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Abstract—A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D
images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on
multiple observations of the same scene to overconstrain the problem. Recovering these same properties from a single image
seems almost impossible in comparison — there are an infinite number of shapes, paint, and lights that exactly reproduce a single
image. However, certain explanations are more likely than others: surfaces tend to be smooth, paint tends to be uniform, and
illumination tends to be natural. We therefore pose this problem as one of statistical inference, and define an optimization problem
that searches for the most likely explanation of a single image. Our technique can be viewed as a superset of several classic
computer vision problems (shape-from-shading, intrinsic images, color constancy, illumination estimation, etc) and outperforms
all previous solutions to those constituent problems.

Index Terms—Computer Vision, Machine Learning, Intrinsic Images, Shape from Shading, Color Constancy, Shape Estimation.
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1 INTRODUCTION

A T the core of computer vision is the problem of
taking a single image, and estimating the physi-

cal world which produced that image. The physics of
image formation makes this “inverse optics” problem
terribly challenging and underconstrained: the space
of shapes, paint, and light that exactly reproduce an
image is vast.

This problem is perhaps best motivated using Adel-
son and Pentland’s “workshop” metaphor [1]: con-
sider the image in Figure 1(a), which has a clear
percept as a twice-bent surface with a stroke of dark
paint (Figure 1(b)). But this scene could have been
created using any number of physical worlds — it
could be realistic painting on a canvas (Figure 1(c)), a
complicated arrangement of bent shapes (Figure 1(d)),
a sophisticated projection produced by a collection of
lights (Figure 1(e)), or anything in between. The job of
a perceptual system is analogous to that of a prudent
manager in this “workshop”, where we would like
to reproduce the scene using as little effort from our
three artists as possible, giving us Figure 1(b).

This metaphor motivates the formulation of this
problem as one of statistical inference. Though there
are infinitely many possible explanations for a single
image, some are more likely than others. Our goal
is therefore to recover the most likely explanation that
explains an input image. We will demonstrate that in
natural depth maps, reflectance maps, and illumina-
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tion models, very strong statistical regularities arise
that are similar to those found in natural images [2],
[3]. We will construct priors similar to those used
in natural image statistics, but applied separately to
shape, reflectance, and illumination. Our algorithm is
simply an optimization problem in which we recover
the most likely shape, reflectance, and illumination
under these priors that exactly reproduces a single
image. Our priors are powerful enough that these
intrinsic scene properties can be recovered from a
single image, but are general enough that they work
across a variety of objects.

The output of our model relative to ground-truth

(a) an image (b) a likely explanation

(c) painter’s explanation (d) sculptor’s explanation (e) gaffer’s explanation

Fig. 1. A visualization of Adelson and Pentland’s
“workshop” metaphor [1]. The image in 1(a) clearly
corresponds to the interpretation in 1(b), but it could
be a painting, a sculpture, or an arrangement of lights.
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Fig. 2. A single image from our dataset, under three
color/illumination conditions. For each condition, we
present the ground-truth, the output of SIRFS, the
output of SIRFS+S (which uses external shape infor-
mation), and the two best-performing intrinsic image
techniques (for which we do SFS on the recovered
shading to recover shape).

can be seen in Figure 2. Our model is capable of pro-
ducing qualitatively correct reconstructions of shape,
surface normals, shading, reflectance, and illumina-
tion, from a single image. We quantitatively evaluate
our model on variants of the MIT intrinsic images
dataset [4], on which we quantitatively outperform all
previously published intrinsic image or shape-from-
shading algorithms. We additionally present quali-
tative results for many more real-world images, for
which we do not have ground-truth explanations.

Earlier versions of this work have been presented in
a piecemeal fashion, over the course of many papers
[5], [6], [7]. This paper is meant to simplify and unify
those previous methods.

This paper will proceed as follows: In Section 2,
we will review past work as it relates to our own.
In Section 3 we will formulate our problem as one of
statistical inference and optimization, with respect to a
set of priors over shape, reflectance, and illumination.
In Sections 4, 5, and 6 we present and motivate
our priors on reflectance, shape, and illumination,
respectively. In Section 7 we explain how we solve
our proposed optimization problem. In Section 8 we
present a series of experiments with our model on
variants of the MIT Intrinsic Images dataset [4] and
on real-world images, and in Section 9 we conclude.

2 PRIOR WORK

The question of how humans solve the undercon-
strained problem of perceiving shape, reflectance, and
illumination from a single image appears to be at
least one thousand years old, dating back to the
scientist Alhazen, who noted that ”Nothing of what
is visible, apart from light and color, can be perceived
by pure sensation, but only by discernment, infer-
ence, and recognition, in addition to sensation.” In
the 19th century the problem was studied by such
prominent vision scientists as von Helmholtz, Hering
and Mach [8], who framed the problem as one of
“lightness constancy” — how humans, when viewing
a flat surface with patches of varying reflectances
subject to spatially varying illumination, are able to
form a reasonably veridical percept of the reflectance
(“lightness”) in spite of the fact that a darker patch
under brighter illumination may well have more light
traveling from it to the eye compared to a lighter patch
which is less well illuminated.

Land’s Retinex theory of lightness constancy [9] has
been particularly influential in computer vision since
its introduction in 1971. It provided a computational
approach to the problem in the “Mondrian World”,
a 2D world of flat patches of piecewise constant
reflectance. Retinex theory was later made practical by
Horn [10], who was able to obtain a decomposition of
an image into its shading and reflectance components
using the prior belief that sharp edges tend to be
reflectance, and smooth variation tends to be shading.
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In 1978, Barrow and Tenebaum defined what they
called the problem of “intrinsic images”: recovering
properties such as shape, reflectance, and illumina-
tion from a single image [11]. In doing so, they
described a challenge in computer vision which is
still largely unsolved, and which our work directly
addresses. Because this problem is so fundamentally
underconstrained and challenging, the computer vi-
sion community has largely focused its attention on
more constrained and tractable sub-problems. Over
time, “intrinsic images” has become synonymous with
the problem that Retinex addressed, that of separating
an image into shading and reflectance components
[4], [10], [9]. This area has seen seen some recent
progress [12], [13], [14], [15], though the performance
of Retinex, despite its age, has proven hard to im-
prove upon [4]. The limiting factor in many of these
“intrinsic image” algorithms appears to be that they
treat “shading” as a kind of image, ignoring the fact
that shading is, by construction, the product of some
shape and some model of illumination. By addressing
a superset of this “intrinsic image” problem and re-
covering shape and illumination instead of shading,
our model produces better results than any intrinsic
image technique.

Related to the problem of lightness constancy or
“intrinsic images” is the problem of color constancy,
which can be thought of as a generalization of light-
ness constancy from grayscale to color, in which
the problem is simplified by assuming that there is
just one single model of illumination for an entire
image, rather than a spatially-varying “shading” ef-
fect. Early techniques for color constancy used gamut
mapping techniques [16], finite dimensional models
of reflectance and illumination [17], and physically
based techniques for exploiting specularities [18].
More recent work uses contemporary probabilistic
tools, such as modeling the correlation between colors
in a scene [19], or performing inference over pri-
ors on reflectance and illumination [20]. All of this
work shares the assumptions of “intrinsic image”
algorithms that shape (and to a lesser extent, shading)
can be ignored or abstracted away.

The second subset of the Barrow and Tenenbaum’s
original “intrinsic image” formulation that the com-
puter vision research community has focused on is
the “shape-from-shading” (SFS) problem. SFS is tra-
ditionally defined as: recovering the shape of an object
given a single image of it, assuming illumination
and reflectance are known (or assuming reflectance
is uniform across the entire image). This problem
formulation is very complimentary to the shape-vs-
reflectance version of the “intrinsic images” problem,
as it focuses on the parts of the problem which
“intrinsic images” ignores, and vice-versa.

The shape-from-shading problem was first formu-
lated in the computer vision community by Horn in
1975 [21], though the problem existed in other fields

as that of “photoclinometry” [22]. The history of SFS is
well surveyed in [23], [24]. Despite being a severe sim-
plification of the complete intrinsic images problem,
SFS is still a very ill-posed and underconstrained, and
challenging problem. One notable difficulty in SFS is
the Bas-relief ambiguity [25], which states (roughly)
that the absolute orientation and scaling of a surface
is ambiguous given only shading information. This
ambiguity holds true not only for SFS algorithms,
but for human vision as well [26]. We address this
ambiguity by imposing priors on shape, building on
notions of “smoothness” priors in SFS [27], and by
optionally allowing for external observations of shape
(such as those produced by a stereo system or depth
sensor) to be introduced.

Our model can be viewed as a generalization of
an “intrinsic image” algorithm or color constancy
algorithm in which shading is explicitly parametrized
as a function of shape and illumination. Similarly,
our model can be viewed as a shape-from-shading
algorithm in which reflectance and illumination are
unknown, and are recovered. Our model therefore
addresses the “complete” intrinsic images problem, as
it was first formulated. By addressing the complete
problem, rather than two sub-problems in isolation,
we outperform all previous algorithms for either sub-
problem. This is consistent with our understanding of
human perception, as humans use spatial cues when
estimating reflectance and shading [8], [28].

Because the intrinsic images problem is so chal-
lenging given only a single image, a much more
popular area of research in computer vision has been
to introduce additional data to better constrain the
problem. Instances of this approach are photometric
stereo [29], which use additional images with different
illumination conditions to estimate shape, and in later
work reflectance and illumination [30]. Our algorithm
produces the same kinds of output as the most ad-
vanced photometric stereo algorithm, while requir-
ing only a single image. “Structure from motion” or
binocular stereo [31], [32] uses multiple images to
recover shape, but ignores shading, reflectance, and
illumination. Inverse global illumination [33] recovers
reflectance and illumination given shape and multiple
images, while we recover shape and require only a
single image.

Recent work has explored using learning to directly
infer the spatial layout of a scene from a single image
[34], [35]. These techniques ignore illumination and
reflectance, and produce only a coarse estimate of
shape.

A similar approach to our technique is that of
category-specific morphable models [36] which, given
a single image of a very specific kind of object (a face,
usually), estimates shape, reflectance, and illumina-
tion. These techniques use extremely specific models
(priors) of the objects being estimated, and therefore
do not work for general objects, while our priors are
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general enough to be applicable on a wide variety
of objects: a single model learned on teabags and
squirrels can be applied to images of coffee cups and
turtles.

The driving force behind our model are our priors
on shape, reflectance, and illumination. To construct
these priors we build upon past work on natural
image statistics, which has demonstrated that sim-
ple statistics govern local patches of natural images
[2], [3], [37], and that these statistics can be used
for denoising [38], inpainting [39], deblurring [40],
etc. But these statistical regularities arise in natural
images only because of the statistical regularities in
the underlying worlds that produced those images. The
primary contribution of this work is extended these
ideas from natural images to the world that produced
that natural image, which is assumed to be composed
of natural depth maps and natural reflectance images.
There has been some study of the statistics of natural
depth maps [41], reflectance images [42] and models
of illumination [43], but ours is the first to use these
statistical observations for recovering all such intrinsic
scene properties simultaneously.

3 PROBLEM FORMULATION

We call our problem formulation for recovering in-
trinsic scene properties from a single image of a
(masked) object “shape, illumination, and reflectance
from shading”, or “SIRFS”. SIRFS can be thought of
as an extension of classic shape-from-shading models
[44] in which not only shape, but reflectance and
illumination are unknown. Conversely, SIRFS can be
framed as an “intrinsic image” technique for recov-
ering shading and reflectance, in which shading is
parametrized by a model of shape and illumination.
The SIRFS problem formulation is:

maximize
R,Z,L

P (R)P (Z)P (L)

subject to I = R+ S(Z,L) (1)

Where R is a log-reflectance image, Z is a depth-map,
and L is a spherical-harmonic model of illumination
[45]. Z and R are “images” with the same dimensions
as I , and L is a vector parametrizing the illumination.
S(Z,L) is a “rendering engine” which linearizes Z
into a set of surface normals, and produces a log-
shading image from those surface normals and L (see
Appendix A for a thorough explanation). P (R), P (Z),
and P (L) are priors on reflectance, shape, and illu-
mination, respectively, whose likelihoods we wish to
maximize subject to the constraint that the log-image
I is equal to a rendering of our model R+S(Z,L). We
can simplify this problem formulation by reformulat-
ing the maximum-likelihood aspect as minimizing a
sum of cost functions (by taking the negative log of
P (R)P (Z)P (L)) and by absorbing the constraint and

removing R as a free parameter. This gives us the
following unconstrained optimization problem:

minimize
Z,L

g(I − S(Z,L)) + f(Z) + h(L) (2)

where g(R), f(Z), and h(L) (Sections 4, 5, and 6,
respectively) are cost functions for reflectance, shape,
and illumination respectively, which we will refer to
as our “priors” on these scene properties 1. Solving
this problem (Section 7) corresponds to searching for
the least costly (or most likely) explanation {Z,R,L}
for image I .

