGB values. We will re-
place that loss with different varieties of our general loss,
and demonstrate that using annealed or adaptive forms of
our loss can improve performance.

The absolute loss in [42] is equivalent to maximizing the
likelihood of a Laplacian distribution with a fixed scale on
RGB pixel values. We replace that fixed Laplacian distri-

lower is better higher is better
Avg AbsRel SqRel RMS logRMS <1.25 <1.252 <1.253

Baseline [42] as reported 0.407 0.221 2.226 7.527 0.294 0.676 0.885 0.954
Baseline [42] reproduced 0.398 0.208 2.773 7.085 0.286 0.726 0.895 0.953
Ours, fixed α = 1 0.356 0.194 2.138 6.743 0.268 0.738 0.906 0.960
Ours, fixed α = 0 0.350 0.187 2.407 6.649 0.261 0.766 0.911 0.960
Ours, fixed α = 2 0.349 0.190 1.922 6.648 0.267 0.737 0.904 0.961
Ours, annealing α = 2→0 0.341 0.184 2.063 6.697 0.260 0.756 0.911 0.963
Ours, adaptive α ∈ (0, 2) 0.332 0.181 2.144 6.454 0.254 0.766 0.916 0.965

Table 2. Results on unsupervised monocular depth estimation us-
ing the KITTI dataset [13], building upon the model from [42]
(“Baseline”). By replacing the per-pixel loss used by [42] with
several variants of our own per-wavelet general loss function in
which our loss’s shape parameters are fixed, annealed, or adap-
tive, we see a significant performance improvement. The top three
techniques are colored red, orange, and yellow for each metric.
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Figure 4. Monocular depth estimation results on the KITTI bench-
mark using the “Baseline” network of [42]. Replacing only the
network’s loss function with our “adaptive” loss over wavelet co-
efficients results in significantly improved depth estimates.

bution with our general distribution, keeping our scale fixed
but allowing the shape parameter α to vary. Following our
observation from Section 3.1 that YUV wavelet representa-
tions work well when modeling images with our loss func-
tion, we impose our loss on a YUV wavelet decomposition
instead of the RGB pixel representation of [42]. The only
changes we made to the code from [42] were to replace its
loss function with our own and to remove the model compo-
nents that stopped yielding any improvement after the loss
function was replaced (see Appendix H for details). All
training and evaluation was performed on the KITTI dataset
[13] using the same training/test split as [42].

Results can be seen in Table 2. We present the error
and accuracy metrics used in [42] and our own “average”
error measure: the geometric mean of the four errors and
one minus the three accuracies. The “Baseline“ models use
the loss function of [42], and we present both the numbers
in [42] (“as reported”) and our own numbers from running



the code from [42] ourselves (“reproduced”). The “Ours”
entries all use our general loss imposed on wavelet coeffi-
cients, but for each entry we use a different strategy for set-
ting the shape parameter or parameters. We keep our loss’s
scale c fixed to 0.01, thereby matching the fixed scale as-
sumption of the baseline model and roughly matching the
shape of its L1 loss (Eq. 15). To avoid exploding gradients
we multiply the loss being minimized by c, thereby bound-
ing gradient magnitudes by residual magnitudes (Eq. 14).
For the “fixed” models we use a constant value for α for all
wavelet coefficients, and observe that though performance
is improved relative to the baseline, no single value of α is
optimal. The α = 1 entry is simply a smoothed version
of the L1 loss used by the baseline model, suggesting that
just using a wavelet representation improves performance.
In the “annealing α = 2 → 0” model we linearly inter-
polate α from 2 (L2) to 0 (Cauchy) as a function of train-
ing iteration, which outperforms all “fixed” models. In the
“adaptive α ∈ (0, 2)” model we assign each wavelet co-
efficient its own shape parameter as a free variable and we
allow those variables to be optimized alongside our network
weights during training as was done in Section 3.1, but with
αmin = 0 and αmax = 2. This “adaptive” strategy out-
performs the “annealing” and all “fixed” strategies, thereby
demonstrating the value of allowing the model to adaptively
determine the robustness of its loss during training. Note
that though the “fixed” and “annealed” strategies only re-
quire our general loss, the “adaptive” strategy requires that
we use the NLL of our general distribution as our loss —
otherwise training would simply drive α to be as small as
possible due to the monotonicity of our loss with respect
to α, causing performance to degrade to the “fixed α = 0”
model. Comparing the “adaptive” model’s performance to
that of the “fixed” models suggests that, as in Section 3.1,
no single setting of α is optimal for all wavelet coefficients.
Overall, we see that just replacing the loss function of [42]
with our adaptive loss on wavelet coefficients reduces aver-
age error by ∼17%.