4 PRIORS ON REFLECTANCE

Our prior on reflectance consists of three components:
1) An assumption of piecewise constancy, which we
will model by minimizing the local variation of log-
reflectance in a heavy-tailed fashion. 2) An assump-
tion of parsimony of reflectance — that the palette
of colors with which an entire image was painted
tends to be small — which we model by minimizing
the global entropy of log-reflectance. 3) An “absolute”
prior on reflectance which prefers to paint the scene
with some colors (white, gray, green, brown, etc)
over others (absolute black, neon pink, etc), thereby
addressing color constancy. Formally, our reflectance
prior g(A) is a weighted combination of three costs:

g(R) = λsgs(R) + λege(R) + λaga(R) (3)

where gs(R) is our smoothness prior, ge(R) is our
parsimony prior, and ga(R) is our “absolute” prior.
The λ multipliers are learned through cross-validation
on the training set.

Our smoothness and parsimony priors are on
the differences of log-reflectance, which makes them
equivalent to priors on the ratios of reflectance. This
makes intuitive sense, as reflectance is defined as a
ratio of reflected light to incident light, but is also
crucial to the success of our algorithm: Consider the
reflectance-map ρ implied by log-image I and log-
shading S(Z,L), such that ρ = exp(I−S(Z,L)). If we
were to manipulate Z or L to increase S(Z,L) by some
constant α across the entire image, then ρ would be di-
vided by exp(α) across the entire image, which would
accordingly decrease the differences between pixels of
ρ. Therefore, if we placed priors on the differences
of reflectance it would be possible to trivially satisfy
our priors by manipulating shape or illumination to
increase the intensity of the shading image. However,
in the log-reflectance case R = I −S(Z,L), increasing

1. Throughout this paper we use the term “prior” loosely. We
refer to loss functions or regularizers on Z, A, and L as “pri-
ors” because they often have an interpretation as the negative
log-likelihood of some probability density function. We refer to
minimizing entropy as a “prior”, which is again an abuse of
terminology. Our occluding contour “prior” and our external obser-
vation “prior” require first observing the silhouette of an object or
some external observation of shape, respectively, and are therefore
posteriors, not priors.
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(a) univariate/grayscale GSM (b) multivariate/color GSM

Fig. 3. Our smoothness prior on log-reflectance is a
univariate Gaussian scale mixture on the differences
between nearby reflectance pixels for grayscale im-
ages, or a multivariate GSM for color images. These
distribution prefers nearby reflectance pixels to be
similar, but its heavy tails allow for rare non-smooth
discontinuities. Our multivariate color model captures
the correlation between color channels, which means
that chromatic variation in log-reflectance lies further
out in the tails, making it more likely to be ignored
during inference.

all of S by α (increasing the brightness of the shading
image) simply decreases all of R by α, and does
not change the differences between log-reflectance
values (it would, however, affect our absolute prior
on reflectance). Priors on the differences of log-albedo
are therefore invariant to scaling of illumination or
shading, which means they behave similarly in well-
lit regions as in shadowed regions, and cannot be
trivially satisfied.

4.1 Smoothness

The reflectance images of natural objects tend to be
piecewise constant — or equivalently, variation in
reflectance images tends to be small and sparse. This
is the insight that underlies the Retinex algorithm [4],
[9], [10], and informs more recent intrinsic images
work [13], [14], [15].

Our prior on grayscale reflectance smoothness is
a multivariate Gaussian scale mixture (GSM) placed
on the differences between each reflectance pixel and
its neighbors. We will maximize the likelihood of R
under this model, which corresponds to minimizing
the following cost function:

gs(R) =
∑
i

∑
j∈N(i)

c (Ri −Rj ;αR, σR) (4)

Where N(i) is the 5× 5 neighborhood around pixel i,
Ri −Rj is a the difference in log-RGB from pixel i to
pixel j, and c (· ;α, σ) is the negative log-likelihood
of a discrete univariate Gaussian scale mixture (GSM),
parametrized by α and σ, the mixing coefficients and
standard deviations, respectively, of the Gaussians in

(a) some R (b) gs(R) (cost) (c) ∇gs(R) (influence)

Fig. 4. Here we have a color reflectance image R,
and its cost and influence (derivative of cost) under our
multivariate GSM smoothness prior. Strong, colorful
edges, such as those caused by reflectance variation,
are very costly, while small edges, such as those
caused by shading, are less costly. But in terms of
influence — the gradient of cost with respect to each
pixel — we see an inversion: because sharp edges lie
in the tails of the GSM, they have little influence, while
shading variation has great influence. This means that
during inference our model attempts to explain shading
(small, achromatic variation) in the image by varying
shape, while explaining sharp or chromatic variation by
varying reflectance.

the mixture:

c(x;α,σ) = − log
M∑
j=1

αjN
(
x ; 0, σ2

j

)
(5)

We set the mean of the GSM is 0, as the most likely
reflectance image under our model should be flat. We
set M = 40 (the GSM has 40 discrete Gaussians),
and αR and σR are trained on reflectance images in
our training set using expectation-maximization. The
log-likelihood of our learned model can be seen in
Figure 3(a).

Gaussian scale mixtures have been used previously
to model the heavy-tailed distributions found in nat-
ural images [38], for the purpose of denoising or in-
painting. Effectively, using this family of distributions
gives us a log-likelihood which looks like a smooth,
heavy-tailed spline which decreases monotonically
with distance from 0. Because it is monotonically de-
creasing, the cost of log-reflectance variation increases
with the magnitude of variation, but because the
distribution is heavy tailed, the influence of variation
(the derivative of log-likelihood) is strongest when
variation is small (that is, when variation resembles
shading) and weaker when variation is large. This
means that our model prefers a reflectance image
that is mostly flat but occasionally varies heavily,
but abhors a reflectance image which is constantly
varying slightly. This behavior is similar to that of the
Retinex algorithm, which operates by shifting strong
gradients to the reflectance image and weak gradients
to the shading image.

To extend our model to color images, we simply ex-
tend our smoothness prior to a multivariate Gaussian
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scale mixture

gs(R) =
∑
i

∑
j∈N(i)

C (Ri −Rj ;αR, σR,ΣR) (6)

Where Ri−Rj is now a 3-vector of the log-RGB differ-
ences, α are mixing coefficients, σ are the scalings of
the Gaussians in the mixture, and Σ is the covariance
matrix of the entire GSM (shared among all Gaussians
of the mixture).

C(x ;α,σ,Σ) = − log
M∑
j=1

αj N (x ;0, σj Σ) (7)

We set M = 40 (the GSM has 40 discrete Gaussians),
and we train αR, σR, and ΣR on color reflectance im-
ages in our training set (we train a distinct model from
the grayscale smoothness model). The log-likelihood
of our learned model, and the training data used to
learn that model, can be seen in Figure 3(b).

In color images, variation in reflectance tends to
manifest itself in both the luminance and chrominance
of an image (white transitioning to blue, for example)
while shading, assuming the illumination is mostly
white, primarily affects the luminance of an image
(light blue transitioning to dark blue, for example).
Past work has exploited this insight by building spe-
cialized models that condition on the chrominance
variation of the input image [4], [10], [13], [14], [15].
By placing a multivariate prior over differences in
reflectance, we are able to capture the correlation of
the different color channels, which implicitly encour-
ages our model to explain chromatic variation using
reflectance and achromatic variation using shading
without the need for any hand-crafted heuristics.
See Figure 4 for a demonstration of this effect. Our
model places more-colorful edges further into the tails
of the distribution, thereby reducing their influence.
Again, this is similar to color variants of the Retinex
algorithm [4] which uses the increased chrominance
of an edge as a heuristic for it being a reflectance edge.
But this approach (which is common among intrinsic
image algorithms) of using image chrominance as
a substitute for reflectance chrominance means that
these techniques fail when faced with non-white il-
lumination, while our model is robust to non-white
illumination.

4.2 Parsimony
In addition to piece-wise smoothness, the second
property we expect from reflectance images is for
there to be a small number of reflectances in an
image — that the palette with which an image was
painted be small. As a hard constraint, this is not true:
even in painted objects, there are small variations in
reflectance. But as a soft constraint, this assumption
holds. In Figure 5 we show the marginal distribution
of grayscale log-reflectance for three objects in our
dataset. Though the man-made ”cup1” object shows

Fig. 5. Three grayscale log-reflectance images from
our dataset and their marginal distributions. Log-
reflectance in an image tend to be grouped around
certain values, or equivalently, these distributions tend
to be low-entropy.

the most clear peakedness in its distribution, natural
objects like ”apple” show significant clustering.

We will therefore construct a prior which encour-
ages parsimony – that our representation of the re-
flectance of the scene be economical and efficient,
or “sparse”. This is effectively a instance of Occam’s
razor, that one should favor the simplest possible ex-
planation. We are not the first to explore global parsi-
mony priors on reflectance: different forms of this idea
have been used in intrinsic images techniques [15],
photometric stereo [46], shadow removal [47], and
color representation [48]. We use the quadratic en-
tropy formulation of [49] to minimize the entropy of
log-reflectance, thereby encouraging parsimony. For-
mally, our parsimony prior for reflectance is:

ge(R) = − log

 1

Z

N∑
i=1

N∑
j=1

exp

(
− (Ri −Rj)2

4σ2
R

)
Z = N2

√
4πσ2 (8)

This is quadratic entropy (a special case of Rényi
entropy) for a set of points x assuming a Parzen
window (a Gaussian kernel density estimator, with
a bandwidth of σR) [49]. Effectively, this is a “soft”
and differentiable generalization of Shannon entropy,
computed on a set of real values rather than a discrete
histogram. By minimizing this quantity, we encourage
all pairs of reflectance pixels in the image to be similar
to each other. However, minimizing this entropy does
not force all pixels to collapse to one value, as the
“force” exerted by each pair falls off exponentially
with distance — it is robust to outliers. This prior ef-
fectively encourages Gaussian “clumps” of reflectance
values, where the Gaussian clumps have standard
deviations of roughly σR.

At first glance, it may seem that this global parsi-
mony prior is redundant with our local smoothness
prior: Encouraging piecewise smoothness seems like it
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(a) No parsimony (b) No smoothness (c) Both

Fig. 6. A demonstration of the importance of both
our smoothness and parsimony priors on reflectance.
Using only a smoothness prior, as in 6(a), allows
for reflectance variation across disconnected regions.
Using only the parsimony prior, as in 6(b), encourages
reflectance to take on a small number of values, but
does not encourage it to form large piecewise-constant
regions. Only by using the two priors in conjunction, as
in 6(c), does our model correctly favor a normal, paint-
like checkerboard configuration.

should cause entropy to be minimized indirectly. This
is often true, but there are common situations in which
both of these priors are necessary. For example, if two
regions are separated by a discontinuity in the image
then optimizing for local smoothness will never cause
the reflectance on both sides of the discontinuity to be
similar. Conversely, simply minimizing global entropy
may force reflectance to take on a small number of
values, but need not produce large piecewise-smooth
regions. The merit of using both priors in conjunction
is demonstrated in Figure 6.

Generalizing our grayscale parsimony prior to color
reflectance images requires generalizing our entropy
model to higher dimensionalities. A naive extension
of this one-dimensional entropy model to three di-
mensions is not sufficient for our purposes: The RGB
channels of natural reflectance images are highly cor-
related, causing a naive “isotropic” high-dimensional
entropy measure to work poorly. To address this, we
pre-compute a whitening transformation from log-
reflectance images in the training set, and compute an
isotropic entropy measure in this whitened space dur-
ing inference, which gives us an anisotropic entropy
measure. Formally, our cost function is quadratic en-
tropy in the space of whitened log-reflectance:

ge(R)= − log

 1

Z

N∑
i=1

N∑
j=1

exp

(
−
‖WR(Ri −Rj)‖22

4σ2
R

)
(9)

Where WR is the whitening transformation learned
from reflectance images in our training set, as fol-
lows: Let X be a 3 × n matrix of the pixels in the
reflectance images in our training set. We compute the
matrix Σ = XXT, take its eigenvalue decomposition

Σ = ΦΛΦT, and from that construct the whitening2

transformation WR = ΦΛ1/2ΦT. The bandwidth of
the Parzen window is σR, which determines the scale
of the clusters produced by minimizing this entropy
measure, and is tuned through cross-validation (inde-
pendently of the same variable for the grayscale case).
See Figure 7 for a motivation of this model.

Naively computing this quadratic entropy measure
requires calculating the difference between all N log-
reflectance values in the image with all other N log-
reflectance values, making it quadratically expensive
in N to compute naively. In Appendix B we describe
an accurate linear-time algorithm for approximating
this quadratic entropy and its gradient, based on the
bilateral grid [50].

4.3 Absolute Reflectance
The previously described priors were imposed on
relative properties of reflectance: the differences be-
tween nearby or not-nearby pixels. We must impose
an additional prior on absolute reflectance: the raw
value of each pixel in the reflectance image. Without
such a prior (and the prior on illumination presented
in Section 6) our model would be equally pleased to
explain a gray pixel in the image as gray reflectance
under gray illumination as it would nearly-black re-
flectance under extremely-bright illumination, or blue
reflectance under yellow illumination, etc.

This sort of prior is fundamental to color-
constancy, as most basic white-balance or auto-
contrast/brightness algorithms can be viewed as min-
imizing a similar sort of cost: the gray-world as-
sumption penalizes reflectance for being non-gray,

2. Our whitening transformation of reflectance is not strictly
correct, as we do not first center the data by subtracting the
mean. This was done both for mathematical and computational
convenience, and because the origin of the space of log-reflectance
(absolute white) is arguable the most reasonable choice for the
“center” of our data.

(a) Correct (b) Wrong Shape (c) Wrong Light

Fig. 7. Some reflectance images and their cor-
responding log-RGB scatterplots. Mistakes in esti-
mating shape or illumination produce shading-like or
illumination-like errors in the inferred reflectance, caus-
ing the log-RGB distribution of the reflectance to be
“smeared”, and causing entropy (and therefore cost) to
increase.
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(a) Training data and PDF (b) Samples

Fig. 8. A visualization of our “absolute” prior on
grayscale reflectance, trained on the MIT Intrinsic Im-
ages dataset [4]. In 8(a) we have the log-likelihood of
our density model, and the data on which it was trained.
In 8(b) we have samples from our model, where the x
axis is sorted by cost (y axis is random).

the white-world assumption penalizes reflectance for
being non-white, and gamut-based models penalize
reflectance for lying outside of a gamut of previously-
seen reflectances. We experimented with variations or
combinations of these types of models, but found that
what worked best was using a regularized smooth
spline to model the log-likelihood of log-reflectance
values.

For grayscale images, we use a 1D spline, which we
have fit to log-reflectance images in the training set as
follows:

minimize
f

fTn + log

(∑
i

exp (−fi)

)
+ λ
√

(f ′′)2 + ε2

(10)
Where f is our spline, which determines the non-
normalized negative log-likelihood (cost) assigned
to every reflectance, n is a 1D histogram of log-
reflectance in our training data, and f

′′
is the second

derivative of the spline, which we robustly penalize (ε
is a small value added in to make our regularization
differentiable everywhere). Minimizing the sum of the
first two terms is equivalent to maximizing the likeli-
hood of the training data (the second term is the log
of the partition function for our density estimation),
and minimizing the third term causes the spline to
be piece-wise smooth. The smoothness multiplier λ is
tuned through cross-validation. A visualization of our
prior can be found in Figure 8.

During inference, we maximize the likelihood of the
grayscale reflectance image R by minimizing its cost
under our learned model:

ga(R) =
∑
i

f(Ri) (11)

where f(Ri) is the value of f at Ri, the log-reflectance
at pixel i, which we computed using linear interpola-
tion (so that this cost is differentiable).

To generalize this model to color reflectance images,

we simply use a 3D spline, trained on whitened log-
reflectance pixels in our training set. Formally, to train
our model we minimize the following:

minimize
F

<F,N> + log

(∑
i

exp (−Fi)

)
+ λ
√
J(F) + ε2

J(F) = F2
xx + F2

yy + F2
zz + 2F2

xy + 2F2
yz + 2F2

xz (12)

Where F is our 3D spline describing cost, N is a
3D histogram of the whitened log-RGB reflectance in
our training data, and J(·) is a smoothness penalty
(the thin-plate spline smoothness energy, made more
robust by taking its square root). The smoothness
multiplier λ is tuned through cross-validation. As in
our parsimony prior, we use whitened log-reflectance
to address the correlation between channels, which
is necessary as our smoothness term is isotropic. A
visualization of our prior can be seen in Figure 9.

During inference, we maximize the likelihood of the
color reflectance image R by minimizing its cost under
our learned model:

ga(R) =
∑
i

F(WRRi) (13)

where F(WRRi) is the value of F at the coordi-
nates specified by the 3-vector WRi, the whitened
reflectance at pixel i (WR is the same as in Section 4.2).
To make this function differentiable, we compute F(·)
using trilinear interpolation.

We trained our absolute color prior on the MIT
Intrinsic Images dataset [4], and used that learned
model in all experiments shown in this paper. How-
ever, the MIT dataset is very small and this absolute
prior contains very many parameters (hundreds, in
contrast to our other priors which are significantly
more constrained), which suggests that we may be
overfitting to the small set of reflectances in the
MIT dataset. To address this concern, we trained
an additional version of our absolute prior on the
color reflectances in the OpenSurfaces dataset [51],
which is a huge and varied dataset that is presum-
ably a more accurate representation of real-world
reflectances. Both models can be seen in Figure 9,
where we see that the priors we learn for each dataset
are somewhat different, but that both prefer lighter,
desaturated reflectances. We ran some additional ex-
periments using our OpenSurfaces model instead of
our MIT model (not presented in this paper), and
found that the outputs of each model were virtually
indistinguishable. This is a testament to the robustness
of our model, and suggests that we are not overfitting
to the color reflectances in the MIT dataset.

5 PRIORS ON SHAPE

Our prior on shape consists of three components: 1)
An assumption of smoothness (that shapes tend to
bend rarely), which we will model by minimizing
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(a) Training data (b) PDF (c) Samples

(d) Training data (e) PDF (f) Samples

Fig. 9. A visualization of our “absolute” prior on color
reflectance. We train two versions of our prior, one on
the MIT Intrinsic Images dataset [4] that we use in our
experiments (top row) and one on the OpenSurfaces
dataset for comparison [51] (bottom row). In the first-
column we have the log-RGB reflectance pixels in our
training set, and in the second column we have a
visualization of the 3D spline PDF that we fit to that
data. In the third column we have samples from the
PDF, where the x axis is sorted by cost (y axis is
random). For both datasets, our model prefers less
saturated, more earthy or subdued colors, and abhors
brightly lit neon-like colors or very dark colors — the
high-cost reflectances often do not even look like paint,
but instead appear glowing and luminescent.

the variation of mean curvature. 2) An assumption
of isotropy of the orientation of surface normals (that
shapes are just as likely to face in one direction as
they are another) which reduces to a well-motivated
“fronto-parallel” prior on shapes. 3) An prior on the
orientation of the surface normal near the boundary
of masked objects, as shapes tend to face outward at
the occluding contour. Formally, our shape prior f(Z)
is a weighted combination of four costs:

f(Z) = λkfk(Z) + λifi(Z) + λcfc(Z) (14)

where fk(Z) is our smoothness prior, fi(Z) is our
isotropy prior, and fc is our bounding contour prior.
The λ multipliers are learned through cross-validation
on the training set.

Most of our shape priors are imposed on intermedi-
ate representations of shape, such as mean curvature
or surface normals. This requires that we compute
these intermediate representations from a depth map,
calculate the cost and the gradient of cost with respect
to those intermediate representations, and backprop-
agate the gradients back onto the shape. In the ap-
pendix we explain in detail how to efficiently compute
these quantities and backpropagate through them.

(a) some shape Z (b) mean curvature H(Z)

Fig. 10. A visualization of a shape and its mean
curvature (blue = positive, red = negative, white =
0). Planes and soap films have 0 mean curvature,
spheres and cylinders have constant mean curvature,
and mean curvature varies where shapes bend.

5.1 Smoothness

There has been much work on modeling the statistics
of natural shapes [41], [52], with one overarching
theme being that regularizing some function of the
second derivatives of a surface is effective. However,
this past work has severe issues with invariance to
out-of-plane rotation and scale. Working within dif-
ferential geometry, we present a shape prior based on
the variation of mean curvature, which allows us to
place smoothness priors on Z that are invariant to
rotation and scale.

To review: mean curvature is the divergence of the
normal field. Planes and soap films have 0 mean
curvature everywhere, spheres and cylinders have
constant mean curvature everywhere, and the sphere
has the smallest total mean curvature among all con-
vex solids with a given surface area [53]. See Figure 10
for a visualization. Mean curvature is a measure of
curvature in world coordinates, not image coordinates,
so (ignoring occlusion) the marginal distribution of
H(Z) is invariant to out-of-plane rotation of Z — a
shape is just as likely viewed from one angle as from
another. In comparison, the Laplacian of Z and the
second partial derivatives of Z can be made large
simply due to foreshortening, which means that priors
placed on these quantities [52] would prefer certain
shapes simply due to the angle from which those
shapes are observed — clearly undesirable.

But priors on raw mean curvature are not scale-
invariant. Were we to minimize |H(Z)|, then the most
likely shape under our model would be a plane, while
spheres would be unlikely. Were we to minimize
|H(Z)− α| for some constant α, then the most likely
shape under our model would be a sphere of a certain
radius, but larger or smaller spheres, or a resized
image of the same sphere, would be unlikely. Clearly,
such scale sensitivity is an undesirable property for
a general-purpose prior on natural shapes. Inspired
by previous work on minimum variation surfaces
[54], we place priors on the local variation of mean
curvature. The most likely shapes under such priors
are surfaces of constant mean curvature, which are
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well-studied in geometry and include soap bubbles
and spheres of any size (including planes). Priors
on the variation of mean curvature, like priors on
raw mean curvature, are invariant to rotation and
viewpoint, as well as concave/convex inversion.

Mean curvature is defined as the average of princi-
ple curvatures: H = 1

2 (κ1+κ2). It can be approximated
on a surface using filter convolutions that approxi-
mate first and second partial derivatives, as shown in
[55].

H(Z) =

(
1 + Z2

x

)
Zyy − 2ZxZyZxy +

(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2
(15)

In Appendix C we detail how to calculate and dif-
ferentiate H(Z) efficiently. Our smoothness prior for
shapes is a Gaussian scale mixture on the local varia-
tion of the mean curvature of Z:

fk(Z) =
∑
i

∑
j∈N(i)

c (H(Z)i −H(Z)j ;αk, σk) (16)

Notation is similar to Equation 4: N(i) is the 5 × 5
neighborhood around pixel i, H(Z) is the mean cur-
vature of shape Z, and H(Z)i−H(Z)j is the difference
between the mean curvature at pixel i and pixel j.
c (· ;α, σ) is defined in Equation 5, and is the negative
log-likelihood (cost) of a discrete univariate Gaussian
scale mixture (GSM), parametrized by α and σ, the
mixing coefficients and standard deviations, respec-
tively, of the Gaussians in the mixture. The mean of
the GSM is 0, as the most likely shapes under our
model should be smooth. We set M = 40 (the GSM
has 40 discrete Gaussians), and αk and σk are learned
from our training set using expectation-maximization.
The log-likelihood of our learned model can be seen in
Figure 11(a), and the likelihoods it assigns to different
shapes can be visualized in Figure 11(b). The learned
GSM is very heavy tailed, which encourages shapes to
be mostly smooth, and occasionally very non-smooth
— or equivalently, our prior encourages shapes to
bend rarely.