In Figure 4 we compare our “adaptive” model’s out-
put to the baseline model and the ground-truth depth, and
demonstrate a substantial qualitative improvement. See Ap-
pendix H for many more results, and for visualizations of
the per-coefficient robustness selected by our model.

3.3. Fast Global Registration

Robustness is often a core component of geometric regis-
tration [38]. The Fast Global Registration (FGR) algorithm
of [41] finds the rigid transformation T that aligns point sets
{p} and {q} by minimizing the following loss:

∑
(p,q)

ρgm (‖p−Tq‖, c) (23)

Mean RMSE ×100 Max RMSE ×100
σ = 0 0.0025 0.005 0 0.0025 0.005

FGR [41] 0.373 0.518 0.821 0.591 1.040 1.767
shape-annealed gFGR 0.374 0.510 0.802 0.590 0.997 1.670
gFGR* 0.370 0.509 0.806 0.545 0.961 1.669

Table 3. Results on the registration task of [41], in which we
compare their “FGR” algorithm to two versions of our “gFGR”
generalization.

Figure 5. Performance (lower is better) of our gFGR algorithm
on the task of [41] as we vary our shape parameter α, with the
lowest-error point indicated by a circle. FGR (equivalent to gFGR
with α = −2) is shown as a dashed line and a square, and shape-
annealed gFGR for each noise level is shown as a dotted line.

where ρgm(·) is Geman-McClure loss. By using the Black
and Rangarajan duality between robust estimation and line
processes [3] FGR is capable of producing high-quality reg-
istrations at high speeds. Because Geman-McClure loss is a
special case of our loss, and because we can formulate our
loss as an outlier process (see Appendix A), we can gener-
alize FGR to an arbitrary shape parameter α by replacing
ρgm(·, c) with our ρ(·, α, c) (where setting α = −2 repro-
duces FGR).

This generalized FGR (gFGR) enables algorithmic im-
provements. FGR iteratively solves a linear system while
annealing its scale parameter c, which has the effect of grad-
ually introducing nonconvexity. gFGR enables an alterna-
tive strategy in which we directly manipulate convexity by
annealing α instead of c. This “shape-annealed gFGR” fol-
lows the same procedure as [41]: 64 iterations in which a
parameter is annealed every 4 iterations. Instead of anneal-
ing c, we set it to its terminal value and instead anneal α
over the following values:

2, 1, 1/2, 1/4, 0,−1/4,−1/2,−1,−2,−4,−8,−16,−32

Table 3 shows results for the 3D point cloud registration
task of [41] (Table 1 in that paper), which shows that an-
nealing shape produces moderately improved performance
over FGR for high-noise inputs, and behaves equivalently
in low-noise inputs. This suggests that performing gradu-
ated non-convexity by directly adjusting a shape parameter
that controls non-convexity — a procedure that is enabled
by our general loss – is preferable to indirectly controlling
non-convexity by annealing a scale parameter.
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YaleB 0.767 0.928 0.945 0.941 0.974 0.975 0.975 0.4%
COIL-100 0.853 0.871 0.888 0.965 0.957 0.957 0.962 11.6%
MNIST 0.679 - 0.761 - 0.828 0.893 0.901 7.9%
YTF 0.801 0.752 0.518 0.676 0.874 0.836 0.888 31.9%
Pendigits 0.728 0.813 0.775 0.467 0.854 0.848 0.871 15.1%
Mice Protein 0.525 0.536 0.527 0.394 0.638 0.649 0.650 0.2%
Reuters 0.471 0.545 0.523 0.057 0.553 0.556 0.561 1.1%
Shuttle 0.291 0.000 0.591 - 0.513 0.488 0.493 0.9%
RCV1 0.364 0.140 0.382 0.015 0.442 0.138 0.338 23.2%

Table 4. Results on the clustering task of [32] where we compare
their “RCC” algorithm to our “gRCC*” generalization in terms
of AMI on several datasets. We also report the AMI increase of
“gRCC*” with respect to “RCC”. Baselines are taken from [32].