5.2 Surface Isotropy

Our second prior on shapes is motivated by the ob-
servation that shapes tend to be oriented isotropically
in space. That is, it is equally likely for a surface to
face in any direction. This assumption is not valid
in many settings, such as man-made environments
(which tend to be composed of floors, walls, and
ceilings) or outdoor scenes (which are dominated by
the ground-plane). But this assumption is more true
for generic objects floating in space, which tend to
resemble spheres (whose surface orientations are truly
isotropic) or sphere-like shapes — though there is
often a bias on the part of photographers towards
imaging the front-faces of objects. Despite its prob-
lems, this assumption is still effective and necessary.

(a) Smoothness (b) Samples

Fig. 11. To encourage shapes to be smooth, we model
the variation in mean curvature of shapes using a
Gaussian scale mixture, shown in 11(a). In 11(b) we
show patches of shapes in our training data, sorted
from least costly (upper left) to most costly (lower right).
Likely shapes under our model look like soap-bubbles,
and unlikely shapes look contorted.

(a) An isotropic shape (b) Our isotropy prior

Fig. 12. We assume the surfaces of shapes to be
isotropic — equally likely to face in any orientation,
like in a sphere. However, observing an isotropic shape
imposes a bias, as observed surfaces are more likely
to face the observer than to be perpendicular to the ob-
server (as shown by the red gauge figure “thumbtacks”
placed on the sphere in 12(a)). We undo this bias by
imposing a prior on Nz, shown in 12(b), which coarsely
resembles our training data.

Intuitively, one may assume that imposing this
isotropy assumption requires no effort: if our prior
assumes that all surface orientations are equally likely,
doesn’t that correspond to a constant cost for all
surface orientations? However, this ignores the fact
that once we have observed a surface in space, we
have introduced a bias: observed surfaces are much
more likely to face the observer (Nz ≈ 1) than to
be perpendicular to the observer (Nz ≈ 0). We must
therefore impose an isotropy prior to undo this bias.

We will derive our isotropy prior analytically. As-
sume surfaces are oriented uniformly, and that the
surfaces are observed under orthogonal perspective
with a view direction (0, 0,−1). It follows that all Nz

(the z-component of surface normals, relative to the
viewer) are distributed uniformly between 0 and 1.
Upon observation, these surfaces (which are assumed
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to have identical surface areas) have been foreshort-
ened, such that the area of each surface in the image
is Nz . Given the uniform distribution over Nz and
this foreshortening effect, the probability distribution
over Nz that we should expect at a given pixel in the
image is proportional to Nz . Therefore, maximizing
the likelihood of our uniform distribution over orien-
tation in the world is equivalent to minimizing the
following in the image:

fi(Z) = −
∑
x,y

log
(
Nz
x,y(Z)

)
(17)

Where Nz
x,y(Z) is the z-component of the surface

normal of Z at position (x, y) (defined in Appendix
A).

Though this was derived as an isotropy prior, the
shape which maximizes the likelihood of this prior is
not isotropic, but is instead (because of the nature of
MAP estimation) a fronto-parallel plane. This gives
us some insight into the behavior of this prior —
it serves to as a sort of “fronto-parallel” prior. This
prior can therefore be thought of as combating the
bas-relief ambiguity [25] (roughly, that absolute scale
and orientation are ambiguous), by biasing our shape
estimation towards the fronto-parallel members of the
bas-relief family.

Our prior on Nz is shown in Figure 12(b) compared
to the marginal distribution of Nz in our training
data. Our model fits the data well, but not perfectly.
We experimented with learning distributions on Nz

empirically, but found that they worked poorly com-
pared to our analytical prior. We attribute this to the
aforementioned photographer’s bias towards fronto-
parallel surfaces, and to data sparsity when Nz is
close to 0.

It is worth noting that − log (Nz) is proportional to
the surface area of Z. Our prior on slant therefore
has a helpful interpretation as a prior on minimal
surface area: we wish to minimize the surface area of
Z, where the degree of the penalty for increasing Z’s
surface area happens to be motivated by an isotropy
assumption. This notion of placing priors on surface
area has been explored previously [56], but not in the
context of isotropy. And of course, this connection
relates our model to the study of minimal surfaces
in mathematics [53], though this connection is some-
what tenuous as the fronto-parallel planes favored by
our model are very different from classical minimal
surfaces such as planes and soap films.

5.3 The Occluding Contour

The occluding contour of a shape (the contour that
surrounds the silhouette of a shape) is a powerful
cue for shape interpretation [57] which often dom-
inates shading cues [58], and algorithms have been
presented for coarsely estimating shape given contour

(a) A cropped object an its normals (b) Our occluding contour prior

Fig. 13. In 13(a) we have an image and surface
normals of a subset of a cup, in our dataset. The side
of this cup are “limbs”, points where the surface normal
faces outward and is perpendicular to the occluding
contour, while the top of the cup are “edges”, sharp
discontinuities where the surface is oriented arbitrarily.
Our heavy-tailed prior over surface orientation at the
occluding contour in 13(b) models the behavior of
limbs, but is robust to the outliers caused by edges.

information [59]. At the occluding contour of an ob-
ject, the surface is tangent to all rays from the van-
tage point. Under orthographic projection (which we
assume), this means the z-component of the normal
is 0, and the x and y components are determined by
the contour in the image. In principle, this property is
absolutely true, but in practice the occluding contour
of a surface tends to be composed of limbs (points
where the surface is tangent to rays from the vantage
point, like the smooth side of a cylinder) and edges
(an abrupt discontinuity of the surface, like the top
of a cylinder or the edge of a piece of paper) [60].
See Figure 13(a) for an example of a shape which
contains both phenomena. Of course, this taxonomy
is somewhat false — all edges are limbs, but some are
so small that they appear to be edges, and some are
just small enough relative to the image resolution that
the “limb” assumption begins to break down.

We present a “soft” version of a limb constraint, one
which captures the “limb”-like behavior we expect
to see but which can be violated by edges or small
limbs. Because our dataset consists of masked objects,
identifying the occluding contour C is trivial (see
Figure 14(a)). For each point i on C, we estimate ni,
the local normal to the occluding contour in the image
plane. Using those we regularize the surface normals
in Z along the boundary by minimizing the following
loss:

fc(Z) =
∑
i∈C

(1− (Nx
i (Z)nxi +Ny

i (Z)nyi ))
γc (18)

Where N(Z) is the surface normal of Z, as defined in
Appendix A. We set γc = 0.75, which fits the training
data best, and which performs best in practice. The
inner product of ni and Ni (both of which are unit-
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(a) occluding contour normals (b) shape-from-contour output

Fig. 14. A subset of our model that includes only our
priors on shape is equivalent to a shape-from-contour
model. Given only the normals of the silhouette of the
object in 14(a), we can produce the coarse estimate of
the shape of the object in 14(b).

norm) is 1 when both vectors are oriented in the
same direction, in which case the loss is 0. If the
normals do not agree, then some cost is incurred.
This cost corresponds to a heavy-tailed distribution
(shown in Figure 13(b)) which encourages the surface
orientation to match the orientation of the occluding
contour at limbs, allows surface normals to violate this
assumption at edges.

This occluding-contour prior, when combined with
our priors on smooth and isotropic shapes, allows us
to easily define an ablation of our entire model that
corresponds to a shape-from-contour algorithm: we
simply optimize with respect to these shape priors,
and ignore our priors on reflectance and illumination,
thereby ignoring all but the silhouette of the input
image. An example of the output of our shape-from-
contour model can be seen in Figure 14(b), and this
model is evaluated quantitatively against our com-
plete SIRFS model in Section 8.

6 PRIORS OVER ILLUMINATION

Because illumination is unknown, we must regular-
ize it during inference. Our prior on illumination is
extremely simple: we fit a multivariate Gaussian to
the spherical-harmonic illuminations in our training
set. During inference, the cost we impose is the
(non-normalized) negative log-likelihood under that
model:

h(L) = λL(L− µL)TΣ−1L (L− µL) (19)

where µL and ΣL are the parameters of the Gaussian
we learned, and λL is the multiplier on this prior
(learned on the training set).

We use a spherical-harmonic (SH) model of illumi-
nation, so L is a 9 (grayscale) or 27 (color, 9 dimen-
sions per RGB channel) dimensional vector. In con-
trast to traditional SH illumination, we parametrize
log-shading rather than shading. This choice makes
optimization easier as we don’t have to deal with
“clamping” illumination at 0, and it allows for easier

(a) “Laboratory” Data/Samples (b) “Natural” Data/Samples

Fig. 15. We use two datasets: the “laboratory”-style
illuminations of the MIT intrinsic images dataset [4]
which are harsh, mostly-white, and well-approximated
by point sources, and a dataset of “natural” illumina-
tions, which are softer and much more colorful. Shown
here are some illuminations from the training sets of
our two datasets, and samples from a multivariate
Gaussian fit to each training set (our illumination prior
from Section 6), rendered on Lambertian spheres. In
each visualization the illuminations are sorted from
least costly (upper left) to most costly (lower right)
according to either our “Laboratory” or “Natural” illumi-
nation priors.

regularization, as the space of log-shading SH illu-
minations is surprisingly well-modeled by a simple
multivariate Gaussian while the space of traditional
SH illumination coefficients is not.

See Figure 15 for examples of SH illuminations in
our different training sets, as well as samples from
our model. The illuminations in Figure 15 come from
two different datasets (see Section 8) for which we
build two different priors. We see that our samples
look similar to the illuminations in the training set,
suggesting that our model fits the data well. The
illuminations in these visualizations are sorted by
their likelihoods under our priors, which allows us to
build an intuition for what these illumination priors
encourage. More likely illuminations tend to be lit
from the front and are usually less saturated and
more ambient, while unlikely illuminations are often
lit from unusual angles and tend to exhibit strong
shadowing and colors.

7 OPTIMIZATION

To estimate shape, illumination, and reflectance, we
must solve the optimization problem in Equation 2.
This is a challenging optimization problem, and naive
gradient-based optimization with respect to Z and L
fails badly. We therefore present an effective multi-
scale optimization technique, which is similar in spirit
to multigrid methods [61], but extremely general and
simple to implement. We will describe our technique
in terms of optimizing a(X), where a(·) is some loss
function and X is some signal.

Let us define G, which constructs a Gaussian pyra-
mid from a signal. Because Gaussian pyramid con-
struction is a linear operation, we will treat G as
a matrix. Instead of minimizing a(X) directly, we
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minimize b(Y ), where X = GTY :

[`,∇Y `] = b(Y ) : (20)
X ← GTY // reconstruct signal

[`,∇X`]← a(X) // compute loss & gradient

∇Y `← G∇X// backpropagate gradient

We initialize Y to a vector of all 0’s, and then solve for
X̂ = GT (arg minY b(Y )) using L-BFGS. Any arbitrary
gradient-based optimization technique could be used,
but L-BFGS worked best in our experience.

The choice of the filter used in constructing our
Gaussian pyramid is crucial. We found that 4-tap
binomial filters work well, and that the choice of
the magnitude of the filter dramatically affects mul-
tiscale optimization. If the magnitude is small, then
the coefficients of the upper levels of the pyramid
are so small that they are effectively ignored, and
optimization fails (and in the limit, a filter magnitude
of 0 reduces our model to single-scale optimization).
Conversely, if the magnitude is large, then the coarse
scales of the pyramid are optimized and the fine scales
are ignored. The filter that we found worked best
is: 1√

8
[1, 3, 3, 1], which has twice the magnitude of

the filter that would normally be used for Gaussian
pyramids. This increased magnitude biases optimiza-
tion towards adjusting coarse scales before fine scales,
without preventing optimization from eventually op-
timizing fine scales. This filter magnitude does not
appear to be universally optimal — different tasks
appear to have different optimal filter magnitudes.
Note that this technique is substantially different from
standard coarse-to-fine optimization, in that all scales
are optimized simultaneously. As a result, we find
much lower minima than standard coarse-to-fine tech-
niques, which tend to keep coarse scales fixed when
optimizing over fine scales. Optimization is also much
faster than comparable coarse-to-fine techniques.