Another generalization is to continue using the c-
annealing strategy of [41], but treat α as a hyperparameter
and tune it independently for each noise level in this task.
In Figure 5 we set α to a wide range of values and report
errors for each setting, using the same evaluation of [41].
We see that for high-noise inputs more negative values of
α are preferable, but for low-noise inputs values closer to
0 are optimal. We report the lowest-error entry for each
noise level as “gFGR*” in Table 3 where we see a signifi-
cant reduction in error, thereby demonstrating the improve-
ment that can be achieved from treating robustness as a hy-
perparameter.

3.4. Robust Continuous Clustering

In [32] robust losses are used for unsupervised cluster-
ing, by minimizing:

∑
i

‖xi − ui‖22 + λ
∑

(p,q)∈E

wp,qρgm (‖up − uq‖2) (24)

where {xi} is a set of input datapoints, {ui} is a set of “rep-
resentatives” (cluster centers), and E is a mutual k-nearest
neighbors (m-kNN) graph. As in Section 3.3, ρgm(·) is
Geman-McClure loss, which means that our loss can be
used to generalize this algorithm. Using the RCC code
provided by the authors (and keeping all hyperparameters
fixed to their default values) we replace Geman-McClure
loss with our general loss and then sweep over values of α.
In Figure 6 we show the adjusted mutual information (AMI,
the metric used by [32]) of the resulting clustering for each
value of α on the datasets used in [32], and in Table 4 we
report the AMI for the best-performing value of α for each
dataset as “gRCC*”. On some datasets performance is in-
sensitive to α, but on others adjusting α improves perfor-
mance by as much as 32%. This improvement demonstrates
the gains that can be achieved by introducing robustness as
a hyperparameter and tuning it accordingly.

Figure 6. Performance (higher is better) of our gRCC algorithm
on the clustering task of [32], for different values of our shape
parameter α, with the highest-accuracy point indicated by a dot.
Because the baseline RCC algorithm is equivalent to gRCC with
α = −2, we highlight that α value with a dashed line and a square.

4. Conclusion
We have presented a two-parameter loss function

that generalizes many existing one-parameter ro-
bust loss functions: the Cauchy/Lorentzian, Geman-
McClure, Welsch/Leclerc, generalized Charbonnier,
Charbonnier/pseudo-Huber/L1-L2, and L2 loss functions.
By reducing a family of discrete single-parameter losses
to a single function with two continuous parameters, our
loss enables the convenient exploration and comparison
of different robust penalties. This allows us to generalize
and improve algorithms designed around the minimiza-
tion of some fixed robust loss function, which we have
demonstrated for registration and clustering. When used
as a negative log-likelihood, this loss gives a general
probability distribution that includes normal and Cauchy
distributions as special cases. This distribution lets us train
neural networks in which the loss has an adaptive degree
of robustness for each output dimension, which allows
training to automatically determine how much robustness
should be imposed by the loss without any manual param-
eter tuning. When this adaptive loss is paired with image
representations in which variable degrees of heavy-tailed
behavior occurs, such as wavelets, this adaptive training ap-
proach allows us to improve the performance of variational
autoencoders for image synthesis and of neural networks
for unsupervised monocular depth estimation.

Acknowledgements: Thanks to Rob Anderson, Jesse En-
gel, David Gallup, Ross Girshick, Jaesik Park, Ben Poole,
Vivek Rathod, and Tinghui Zhou.
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A. Alternative Forms

The registration and clustering experiments in the paper
require that we formulate our loss as an outlier process. Us-
ing the equivalence between robust loss minimization and
outlier processes established by Black and Rangarajan [3],
we can derive our loss’s Ψ-function:

Ψ(z, α) =


− log(z) + z − 1 if α = 0

z log(z)− z + 1 if α = −∞
|α−2|
α

((
1− α

2

)
z

α
(α−2) + αz

2 − 1
)

if α < 2

ρ(x, α, c) = min
0≤z≤1

(
1

2
(x/c)

2
z + Ψ(z, α)

)
(25)

Ψ(z, α) is not defined when α ≥ 2 because for those values
the loss is no longer robust, and so is not well described as
a process that rejects outliers.

We can also derive our loss’s weight function to be used
during iteratively reweighted least squares [5, 17]:

1

x

∂ρ

∂x
(x, α, c) =



1
c2 if α = 2

2
x2+2c2 if α = 0
1
c2 exp

(
− 1

2 (x/c)
2
)

if α = −∞
1
c2

(
(x/c)2

|α−2| + 1
)(α/2−1)

otherwise
(26)

Curiously, these IRLS weights resemble a non-normalized
form of Student’s t-distribution. These weights are not used
in any of our experiments, but they are an intuitive way to
demonstrate how reducing α attenuates the effect of out-
liers. A visualization of our loss’s Ψ-functions and weight
functions for different values of α can be seen in Figure 7.

B. Practical Implementation

The special cases in the definition of ρ (·) that are
required because of the removable singularities of f (·)
at α = 0 and α = 2 can make implementing our
loss somewhat inconvenient. Additionally, f (·) is nu-
merically unstable near these singularities, due to divi-
sions by small values. Furthermore, many deep learning
frameworks handle special cases inefficiently by evaluat-
ing all cases of a conditional statement, even though only
one case is needed. To circumvent these issues we can
slightly modify our loss (and its gradient and Ψ-function) to
guard against singularities and make implementation easier:

Figure 7. Our general loss’s IRLS weight function (left) and Ψ-
function (right) for different values of the shape parameter α.

ρ (x, α, c) =
b

d

( (x/c)
2

b
+ 1

)(d/2)

− 1


∂ρ

∂x
(x, α, c) =

x

c2

(
(x/c)

2

b
+ 1

)(d/2−1)

Ψ(z, α) =

{
b
d

((
1− d

2

)
z

d
(d−2) + dz

2 − 1
)

if α < 2

0 if α = 2

b =|α− 2|+ ε d =

{
α+ ε if α ≥ 0

α− ε if α < 0

Where ε is some small value, such as 10−5. Note that even
very small values of ε can cause significant inaccuracy be-
tween our true partition function Z (α) and the effective
partition function of our approximate distribution when α
is near 0, so this approximate implementation should be
avoided when accurate values of Z (α) are necessary.

C. Partition Function Approximation

Implementing the negative log-likelihood of our general
distribution (ie, our adaptive loss) requires a tractable and
differentiable approximation of its log partition function.
Because the analytical form of Z (α) detailed in the pa-
per is difficult to evaluate efficiently for any real number,
and especially difficult to differentiate with respect to α,
we approximate log(Z (α)) using cubic hermite spline in-
terpolation in a transformed space. Efficiently approximat-
ing log(Z (α)) with a spline is difficult, as we would like a
concise approximation that holds over the entire valid range
α ≥ 0, and we would like to allocate more precision in our
spline interpolation to values near α = 2 (which is where
log(Z (α)) varies most rapidly). To accomplish this, we
first apply a monotonic nonlinearity to α that stretches val-
ues near α = 2 (thereby increasing the density of spline
knots in this region) and compresses values as α � 4, for



which we use:

curve(α) =

{
9(α−2)

4|α−2|+1 + α+ 2 if α < 4
5
18 log (4α− 15) + 8 otherwise

(27)

This curve is roughly piecewise-linear in [0, 4] with a slope
of ∼1 at α = 0 and α = 4, but with a slope of ∼10 at
α = 2. When α > 4 the curve becomes logarithmic. This
function is continuously differentiable, as is required for our
log-partition approximation to also be continuously differ-
entiable.

We transform α with this nonlinearity, and then approx-
imate log(Z (α)) in that transformed space using a spline
with knots in the range of [0, 12] evenly spaced apart by
1/1024. Values for each knot are set to their true value, and
tangents for each knot are set to minimize the squared er-
ror between the spline and the true log partition function.
Because our spline knots are evenly spaced in this trans-
formed space, spline interpolation can be performed in con-
stant time with respect to the number of spline knots. For all
values of α this approximation is accurate to within 10−6,
which appears to be sufficient for our purposes. Our non-
linearity and our spline approximation to the true partition
function for small values of α can be seen in Figure 8.

D. Motivation and Derivation
Our loss function is derived from the “generalized Char-

bonnier” loss [35], which itself builds upon the Charbon-
nier loss function [6]. To better motivate the construction
of our loss function, and to clarify its relationship to prior
work, here we work through how our loss function was con-
structed.