To optimizing Equation 2 we initialize Z and L
to ~0 ( L = ~0 is equivalent to an entirely ambient,
white illumination) and optimize with respect to a
vector that is a concatenation of GTZ and a whitened
version of L. We optimize in the space of whitened
illuminations because the Gaussians we learn for il-
lumination mostly describe a low-rank subspace of
SH coefficients, and so optimization in the space of
unwhitened illumination is ill-conditioned. We pre-
compute a whitening transformation for ΣL and µL,
and during each evaluation of the loss in gradi-
ent descent we unwhiten our whitened illumination,
compute the loss and gradient, and backpropagate
the gradient onto the whitened illumination. After
optimizing Equation 2 we have a recovered depth
map Ẑ and illumination L̂, with which we calculate a
reflectance image R̂ = I−S(Ẑ, L̂). When illumination
is known, L is fixed. Optimizing to near-convergence
(which usually takes a few hundred iterations) for a
1-2 megapixel grayscale image takes 1-5 minutes on a

2011 Macbook Pro, using a straightforward Matlab/C
implementation. Optimization takes roughly twice as
long if the image is color. See Appendix E for a
description of some methods we use to make the
evaluation of our loss function more efficient.

We use this same multiscale optimization scheme
with L-BFGS to solve the optimization problems in
Equations 10 and 12, though we use different filter
magnitudes for the pyramids. Naive single-scale op-
timization for these problems works poorly.

8 EXPERIMENTS

Quantitatively evaluating the accuracy of our model
is challenging, as there are no pre-existing datasets
with ground-truth shape, surface normals, shading,
reflectance, and illumination. Thankfully, the MIT
Intrinsic Images dataset [4] provides ground-truth
shading and reflectance for 20 objects (one object
per image), and includes many additional images of
each object under different illumination conditions.
Given this, we have created the MIT-Berkeley Intrinsic
Images dataset, an augmented version of the MIT
Intrinsic Images dataset in which we have used pho-
tometric stereo on the additional images of each object
to estimate the shape of each object and the spherical
harmonic illumination for each image. An example
object in our dataset can be seen in Figure 2, and
the appendix contains additional images and details
of our photometric stereo algorithm. In all of our
experiments, we use the following test-set: cup2, deer,
frog2, paper2, pear, potato, raccoon, sun, teabag1,
turtle. The other 10 objects are used for training.

An additional difficulty in evaluation is the choice
of error metrics. Constructing error metrics for specific
intrinsic scene properties such as a depth map or a
reflectance image is challenging, as naive choices such
as mean-squared-error often correspond very poorly
with the perceptual salience of an error. Additionally,
constructing a single error metric that describes all
errors in each intrinsic scene property is difficult. We
therefore present six different error metrics that have
been designed to capture different kinds of important
errors for each intrinsic scene property: Z-MAE is the
shift-invariant absolute error between the estimated
shape and the ground-truth shape. N -MAE is the
mean error between our estimated normal field and
ground-truth normal field, in radians. S-MSE and
R-MSE are the scale-invariant mean-squared-error of
our recovered shading and reflectance, respectively.
RS-MSE is the error metric introduced in conjunc-
tion with the MIT intrinsic images dataset [4], which
measures a locally scale-invariant error for both re-
flectance and shading3. L -MSE is the scale-invariant
MSE of a rendering of our recovered illumination

3. The authors of [4] refer to this error metric to as “LMSE”, but
we will call it RS-MSE to minimize confusion with L -MSE
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on a sphere, relative to a rendering of the ground-
truth illumination. To summarize these individual
error metrics, we report an “average” error metric,
which is the geometric mean of the previous six
error metrics. For each error metric and the average
metric, we report the geometric mean of error across
the test-set images. The use of the geometric mean
prevents the average error from being dominated by
individual error metrics with large dynamic ranges,
or by particularly challenging images. See Appendix
F for a thorough explanation of our choice of error
metrics.

Though the MIT dataset has a great deal of variety
in terms of the kinds of objects used, the illumination
in the dataset is very “laboratory”-like — lights are
white, and are placed at only a few locations rela-
tive to the object. See Figure 15(a) for examples of
these “laboratory” illuminations. In contrast, natural
illuminations exhibit much more color and variety:
the sun is yellow, outdoor shadows are often tinted
blue, man-made illuminants have different colors,
and indirect illumination from colored objects may
cause very colorful illuminations. To acquire some
illumination models that are more representative of
the variety seen in the natural world, we took all
of the environment maps from the sIBL Archive4,
expanded that set of environment maps by shifting
and mirroring them and varying their contrast and
saturation (saturation is only ever decreased, never
increased) and produced spherical harmonic illumi-
nations from the resulting environment maps. Af-
ter removing similar illuminations, the illuminations
were split into training and test sets. See Figure 15(b)
for examples of these “natural” illuminations. Each
object in the MIT dataset was randomly assigned an
illumination (such that training illuminations were
assigned to training objects, etc), and each object was
re-rendered under its new illumination, using that
object’s ground-truth shape and reflectance. We will
refer to this new pseudo-synthetic dataset of natu-
rally illuminated objects as our “natural” illumination
dataset, and we will refer to the original MIT images
as the “laboratory” illumination dataset. From our
experience applying our model to real-world images,
these “natural” illuminations appear to be much more
representative of the sort of illumination we see
in uncontrolled environments, though the dataset is
heavily biased towards more colorful illuminations.
We attribute this to a photographer’s bias towards
“interesting” environment maps in the sIBL Archive.

Given our dataset, we will evaluate our model on
the task of recovering all intrinsic scene properties
from a single image of a masked object, under three
different conditions: I: the input is a grayscale image
and the illumination is “laboratory”-like, II: the input
is a color image and the illumination is “laboratory”-

4. http://www.hdrlabs.com/sibl/archive.html

like, and III: the input is a color image and the
illumination is “natural”. For all tasks, we use the
same training/test split, and for each task we tune a
different set of hyperparameters on the training set
(λs, λe, λa, σR, λk, λi, λc, and λL), and fit a different
prior on illumination (as in Section 6). Hyperparam-
eters are tuned using coordinate descent to minimize
our “average” error metric for the training set. For
each task, we compare SIRFS against several intrin-
sic images algorithms (meant to decompose an im-
age into shading and reflectance components), upon
which we’ve run a shape-from-shading algorithm
on the shading image. For the sake of a generous

I. Grayscale Images, Laboratory Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0571 0.0426 0.0353 0.0484 0.2061
(2) Retinex [4], [10] + SFS 67.15 0.8342 0.0311 0.0265 0.0289 0.0484 0.2002
(3) Tappen et al. [14] + SFS 41.96 0.7413 0.0354 0.0252 0.0285 0.0484 0.1835
(4) Shen et al. [13] + SFS 45.57 0.8293 0.0493 0.0427 0.0436 0.0484 0.2348
(A) SIRFS 31.00 0.5343 0.0156 0.0177 0.0209 0.0103 0.0998
(B) SIRFS, no R-smoothness 27.25 0.5361 0.0267 0.0255 0.0290 0.0152 0.1279
(C) SIRFS, no R-parsimony 23.53 0.4862 0.0224 0.0261 0.0228 0.0167 0.1170
(D) SIRFS, no R-absolute 24.02 0.5023 0.0190 0.0201 0.0222 0.0122 0.1037
(E) SIRFS, no Z-smoothness 29.05 0.5783 0.0241 0.0227 0.0337 0.0125 0.1254
(F) SIRFS, no Z-isotropy 98.07 0.7560 0.0200 0.0198 0.0268 0.0104 0.1419
(G) SIRFS, no Z-contour 34.29 0.7676 0.0208 0.0207 0.0232 0.0231 0.1351
(H) SIRFS, no L-gaussian 26.75 0.5929 0.0270 0.0212 0.0327 0.1940 0.1964
(I) SIRFS, no Z-multiscale 25.58 0.7233 0.0571 0.0426 0.0353 0.0414 0.2009
(J) SIRFS, no L-whitening 33.93 0.5837 0.0207 0.0208 0.0256 0.0119 0.1171
(K) Shape-from-Contour 18.96 0.4192 0.0571 0.0426 0.0353 0.0484 0.1791

(S) shape observation 4.83 0.1952 - - - - -
(A+S) SIRFS + shape observation 3.72 0.2414 0.0128 0.0176 0.0210 0.0096 0.0586
(A+L) SIRFS + known illumination 27.32 0.4944 0.0175 0.0179 0.0225 - -

II. Color Images, Laboratory Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0577 0.0455 0.0354 0.0489 0.2092
(2) Retinex [4], [10] + SFS 85.34 0.8056 0.0204 0.0186 0.0163 0.0489 0.1658
(3) Tappen et al. [14] + SFS 41.96 0.7413 0.0361 0.0379 0.0347 0.0489 0.2040
(4) Shen et al. [13] + SFS 55.95 0.8529 0.0528 0.0458 0.0398 0.0489 0.2466
(5) Gehler et al. [15] + SFS 53.36 0.6844 0.0106 0.0101 0.0131 0.0489 0.1166
(A) SIRFS 19.24 0.3914 0.0064 0.0098 0.0125 0.0096 0.0620
(B) SIRFS, no R-smoothness 19.23 0.4046 0.0125 0.0163 0.0214 0.0092 0.0824
(C) SIRFS, no R-parsimony 19.45 0.4312 0.0096 0.0149 0.0140 0.0091 0.0731
(D) SIRFS, no R-absolute 22.98 0.4288 0.0085 0.0113 0.0135 0.0095 0.0704
(E) SIRFS, no Z-smoothness 19.28 0.4367 0.0114 0.0116 0.0219 0.0088 0.0773
(F) SIRFS, no Z-isotropy 84.08 0.7013 0.0117 0.0128 0.0160 0.0103 0.1063
(G) SIRFS, no Z-contour 32.59 0.7351 0.0103 0.0146 0.0173 0.0444 0.1186
(H) SIRFS, no L-gaussian 20.81 0.4631 0.0199 0.0140 0.0183 0.1272 0.1358
(I) SIRFS, no Z-multiscale 25.62 0.7237 0.0574 0.0453 0.0353 0.0401 0.2022
(J) SIRFS, no L-whitening 24.96 0.4766 0.0106 0.0156 0.0188 0.0138 0.0894
(K) Shape-from-Contour 18.96 0.4192 0.0577 0.0455 0.0354 0.0489 0.1818

(S) shape observation 4.83 0.1952 - - - - -
(A+S) SIRFS + shape observation 3.40 0.2126 0.0070 0.0111 0.0153 0.0063 0.0420
(A+L) SIRFS + known illumination 18.58 0.3761 0.0076 0.0120 0.0146 - -

III. Color Images, Natural Illumination
Algorithm Z-MAE N -MAE S-MSE R-MSE RS-MSE L -MSE Avg.

(1) Naive Baseline 25.56 0.7223 0.0283 0.0266 0.0125 0.0371 0.1364
(2) Retinex [4], [10] + SFS 26.76 0.5851 0.0174 0.0174 0.0083 0.0371 0.1066
(3) Tappen et al. [14] + SFS 53.87 0.7255 0.0255 0.0280 0.0268 0.0371 0.1740
(4) Gehler et al. [15] + SFS 37.66 0.6398 0.0162 0.0150 0.0105 0.0371 0.1149
(A) SIRFS 28.21 0.4057 0.0055 0.0046 0.0036 0.0103 0.0469
(B) SIRFS, no R-smoothness 28.41 0.4192 0.0061 0.0057 0.0062 0.0104 0.0546
(C) SIRFS, no R-parsimony 28.90 0.4184 0.0073 0.0064 0.0041 0.0107 0.0540
(D) SIRFS, no R-absolute 20.63 0.3538 0.0068 0.0058 0.0039 0.0091 0.0466
(E) SIRFS, no Z-smoothness 24.68 0.4441 0.0087 0.0062 0.0095 0.0099 0.0618
(F) SIRFS, no Z-isotropy 50.49 0.4015 0.0046 0.0039 0.0037 0.0086 0.0475
(G) SIRFS, no Z-contour 41.27 0.7036 0.0094 0.0083 0.0062 0.0256 0.0843
(H) SIRFS, no L-gaussian 20.22 0.3937 0.0100 0.0088 0.0075 0.0483 0.0796
(I) SIRFS, no Z-multiscale 25.64 0.7205 0.0279 0.0279 0.0124 0.0291 0.1316
(J) SIRFS, no L-whitening 51.74 0.9430 0.0140 0.0106 0.0066 0.0777 0.1246
(K) Shape-from-Contour 19.55 0.4253 0.0283 0.0266 0.0125 0.0371 0.1194