Generalized Charbonnier loss can be defined as:

d (x, α, c) =
(
x2 + c2

)α/2
(28)

Here we use a slightly different parametrization from [35]
and use α/2 as the exponent instead of just α. This makes the
generalized Charbonnier somewhat easier to reason about
with respect to standard loss functions: d (x, 2, c) resembles
L2 loss, d (x, 1, c) resembles L1 loss, etc.

We can reparametrize generalized Charbonnier loss as:

d (x, α, c) = cα
(

(x/c)
2

+ 1
)α/2

(29)

We omit the cα scale factor, which gives us a loss that is
scale invariant with respect to c:

g (x, α, c) =
(
(x/c)2 + 1

)α/2
(30)

∀k>0 g(kx, α, kc) = g(x, α, c) (31)

This lets us view the c “padding” variable as a “scale” pa-
rameter, similar to other common robust loss functions. Ad-
ditionally, only after dropping this scale factor does setting

Figure 8. Because our distribution’s log partition function
log(Z (α)) is difficult to evaluate for arbitrary inputs, we approx-
imate it using cubic hermite spline interpolation in a transformed
space: first we curve α by a continuously differentiable nonlin-
earity that increases knot density near α = 2 and decreases knot
density when α > 4 (top) and then we fit an evenly-sampled cubic
hermite spline in that curved space (bottom). The dots shown in
the bottom plot are a subset of the knots used by our cubic spline,
and are presented here to demonstrate how this approach allocates
spline knots with respect to α.

α to a negative value yield a family of meaningful robust
loss functions, such as Geman-McClure loss.

But this loss function still has several unintuitive proper-
ties: the loss is non-zero when x = 0 (assuming a non-zero
value of c), and the curvature of the quadratic “bowl” near
x = 0 varies as a function of c and α. We therefore con-
struct a shifted and scaled version of Equation 30 that does
not have these properties:

g (x, α, c)− g (0, α, c)

c2g′′ (0, α, c)
=

1

α

((
(x/c)

2
+ 1
)a/2
− 1

)
(32)

This loss generalizes L2, Cauchy, and Geman-McClure
loss, but it has the unfortunate side-effect of flattening out to
0 when α � 0, thereby prohibiting many annealing strate-
gies. This can be addressed by modifying the 1/α scaling
to approach 1 instead of 0 when α � 0 by introducing an-
other scaling that cancels out the division by α. To preserve
the scale-invariance of Equation 31, this scaling also needs
to be applied to the (x/c)

2 term in the loss. This scaling
also needs to maintain the monotonicity of our loss with
respect to α so as to make annealing possible. There are
several scalings that satisfy this property, so we select one



that is efficient to evaluation and which keeps our loss func-
tion smooth (ie, having derivatives of all orders everywhere)
with respect to x, α, and c, which is |α − 2|. This gives us
our final loss function:

f (x, α, c) =
|α− 2|
α

( (x/c)
2

|α− 2|
+ 1

)α/2

− 1

 (33)

Using |α − 2| satisfies all of our criteria, though it does
introduce a removable singularity into our loss function at
α = 2 and reduces numerical stability near α = 2.

E. Additional Properties
Here we enumerate additional properties of our loss

function that were not used in our experiments.
At the origin the IRLS weight of our loss is 1

c2 :

1

x

∂ρ

∂x
(0, α, c) =

1

c2
(34)

For all values of α, when |x| is small with respect to c the
loss is well-approximated by a quadratic bowl:

ρ (x, α, c) ≈ 1

2
(x/c)

2 if |x| < c (35)

Because the second derivative of the loss is maximized at
x = 0, this quadratic approximation tells us that the second
derivative is bounded from above:

∂2ρ

∂x2
(x, α, c) ≤ 1

c2
(36)

When α is negative the loss approaches a constant as |x|
approaches infinity, letting us bound the loss:

∀x,c ρ (x, α, c) ≤ α− 2

α
if α < 0 (37)

The loss’s Ψ-function increases monotonically with respect
to α when α < 2 for all values of z in [0, 1]:

∂Ψ

∂α
(z, α) ≥ 0 if 0 ≤ z ≤ 1 (38)

The roots of the second derivative of ρ (x, α, c) are:

x = ±c
√
α− 2

α− 1
(39)

This tells us at what value of x the loss begins to redescend.
This point has a magnitude of c when α = −∞, and that
magnitude increases as α increases. The root is undefined
when α ≥ 1, as our loss is redescending iff α < 1. Our
loss is strictly convex iff α ≥ 1, non-convex iff α < 1, and
pseudoconvex for all values of α.

F. Wavelet Implementation
Two of our experiments impose our loss on im-

ages reparametrized with the Cohen-Daubechies-Feauveau
(CDF) 9/7 wavelet decomposition [8]. The analysis filters
used for these experiments are:

lowpass highpass
0.852698679009 0.788485616406
0.377402855613 -0.418092273222
-0.110624404418 -0.040689417609
-0.023849465020 0.064538882629
0.037828455507

Here the origin coefficient of the filter is listed first, and the
rest of the filter is symmetric. The synthesis filters are de-
fined as usual, by reversing the sign of alternating wavelet
coefficients in the analysis filters. The lowpass filter sums
to
√

2, which means that image intensities are doubled at
each scale of the wavelet decomposition, and that the mag-
nitude of an image is preserved in its wavelet decomposi-
tion. Boundary conditions are “reflecting”, or half-sample
symmetric.

G. Variational Autoencoders
Our VAE experiments were performed using the

code included in the TensorFlow Probability codebase
at http://github.com/tensorflow/probability/blob/

master/tensorflow_probability/examples/vae.py.
This code was designed for binarized MNIST data, so
adapting it to the real-valued color images in CelebA [27]
required the following changes:

• Changing the input and output image resolution from
(28, 28, 1) to (64, 64, 3).

• Increasing the number of training steps from 5000 to
50000, as CelebA is significantly larger than MNIST.

• Delaying the start of cosine decay of the learning rate
until the final 10000 training iterations.

• Changing the CNN architecture from a 5-layer network
with 5-tap and 7-tap filters with interleaved strides of 1
and 2 (which maps from a 28 × 28 image to a vector)
to a 6-layer network consisting of all 5-tap filters with
strides of 2 (which maps from a 64×64 input to a vector).
The number of hidden units was left unchanged, and the
one extra layer we added at the end of our decoder (and
beginning of our decoder) was given the same number of
hidden units as the layer before it.

• In our “DCT + YUV” and “Wavelets + YUV” models,
before imposing our model’s posterior we apply an RGB-
to-YUV transformation and then a per-channel DCT or

http://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/vae.py
http://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/vae.py


Figure 9. Here we compare the validation set ELBO of our adap-
tive “Wavelets + YUV” VAE model with the ELBO achieved when
setting all wavelet coefficients to have the same fixed shape pa-
rameter α. We see that allowing our distribution to individually
adapt its shape parameter to each coefficient outperforms any sin-
gle fixed shape parameter.

wavelet transformation to the YUV images, and then in-
vert these transformations to visualize each sampled im-
age. In the “Pixels + RGB” model this transformation
and its inverse are the identity function.

• As discussed in the paper, for each output coefficient
(pixel value, DCT coefficient, or wavelet coefficient) we
add a scale variable (σ when using normal distributions,
c when using our general distributions) and a shape vari-
able α (when using our general distribution).

We made as few changes to the reference code as possible
so as to keep our model architecture as simple as possible,
as our goal is not to produce state-of-the-art image synthesis
results for some task, but is instead to simply demonstrate
the value of our general distribution in isolation.

CelebA [27] images are processed by extracting a square
160 × 160 image region at the center of each 178 × 218
image and downsampling it to 64 × 64 by a factor of 2.5×
using TensorFlow’s bilinear interpolation implementation.
Pixel intensities are scaled to [0, 1].

In the main paper we demonstrated that using our gen-
eral distribution to independently model the robustness of
each coefficient of our image representation works better
than assuming a Cauchy (α = 0) or normal distribution
(α = 2) for all coefficients (as those two distributions lie
within our general distribution). To further demonstrate the
value of independently modeling the robustness of each in-
dividual coefficient, we ran a more thorough experiment in
which we densely sampled values for α in [0, 2] that are
used for all coefficients. In Figure 9 we visualize the val-
idation set ELBO for each fixed value of α compared to

an independently-adapted model. As we can see, though
quality can be improved by selecting a value for α in be-
tween 0 and 2, no single global setting of the shape parame-
ter matches the performance achieved by allowing each co-
efficient’s shape parameter to automatically adapt itself to
the training data. This observation is consistent with ear-
lier results on adaptive heavy-tailed distributions for image
data [30].