(S) shape observation 4.83 0.1952 - - - - -
(A+S) SIRFS + shape observation 3.17 0.1471 0.0034 0.0032 0.0030 0.0049 0.0206
(A+L) SIRFS + known illumination 10.28 0.1957 0.0018 0.0014 0.0022 - -

TABLE 1
We evaluate SIRFS on three different variants of our
dataset, and we compare SIRFS to several baseline
techniques, several ablations, and two extensions in

which additional information is provided.

http://www.hdrlabs.com/sibl/archive.html


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

(a) Achromatic illumination (b) Chromatic illumination

Fig. 16. Chromatic illumination dramatically helps
shape estimation. Achromatic isophotes (K-means
clusters of log-RGB values) are very elongated, while
chromatic isophotes are usually more tightly localized.
Therefore, under achromatic lighting a very wide range
of surface orientations appear similar, but under chro-
matic lighting only similar orientations appear similar.

comparison, the SFS algorithm uses our shape priors,
which boosts each baseline’s performance (detailed
in Appendix H). We also compare against a “naive”
algorithm, which is a baseline in which Z = ~0 and
L = ~0. Because the intrinsic image baselines do
not estimate illumination, we use L = ~0 as their
prediction. We were forced to use different baseline
techniques for different tasks, as some baselines do
not have code available for running on new imagery,
and some code that was designed for color images
crashes when run on grayscale images.

We also compare against several ablations of our
model in which components have been removed:
models B-H omit priors by simply setting their λ
hyperparameters to 0, and models I and J omit our
multiscale optimization over Z and our whitened
optimization over L respectively. Model K is a shape-
from-contour technique, in which only our shape-
priors are non-zero and L = ~0, so the only effective
input to the model is the silhouette of the object (for
this baseline, the hyperparameters have been com-
pletely re-tuned on the training set). We also compare
against two extensions of SIRFS: model A+L, in which
the ground-truth illumination is known (and fixed
during optimization), and model A+S, in which we
provide a blurry version of the ground-truth shape
(convolved with a Gaussian kernel with σ = 30)
as input. See Appendix D for a description of an
additional shape “prior” we use to incorporate the
external shape observation for this one variant of our
model. Model S shows the performance of just the
blurry ground-truth shape provided as input to model
A+S, for reference. The performance of SIRFS relative
to some of these baselines and extensions can be see
in Table 1, in Figure 2 and in the appendices.

From Table 1, we see that SIRFS outperforms all
baseline techniques. For grayscale images, the im-
provement is substantial: our error is roughly half
that of the best technique. For color images under
“laboratory” illumination, our recovered shading and
reflectance images are only slightly better than those
of the best-performing intrinsic image technique [15],

but our recovered shape and surface normals are sig-
nificantly better, demonstrating the value of a unified
technique over a piecewise system that first does in-
trinsic images, and then does shape from shading. For
color images under “natural” illumination, SIRFS out-
performs all baseline models by a very large margin,
it is the only model that can reason well about color
illumination and (implicitly) color shading. From our
ablation study, we see that each prior contributes
positively to performance, though the improvement
we get from each prior is greater in the grayscale case
than in the color/natural case. This makes sense, as
color images under natural illumination contain much
more information than in grayscale images, and so the
“likelihood” dominates our priors during inference.
Our ablation study also shows that our multiscale
optimization is absolutely critical to performance. Sur-
prisingly, our shape-from-contour baseline performs
very well in terms of our shape/normal error metrics.
This is probably just a reflection of the fact that all
models are bad at absolute shape reconstruction, due
to the inherent ambiguity in shape-from-shading, and
so the overly-smooth shape predicted by the shape-
from-contour model, by virtue of being smooth and
featureless, has a low error relative to the more elabo-
rate depth maps produced by other models. Of course,
the shape-from-contour model performs poorly on all
other error metrics, as we would expect. This anal-
ysis of the inherent difficulty of shape estimation is
further demonstrated by model A+S, which includes
external shape information, and which therefore per-
forms much better in terms of our shape/normal error
metrics, but surprisingly performs similarly to model
A (basic SIRFS) in terms of all other error metrics.
From the performance of model A+L we see that
knowing the illumination of the scene a-priori does
not help much when the illumination is laboratory-
like, but helps a great deal when the illumination
is “natural” — which makes sense, as more-varied
illumination simply makes the reconstruction task
more difficult. One surprising conclusion we can draw
is that, though the intrinsic image baselines perform
worse in the presence of “natural” illumination, SIRFS
actually performs better in natural illumination, as it
can exploit color illumination to better disambiguate
between shading and reflectance (Figure 4), and pro-
duce higher-quality shape reconstructions (Figure 16).
This finding is consistent with recent work regarding
shape-from-shading under natural illumination [62].
However, we should mention that some of the im-
proved performance in the natural illumination task
may be due to the fact that the images are pseudo-
synthethic (their shading images were produced using
our spherical-harmonic rendering) and so they are
Lambertian and contain no cast shadows.

In Figure 17, we demonstrate a simple graphics
application using the output of our model, for a
color image under laboratory illumination. Given just
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(a) Input Image (b) Modified shape (c) Modified reflectance (d) Modified light (e) Modified orientation

Fig. 17. Our system has obvious graphics applications. Given only a single image, we can estimate an object’s
shape, reflectance, or illumination, modify any of those three scene properties (or simply rotate the object), and
then re-render the object.

the output of our model from a single image, we
can synthesize novel images in which the shape,
reflectance, illumination, or orientation of the object
has been changed. The output is not perfect — the
absolute shape is often very incorrect, as we saw in
Table 1, which is due to the inherent ambiguity and
difficulty in estimating shape from shading. But such
shape errors are usually only visible when rotating the
object, and this inherent ambiguity in shape percep-
tion often works in our favor when only manipulating
reflectance, illumination, or fine-scale shape — low-
frequency errors in shape-estimation made by our
model are often not noticed by human observers,
because both the model and the human are bad at
using shading to estimate coarse shape.

8.1 Real-World Images
Though our model quantitatively performs very well
on the MIT-Berkeley Intrinsic Images dataset, this
dataset is not very representative of the variety of
natural objects in the world — materials are very Lam-
bertian, many reflectances are very synthetic-looking,
and illumination is not very varied. We therefore
present an additional experiment in which we ran
our model on arbitrary masked images of natural
objects. We acquired many images (some with an
iPhone camera, some with a DSLR, some downloaded
from the internet), manually cropped the object in
the photo, and used them as input to our model.
In Figure 18 we visualize the output of our model:
the recovered shape, normals, reflectance, shading,
and illumination, a synthesized view of the object
from a different angle, and a synthesized rendering
of the object using a different (randomly generated)
illumination. We did two experiments: one in which
we used a grayscale version of the input image and
our laboratory illumination model, and one in which
we used the color input image and our natural illumi-
nation model. We use the same code and hyperparam-
eters for all images in the two constituent tasks, where
our hyperparameters are identical to those used in the
previous experiments with the MIT-Berkeley Intrinsic
Images dataset.

We see that our model is often able to produce
extremely compelling shading and reflectance im-

ages, and qualitatively correct illumination. Our re-
covered shape and surface normals are often some-
what wrong, as evidenced by the new synthesized
views of each object, but our “relit” objects are often
very compelling. The most common mistakes made
in shading/reflectance estimation are usually due to
our model assuming that the dominant color of the
object is due to illumination, not reflectance (such as
in the two pictures of faces) which we believe is due to
biases in our training data towards white reflectances
and colorful illumination.

9 CONCLUSION

We have presented SIRFS, a model which takes as
input a single (masked) image of an object, and pro-
duces as output a reasonable estimate of the shape,
surface normals, reflectance, shading, and illumina-
tion which produced that image. At the core of SIRFS
is a series of priors on shape, reflectance, and il-
lumination: surfaces tend to be isotropic and bend
infrequency, reflectance images tend to be piecewise
smooth and low-entropy, and illumination tends to
be natural. Given these priors and our multiscale
optimization technique, we can infer the most-likely
explanation of a single image subject to our priors
and the constraint that the image be explained. Our
unified approach to this problem outperforms all pre-
vious solutions to its constituent problems of shape-
from-shading and intrinsic image recovery on our
challenging dataset, and produces reasonable results
on arbitrary masked images of real-world objects in
uncontrolled environments. This suggests that the
shape-from-shading and intrinsic images problem for-
mulations may be fundamentally limited, and atten-
tion should be refocused towards developing models
that jointly reason about shape and illumination in
addition to shading and reflectance.

But of course, our model has some limitations.
Because shading is an inherently poor cue for low-
frequency shape estimation [25], [26] our model often
makes mistakes in coarse shape estimation. To address
this, we have presented a method for incorporating
some external observation of shape, such as one
from a stereo algorithm or a depth sensor, and we
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Fig. 18. Our model produces reasonable results on real, manually cropped images of objects. Here are images
of arbitrary objects in uncontrolled illumination environments which were downloaded or taken on consumer
cameras. For each image, we have the output of our model, and two renderings of our recovered model: one in
which we rotate the object, and one in which we relight the object. We run our algorithm on a grayscale version
of the image (left), and on the original color image (right). For the color images, we use our “natural” illumination
model. The code and parameters used for these images are the same as in all other experiments.
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have demonstrated that by incorporating some low-
frequency external shape observation (such as what a
stereo algorithm or a depth sensor would provide)
we can produce high-quality shape estimates. We
assume that materials are Lambertian, which is often
a reasonable approximation but can causes problems
for objects with specularities. Thankfully, because of
the modular nature of our algorithm, our simple
Lambertian rendering engine can easily be replaced
by a more sophisticated model. We assume that im-
ages consist of single, masked objects, while real-
world natural scenes contain severe occlusion and
support relationships. We also assume illumination
is global, and we ignore illumination issues such as
cast shadows, mutual illumination, or other sources
of spatially-varying illumination [56], [63]. To address
these two issues of occlusion and spatially-varying
illumination in natural scenes, we have investigated
into the interplay between SIRFS and segmentation
techniques, by generalizing SIRFS to a mixture model
of shapes and lights which are embedded in a soft
segmentation of a scene [64]. Another limitation of our
technique is that our priors on shape and reflectance
are independent of the category of object present in
the scene. We see this as a strength of our model,
as it means that our priors are general enough to
generalize across object categories, but presumably an
extension of our model which uses object recognition
techniques to produce class-specific priors should per-
form better.
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APPENDIX A
LINEARIZATION AND RENDERING

Here we will detail how to calculate S(Z,L) (the
log-shading of some depth map Z subject to some
spherical harmonic illumination L) and its analytical
derivative efficiently, for the purpose of calculating A
and backpropagating losses on A back onto Z . First,
we convert Z into a set of surface normals:

Nx =
Z ∗ hx3
B

, Ny =
Z ∗ hy3
B

, Nz =
1

B

B =

√
1 + (Z ∗ hx3)

2
+ (Z ∗ hy3)

2 (21)

where ∗ is convolution. We also compute the follow-
ing:

F11 = (1−Nx ×Nx)×Nz

F22 = (1−Ny ×Ny)×Nz

F13 = − (Nx ×Nz ×Nz)

F23 = − (Ny ×Nz ×Nz)

F12 = − (Nx ×Ny ×Nz) (22)

where × is component-wise multiplication of two
images. Let us look at the surface normal at one

pixel: ni = [Nx
i , N

y
i , N

z
i ]T. Rendering that point with

spherical harmonics is:

S(ni, L) = [ni; 1]TM[ni; 1] (23)

M =


c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7


c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

Note that S(ni, L) is the log-shading at pixel i, not
the shading. This is different from the traditional
usage of spherical harmonic illumination. Directly
modeling log-shading makes optimization easier by
guaranteeing that shading is greater than 0 without
needing to clamp shading at 0, as is normally done.
The gradient of the log-shading at this point with
respect to the surface normal is:

Bi = ∇niS(ni, L) = 2nT
i M[:, 1 : 3]

Where B is a three-channel image, where Bx is the
gradient of S with respect to Nx, etc. Given the log-
shading, we can infer what the log-albedo at this point
must be:

Ai = Ii − S(ni, L) (24)

After calculating g(A) and ∇Ag(A), we can backprop-
agate the gradient onto Z as follows:

DS = −∇Ag(A) (25)
Dx = Bx × F11 +By × F12 +Bz × F13

Dy = Bx × F12 +By × F22 +Bz × F23

∇Zg(A) = (DS ×Dx) ? hx3 + (DS ×Dy) ? hy3

where × is component-wise multiplication of two
images and ? is cross-correlation.