In our Student’s t-distribution experiments, we
parametrize each “degrees of freedom” parameter as
the exponentiation of some latent free parameter:

ν(i) = exp
(
ν
(i)
`

)
(40)

where all ν(i)` are initialized to 0. Technically, these ex-
periments are performed with the “Generalized Student’s
t-distribution”, meaning that we have an additional scale
parameter σ(i) that is divided into x before computing the
log-likelihood and is accounted for in the partition function.
These scale parameters are parametrized identically to the
c(i) parameters used by our general distribution.

Comparing likelihoods across our different image repre-
sentations requires that the “Wavelets + YUV” and “DCT +
YUV” representations be normalized to match the “Pixels
+ RGB” representation. We therefore construct the linear
transformations used for the “Wavelets + YUV” and “DCT
+ YUV” spaces to have determinants of 1 as per the change
of variable formula (that is, both transformations are in the
“special linear group”). Our wavelet construction in Sec-
tion F satisfies this criteria, and we use the orthonormal ver-
sion of the DCT which also satisfies this criteria. However,
the standard RGB to YUV conversion matrix does not have
a determinant of 1, so we scale it by the inverse of the cube
root of the standard conversion matrix, thereby forcing its
determinant to be 1. The resulting matrix is: 0.47249 0.92759 0.18015

−0.23252 −0.45648 0.68900
0.97180 −0.81376 −0.15804


Naturally, its inverse maps from YUV to RGB.

Because our model can adapt the shape and scale pa-
rameters of our general distribution to each output coeffi-
cient, after training we can inspect the shapes and scales
that have emerged during training, and from them gain in-
sight into how optimization has modeled our training data.
In Figures 10 and 11 we visualize the shape and scale pa-
rameters for our “Pixels + RGB” and “Wavelets + YUV”
VAEs respectively. Our “Pixels” model is easy to visual-
ize as each output coefficient simply corresponds to a pixel
in a channel, and our “Wavelets” model can be visualized
by flattening each wavelet scale and orientation into an im-
age (our DCT-based model is difficult to visualize in any
intuitive way). In both models we observe that training has
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Figure 10. The final shape and scale parameters {α(i)} and
{c(i)} for our “Pixels + RGB” VAE after training has con-
verged. We visualize α with black=0 and white=2 and log(c) with
black=log(0.002) and white=log(0.02).
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Figure 11. The final shape and scale parameters {α(i)} and
{c(i)} for our “Wavelets + YUV” VAE after training has con-
verged. We visualize α with black=0 and white=2 and log(c) with
black=log(0.00002) and white=log(0.2).

determined that these face images should be modeled us-
ing normal-like distributions near the eyes and mouth, pre-
sumably because these structures are consistent and repeat-
able on human faces, and Cauchy-like distributions on the
background and in flat regions of skin. Though our “Pix-
els + RGB” model has estimated similar distributions for
each color channel, our “Wavelets + YUV” model has esti-
mated very different behavior for luma and chroma: more
Cauchy-like behavior is expected in luma variation, espe-
cially at fine frequencies, while chroma variation is modeled
as being closer to a normal distribution across all scales.

See Figure 14 for additional samples from our models,
and see Figure 15 for reconstructions from our models on
validation-set images. As is common practice, the sam-
ples and reconstructions in those figures and in the paper
are the means of the output distributions of the decoder, not
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Figure 12. As is common practice, the VAE samples shown in
this paper are samples from the latent space (left) but not from
the final conditional distribution (right). Here we contrast decoded
means and samples from VAEs using our different output spaces,
all using our general distribution.

samples from those distributions. That is, we draw samples
from the latent encoded space and then decode them, but we
do not draw samples in our output space. Samples drawn
from these output distributions tend to look noisy and irreg-
ular across all distributions and image representations, but
they provide a good intuition of how our general distribution
behaves in each image representation, so in Figure 12 we
present side-by-side visualizations of decoded means and
samples.