Let us construct the matrix J , the Jacobian matrix
of all partial derivatives of S with respect to L, which
is a n by 9 matrix (where n is the number of pixels in
S), where row i is:

Ji =
[
c4, 2c2N

y
i , 2c2N

z
i , 2c2N

x
i , 2c1N

x
i N

y
i , 2c1N

y
i N

z
i ,

c3N
z
i N

z
i − c5, 2c1Nx

i N
z
i , c1(Nx

i N
x
i −N

y
i N

y
i )
]

We can use this matrix to backpropagate the gradient
of the loss with respect to S onto L, as follows:

∇Lg(A) = JTDS (26)

We have described how to linearize a depth map,
compute a log-shading image of that linearization
with respect to a grayscale spherical-harmonic model
of illumination, and backpropagate a gradient with
respect to that shading image onto the depth map and
the illumination model. To do the same for a color
image, we simply do the same procedure three times
— though for efficiency’s sake we need only linearize
the depth map once.
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APPENDIX B
EFFICIENT QUADRATIC ENTROPY

Here we will detail a novel method for calculating the
quadratic entropy measure introduced in [49], which
we use in our parsimony prior on log-reflectance.
Let x be a vector, N is the length of x, and σ is
the bandwidth parameter (the width of the Gaussian
bump around each element of x). Then the quadratic
entropy of x under the Parzen window defined by x
and σ is defined as:

H(x) = − log

 1

Z

N∑
i=1

N∑
j=1

exp

(
− (xi − xj)

2

4σ2

)
Z = N2

√
4πσ2 (27)

Note that we will use H(·) here to describe entropy,
rather than mean curvature. Our first insight is that
this can be re-expressed as a function on a histogram
of x. Let W be the bin-width of the histogram of x,
let M be the number of bins, and let na be the count
of x in bin a. Then:

H(n) = − log

(
M∑
a=1

na

M∑
b=1

nb
Z

exp

(
−W

2(a− b)2

4σ2

))
(28)

Though the computation complexity of this formu-
lation is still quadratic with respect to M , if the
histogram is constructed such that many datapoints
fall in the same bin this formulation can be much
more efficient in practice. Our second insight is that
this can be expressed as a convolution of n with a
small Gaussian filter. Let g be a Gaussian filter:

gd =
1

Z
exp

(
−W

2d2

4σ2

)
(29)

Where d is distance from the center. With this, we can
rewrite H(n) as follows:

H(n) = − log
(
nT(n ∗ g)

)
(30)

Where ∗ is convolution. This quantity is extremely
efficient to compute, provided that the lengths of n
and g are small, which is true provided that the range
of x is not much larger than σ, which is generally true
in practice.

This formulation also allows us to easily compute
the gradient of V (n) with respect to n:

∇H(n) =

(
−2

nT(n ∗ g)

)
(n ∗ g) (31)

Histogramming is a non-smooth operation, making
this approximation to entropy not differentiable with
respect to x. However, if instead of standard his-
togramming we use linear interpolation to construct
n, then the gradient with respect to x is non-zero and
can be calculated easily.

Let RL and RU define the bounds on the range of
the bins, with RU = min(x) and RL = max(x). The

fenceposts assigned to datapoint xi are bL and bU ,
where bL is the largest fencepost below it, and bU is
the smallest fencepost above it:

bL = b(xi −RL)/W c, bU = bL + 1 (32)

xi will be assigned to those bins according to these
weights:

wL = (xi − bL)/W, wU = 1− wL (33)

When adding xi to the histogram, we just add these
two weights to the appropriate bins:

nL = nL + wL, nU = nU + wU (34)

The partial derivatives of the histogram with respect
to xi are simple:

∂nL
∂xi

= − 1

W
,

∂nU
∂xi

=
1

W
(35)

With this, we can construct the Jacobian J of n with
respect to x, which is a M by N sparse matrix. With
this, we can calculate the gradient of H with respect
to x:

∇H(x) ≈ JT∇H(n) (36)

This approximation to quadratic entropy is, in prac-
tice, extremely efficient and extremely accurate. Other
techniques exist for computing approximations to this
quantity, most notably the fast Gauss transform and
the improved fast Gauss transform. Also, H(x) could
be computed exactly using the naive formulation in
Equation 27. The naive formulation is completely
intractable, as the computation complexity is O(N2).
The FGT-based algorithms are O(N logN), and pro-
vide no efficient way to compute ∇H(x), which
makes those algorithms impossible to use in our
gradient-based optimization scheme. Our approxima-
tion has a complexity of O(N) (provided the kernel
in the convolution is small) and allows for ∇H(x)
to be approximated extremely efficiently. In practice,
our model produces approximations of entropy that
are usually within 0.01% of the true entropy, which is
similar to the accuracy obtained using the fast Gauss
transform or the improved fast Gauss transform, and
is 10 or 100 times faster than the FGT-based algo-
rithms.

This techniques for computing quadratic entropy
for a univariate signal can easily be generalized to
higher dimensions. We use a three-dimensional gen-
eralization to compute the quadratic entropy of a
color (whitened) log-reflectance image. Instead of con-
structing a 1D histogram with linear interpolation, we
construct a 3D histogram using trilinear interpolation,
and instead of convolving our 1D kernel with a
Gaussian filter, we convolve the 3D histogram with
three separable Gaussian filters.
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Note that this formulation is extremely similar to
the bilateral grid [50], which is a tool for high-
dimensional Gaussian filtering (used mostly for bi-
lateral filtering, hence the name). The calculation
of our entropy measure is extremely similar to the
“splat, blur, slice” pipeline in other high-dimensional
Gaussian filtering works [65], except that after the
“slice” operation we take the inner product of the
input “signal” and the blurred output signal. This
means that we need not actually compute the slice
operation, but can instead just compute the inner
product directly in the histogram space. This connec-
tion means that the body of work for efficiently com-
puting this quantity in the context of image filtering
can be directly adapted to the problem of computing
high-dimensional entropy measures. Recent work [65]
suggests that for dimensionalities of 3, our bilateral
grid formulation is the most efficient among exist-
ing techniques, but that this entropy measure could
be computed reasonably efficiently in significantly
higher-dimensional spaces (up to 8 or 16) using more
sophisticated techniques.

APPENDIX C
MEAN CURVATURE

Here we will detail how to calculate H(Z) (the mean
curvature of a depth map Z, not entropy) and its
analytical derivative efficiently. Mean curvature on a
surface is a function of the first and second partial
derivatives of that surface.

H(Z) =

(
1 + Z2

x

)
Zyy − 2ZxZyZxy +

(
1 + Z2

y

)
Zxx

2
(
1 + Z2

x + Z2
y

)3/2
(37)

To calculate this for a discrete depth map, we will
first approximate the partial derivatives using filter
convolutions.

Zx = Z ∗ hx3 , Zy = Z ∗ hy3 (38)
Zxx = Z ∗ hxx3 , Zyy = Z ∗ hyy3 , Zxy = Z ∗ hxy3

hx3 = 1
8

 1 0 – 1
2 0 – 2
1 0 – 1

 , hy3 = 1
8

 1 2 1
0 0 0

– 1 – 2 – 1



hxy3 = 1
4

 1 0 – 1
0 0 0

– 1 0 1

 , hyy3 = 1
4

 1 2 1
– 2 – 4 – 2

1 2 1

 , hxx3 = 1
4

 1 – 2 1
2 – 4 2
1 – 2 1


We then compute the following intermediate “im-
ages”, and use them to compute H(Z).

M =
√

1 + Z2
x + Z2

y

N = (1 + Z2
x)Zyy − 2ZxZyZxy + (1 + Zy2)Zxx

D = 2M3

H(Z) = N/D (39)

When computing H(Z), we also compute the follow-
ing, which are stored until after the loss function with
respect to H(Z) has been calculated, at which point

they will be used to backpropagate the gradient of the
loss function using the chain rule.

Fx = 2(ZxZyy − ZxyZy)− 3ZxN

M2

Fy = 2(ZxxZy − ZxZxy)− 3ZyN

M2

Fxx = 1 + Z2
y

Fyy = 1 + Z2
x

Fxy = −2ZxZy (40)

Given f(H(Z)) and ∇H(Z)f , a loss function and the
gradient of that loss function with respect to H(Z),
we can calculate ∇Zf , the gradient of the loss with
respect to Z, as follows:

B =
∇H(Z)f

D
(41)

∇Zf = (BFx) ? hx3 + (BFy) ? hy3
+ (BFxx) ? hxx3 + (BFyy) ? hyy3 + (BFxy) ? hxy3

Adjacent variables are component-wise multiplication
of two images, / is component-wise division, ∗ is
convolution and ? is cross-correlation.

APPENDIX D
NOISY SHAPE OBSERVATION

One of the reasons that using shading cues to recover
shape (as we are attempting here) is challenging, is
that shading is a fundamentally poor cue for low-
frequency (coarse) shape variation. Shading is directly
indicative of only the shape of a point relative to
its neighbors: fine-scale variations in shape produce
sharp, localized changes in an image, while coarse-
scale shape variations produce very small, subtle
changes across an entire image. Both algorithms [25]
and humans [66] therefore make errors in estimating
coarse depth when using only shading. Bas relief
sculptures take advantage of this by conveying the
impression of a rich, deep 3D scene, using only the
shading produced by a physically shallow object.

To deal with this issue, we will construct our prior
on shape to allow for an external observation of shape
to be incorporated into inference. This observation
may be produced by a stereo algorithm, or by some
depth sensor such as a laser rangefinder or the Kinect.
These depth sensors or stereo algorithms often pro-
duce depth maps which are noisy or incomplete, or
most often blurry — lacking fine-scale shape detail.
Because of the complementary strengths of stereo
and shading, combining the two can often yield very
accurate results [67], [5].

We will construct a loss function to encourage our
recovered depth Z to resemble the raw sensor depth
Ẑ:

fo(Z, Ẑ) =
∑
i

(
((Z ∗ b(σZ))i − Ẑi)2 + ε2

) γo
2

(42)
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This is simply a hyperlaplacian distribution with an
exponent of γo on the difference between (Z ∗ b(σZ))
and Ẑ at every pixel, with ε added in to make the
loss differentiable everywhere. b(σZ) is a 2D Gaussian
filter with a standard deviation of σZ , and ∗ is convo-
lution, so (Z ∗ b(σZ))i is the value of a blurry version
of our shape estimate Z at pixel location i. We tune
γo on the training set, which sets it to ∼ 1, and we set
ε = 1/100. The robust nature of this cost encourages Z
to resemble Ẑ, while allowing it to occasionally differ
drastically. In our experiments we use Z∗∗b(30) as our
Ẑ, which is a reasonably proxy for a stereo algorithm
or low-resolution depth-sensor, and we set σZ = 30
as that value (unsurprisingly) performs best during
cross-validation.

For the one variant of our model in which we incor-
porate a noisy external shape observation, our prior
on shapes gains an additional term, and becomes:

f(Z) = λkfk(Z)+λifi(Z)+λcfc(Z)+λofo(Z, Ẑ) (43)

Where λo is cross-validated on the training set.