H. Unsupervised Monocular Depth Estimation

Our unsupervised monocular depth estimation experi-
ments use the code from https://github.com/tinghuiz/

SfMLearner, which appears to correspond to the “Ours (w/o
explainability)” model from Table 1 of [42]. The only
changes we made to this code were: replacing its loss func-
tion with our own, reducing the number of training iter-
ations from 200000 to 100000 (training converges faster

https://github.com/tinghuiz/SfMLearner
https://github.com/tinghuiz/SfMLearner


when using our loss function) and disabling the smooth-
ness term and multi-scale side predictions used by [42], as
neither yielded much benefit when combined with our new
loss function and they complicated experimentation by in-
troducing hyperparameters. Because the reconstruction loss
in [42] is the sum of the means of the losses imposed at
each scale in a D-level pyramid of side predictions, we use
a D level normalized wavelet decomposition (wherein im-
ages in [0, 1] result in wavelet coefficients in [0, 1]) and then
scale each coefficient’s loss by 2d, where d is the coeffi-
cients level.

In Figure 13 we visualize the final shape parameters for
each output coefficient that were converged upon during
training. These results provide some insight into why our
adaptive model produces improved results compared to the
ablations of our model in which we use a single fixed or
annealed value for α for all output coefficients. From the
low α values in the luma channel we can infer that training
has decided that luma variation often has outliers, and from
the high α values in the chroma channel we can infer that
chroma variation rarely has outliers. Horizontal luma varia-
tion (upper right) tends to have larger α values than vertical
luma variation (lower left), perhaps because depth in this
dataset is largely due to horizontal motion, and so horizon-
tal gradients tend to provide more depth information than
vertical gradients. Looking at the sides and the bottom of
all scales and channels we see that the model expects more
outliers in these regions, which is likely due to boundary
effects: these areas often contain consistent errors due to
there not being a matching pixel in the alternate view.

In Figures 16 and 17 we present many more results from
the test split of the KITTI dataset, in which we compare
our “adaptive” model’s output to the baseline model and the
ground-truth depth. The improvement we see is substantial
and consistent across a variety of scenes.

I. Fast Global Registration
Our registration results were produced using the code re-

lease corresponding to [41]. Because the numbers presented
in [41] have low precision, we reproduced the performance
of the baseline FGR algorithm using this code. This code
included some evaluation details that were omitted from the
paper that we determined through correspondence with the
author: for each input, FGR is run 20 times with random
initialization and the median error is reported. We use this
procedure when reproducing the baseline performance of
[41] and when evaluating our own models.

Y
U

V

Figure 13. The final shape parameters α for our unsupervised
monocular depth estimation model trained on KITTI data. The
parameters are visualized in the same “YUV + Wavelet” output
space as was used during training, where black is α = 0 and white
is α = 2.
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Figure 14. Random samples (more precisely, means of the output distributions decoded from random samples in our latent space) from
our family of trained variational autoencoders.



Pixels + RGB DCT + YUV Wavelets + YUV
Input Normal Cauchy t-dist Ours Normal Cauchy t-dist Ours Normal Cauchy t-dist Ours

Figure 15. Reconstructions from our family of trained variational autoencoders, in which we use one of three different image represen-
tations for modeling images (super-columns) and use either normal, Cauchy, Student’s t, or our general distributions for modeling the
coefficients of each representation (sub-columns). The leftmost column shows the images which are used as input to each autoencoder.
Reconstructions from models using general distributions tend to be sharper and more detailed than reconstructions from the correspond-
ing model that uses normal distributions, particularly for the DCT or wavelet representations, though this difference is less pronounced
than what is seen when comparing samples from these models. The DCT and wavelet models trained with Cauchy distributions or Stu-
dent’s t-distributions systematically fail to preserve the background of the input image, as was noted when observing samples from these
distributions.



In
pu

t
B

as
el

in
e

O
ur

s
T r

ut
h

In
pu

t
B

as
el

in
e

O
ur

s
Tr

ut
h

In
pu

t
B

as
el

in
e

O
ur

s
T r

ut
h

In
pu

t
B

as
el

in
e

O
ur

s
Tr

ut
h

In
pu

t
B

as
el

in
e

O
ur

s
T r

ut
h

In
pu

t
B

as
el

in
e

O
ur

s
T r

ut
h

Figure 16. Monocular depth estimation results on the KITTI benchmark using the “Baseline” network of [42] and our own variant in
which we replace the network’s loss function with our own adaptive loss over wavelet coefficients. Changing only the loss function results
in significantly improved depth estimates.
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Figure 17. Additional monocular depth estimation results, in the same format as Figure 16.