APPENDIX E
EFFICIENT COMPUTATION

Our model is fairly computationally expensive. Eval-
uating our loss function and its gradient takes close
to a second, and optimization requires that the loss
be evaluated hundreds of times. To make this model
more tractable, we use some additional tricks to speed
up the computation of the loss function.

First, our smoothness priors for reflectance and
shape require repeatedly computing the negative log-
likelihood of a Gaussian scale mixture. Computing
this naively is very expensive, but it can be made
extremely efficient by pre-computing a lookup ta-
ble of the negative log-likelihood, and indexing into
that to compute the gradient and its loss. For the
multivariate GSM used in our smoothness prior for
color reflectance, we can construct a lookup table of
negative log-likelihood with respect to Mahalanobis
distance under the covariance matrix Σ in our GSM.

When computing our smoothness priors, it’s often
fastest to pre-compute the pairs of pixels within all
5 × 5 windows, and construct a sparse matrix where
for each pair, we have a row in which the column
corresponding to one pixel in the pair is set to 1 and
the column corresponding to the other pixel is set to
−1. With this, a vector of pairwise distances between
pixels can be computed efficiently with one sparse
matrix-vector product. Also, expressing this pairwise
distance computation as a matrix multiplication al-
lows gradients to be easily backpropagated from the
vector of differences onto the raw pixels by simply
multiplying the gradient vector by the transpose of
this matrix.

The prior for absolute reflectance can be computed
efficiently using the same bilateral-grid trick used for

entropy: splat the signal into a histogram, compute the
loss of the histogram, and then backpropagate onto
the data. For even more efficiency, we can use the
same histogram for both the entropy prior and the
absolute prior, which means that for each evaluation
of the loss function, we only need to compute one his-
togram from the reflectance and one backpropagation
from the histogram to the reflectance.

APPENDIX F
ERROR METRICS

Choosing good error metrics for this task is chal-
lenging. We will use the geometric mean of six error
metrics: two for shape, one for illumination, one for
shading, one for reflectance, and the MIT intrinsic
images error metric introduced in [4], which we
will refer to as RS-MSE (though which the original
authors call “LMSE”). We use the geometric mean
of these metrics as it is insensitive to the different
dynamic ranges of the constituent error metrics, and
is difficult to trivially minimize in practice.

Our first shape error metric is:

Z-MAE(Ẑ, Z∗) =
1

n
min
β

∑
x,y

∣∣∣Ẑx,y − Z∗x,y + b
∣∣∣ (44)

This is the shift-invariant absolute error between the
estimated shape Ẑ and the ground-truth shape Z∗.
This error metric is sensitive to all errors in shape es-
timation, except for the absolute distance of the shape
from the viewer (which is unknowable under ortho-
graphic projection). It can be computed efficiently by
setting b to the median of Ẑ − Z∗.

Our second shape error metric is:

N -MAE(N̂ ,N∗) =
1

n

∑
x,y

arccos
(
N̂x,y ·N∗x,y

)
(45)

This is the mean error between the normal field N̂
of our estimated shape Ẑ and the normal field N∗ of
the ground-truth shape Z∗, in radians. This metric is
most sensitive to very fine-scale errors in Ẑ, which is
what determines surface orientation.

For illumination, our error metric is:

L -MSE(L̂, L∗) =
1

n
min
α

∑
x,y

||αV (L̂)x,y − V (L∗)x,y||22

(46)
Which is the scale-invariant MSE of a rendering of
our recovered illumination L̂ and the ground-truth
illumination L∗. V (L) is a function that renders the
spherical harmonic illumination L on a sphere and
returns the log-shading. V (L)x,y is a 3-vector of log-
RGB at position (x, y) in the renderings. The α mul-
tiplier makes this error metric invariant to absolute
scaling, meaning that estimating illumination to be
twice as bright or half as bright doesn’t change the
error. But because there is only one multiplier rather
than individual scalings for each RGB channel, this
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error metric is sensitive to the overall color of the
illuminant. This choice seems consistent with what
we would like: estimating absolute intensity of an
illuminant from a single image is both incredibly
difficult and not very useful, but estimating the color
of the illuminant is a reasonable thing to expect
from an algorithm, and would be useful for many
applications (color constancy, relighting, reflectance
estimation, etc). We impose our error metric in the
space of visualizations of the illumination rather than
in the space of the actual spherical harmonic coeffi-
cients that generated that visualization, both because
it makes our error metric invariant to the choice of
illumination model, and because we found that often
the recovered illumination could look quite similar
to the ground-truth, while having a very different
spherical harmonic representation.

For shading and reflectance, we use:

S-MSE(ŝ, s∗) =
1

n
min
α

∑
x,y

∥∥αŝx,y − s∗x,y∥∥22 (47)

R-MSE(r̂, r∗) =
1

n
min
α

∑
x,y

∥∥αr̂x,y − r∗x,y∥∥22 (48)

These are the scale-invariant MSEs of our recovered
shading ŝ = exp(S(Ẑ, L̂)) and reflectance r̂ = exp(R̂).
Just like in L -MSE, we are invariant to absolute
scaling of all RGB channels at once, but not invariant
to scaling each channel individually. This makes these
error metrics sensitive to errors in estimating the
overall color of the shading and reflectance images,
but invariant to illumination. Note that these error
metrics are of shading and reflectance, not of log-
shading and log-reflectance, even though the rest of
this paper is written almost entirely in terms of log-
intensity. We could have used shift-invariant error
metrics in log-intensity space, but we found these to
be too sensitive to errors in dark regions of the image
— places in which we’d expect any algorithm to do
worse, simply because there is less signal.

Our final error metric is the metric introduced in
conjunction with the MIT intrinsic images dataset [4],
which the authors refer to as LMSE, but which we
will call RS-MSE to minimize confusion with L -MSE.
This metric measures error for both reflectance and
shading, and is locally scale-invariant. The intent of
the local scale-invariance is to make the metric in-
sensitive to low-frequency errors in either shading or
reflectance. In keeping with this spirit, we apply this
error metric individually to each RGB channel and
take the mean of those three errors as RS-MSE, mak-
ing this error metric not just robust to low-frequency
error, but robust to most errors in estimating the
color of the illumination. This error metric therefore
serves to be somewhat complementary to S-MSE
and R-MSE, which are sensitive to everything except
absolute intensity.
RS-MSE is the mean of the local scale-invariant

MSE of shading and reflectance, normalized so that
an estimate of all zeros has the maximum score of 1:

RS-MSE(ŝ, r̂, s∗, r∗) =
1

2

(
e(ŝ, s∗)

e(ŝ, 0)
+

e(r̂, r∗)

e(r̂, 0)

)
(49)

Where e(·) is the sum of the scale-invariant MSE at
all local windows w of size 20×20, spaced in steps of
10:

e(x̂, x∗) =
∑
w∈W

min
α
‖αx̂w − x∗w‖

2
2 (50)

As an aside, in our error metrics we repeatedly use
scale-invariant MSE, of the form:

min
α
‖αx̂− x∗‖22 (51)

The closed-form solution to this problem is:∥∥∥∥( x̂Tx∗x̂Tx̂

)
x̂− x∗

∥∥∥∥2
2

(52)

APPENDIX G
DATASET

Here we will detail how we recover “ground-truth”
shape and spherical harmonic illumination for each
image of each object in our dataset. This is a simple
photometric stereo algorithm, in which we optimize
over shapes and illuminations to minimize the ab-
solute error between renderings of our dataset and
the actual images in our dataset. Absolute error is
used to give us robustness to errors due to shadows
and specularities, which our rendering engine (and
therefore, our dataset) do not consider or address
properly. Recovered shapes and illuminations were
then cleaned up by hand to address bas-relief ambi-
guity issues[25]. We treat each RGB channel of each
image as a separate image.

To account for varying reflectance, we compute a
“shading” image for each image on our dataset.

s∗i,j = exp(Ii,j −Ri) (53)

We will now detail each step in the inner loop of our
iterative photometric stereo algorithm. We first take
each current shape estimate Z, and linearize it to get
a set of fixed surface normals. For each image j, we
solve for the SH illumination that minimizes absolute
error between the rendering and the shading image:

Lj ← arg min
L

∑
i

| exp(S(ni, L))− s∗i,j | (54)

This optimization problem is solved using Iteratively
Reweighted Least-Squares. We then fix each image’s
illumination Lj , and optimize over each object’s nor-
mals ni.

ni ← arg min
n

∑
j

| exp(S(n, Lj))− s∗i,j | (55)
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This optimization is done with L-BFGS. In this step,
the normals are decoupled, and so surface integrabil-
ity is not enforced. Given this estimate of surface nor-
mals, we can compute a integrable surface Z which
approximates this normal field using least-squares:

Z ← arg min
Z

∑
i

(
Z ∗ hx − nxi

nzi

)2

+

(
Z ∗ hy − nyi

nzi

)2

These three optimization steps are repeated until
convergence (30 iterations). For the first 10 iterations,
we constrain all of the illuminations belonging to the
same object to be scaled and shifted versions of each
other, but for the next 20 iterations we allow each
illumination for every image to vary freely. The result
of this algorithm is an estimate of Z for each object
and an estimate of L for each RGB channel of every
image.

This photometric stereo algorithm still suffers from
Bas-Relief ambiguity[25] issues, despite the abun-
dance of data. We therefore manually adjust each
recovered Z over the three parameters of the Bas-
Relief ambiguity by hand. Also, some regions of Z
are clearly incorrect due to shadows. These regions
are manually removed (and are not included in the
evaluation of our error metrics which concern Z).
After these manual tweaks to each shape, we update
the set of illuminations to minimize absolute error
once again. The two “cup” and “teabag” images did
not have discriminative enough shape features for
photometric stereo to recover reasonable second-order
spherical harmonic illuminations, so for those objects
we instead recover only first-order spherical harmonic
illumination parameters (equivalent to point-light +
ambient illumination), and set the other coefficients
to 0.

The MIT Intrinsic Images dataset was not acquired
with the goal of having the product of the “shad-
ing” and “reflectance” images be exactly equal to the
diffuse image, which our model (and our baseline
models) assume. That is, a lambertian rendering of
our recovered shape and illumination resembles a
scaled version of the original “shading” image. We
correct for this by adjusting the brightness of the
“shading” image such that it matches our rendering
in a least-squares sense, and we use this “corrected”
shading image in all of our experiments.

Note that the optimization tools we use for our
photometric stereo algorithm are completely disjoint
from the optimization techniques used by algorithm
in our paper, despite the fact that those techniques
could have been adapted to do photometric stereo.
This was done intentionally to dispel any concerns
that our results might be good simply because they
were obtained using similar techniques as our photo-
metric stereo algorithm.

Examples of our recovered shapes and illumina-
tions, as well as the shading and reflectance images

(a) Depth map (b) Shading

(c) Surface normals (d) Reflectance (e) images

Fig. 19. An object from our dataset. In 19(a), 19(b),
19(c), and 19(d) we have our “ground-truth” shape,
shading, surface normals, and reflectance, respec-
tively. The shading and reflectance images come from
the MIT Intrinsic Images dataset [4], and the shape and
surface normals were produced by our photometric
stereo algorithm. In 19(e) we have three columns,
where the first contains the images from the MIT
Intrinsic Images dataset [4], the third contains the
illuminations recovered by our photometric stereo algo-
rithm for each image, and the second column contains
renderings of our ground-truth for each illumination,
which demonstrate that our recovered models are rea-
sonable. The second to last row of Figure 19(e) is the
“shading” image from the MIT dataset, and the last
row is the “diffuse” image, which is used as input to
our model. The illumination on the last row is therefore
what is referred to as the “ground-truth” illumination for
this scene, in the rest of the paper.

(a) Depth map (b) Shading

(c) Surface normals (d) Reflectance (e) images

Fig. 20. Another object from our dataset, shown in the
same format as Figure 19. Note that our illumination
model cannot capture the cast shadows in the input
images, which is why our renderings are shadowless.

already contained in the MIT Intrinsic Images dataset,
can be seen in Figures 19 and 20.
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APPENDIX H
SHAPE FROM SHADING

Our model for recovering shape and albedo given a
single image and illumination can easily be reduced to
a model for doing classic shape-from-shading (recov-
ering shape given a single image and illumination).
Our optimization problem becomes:

minimize
Z

λ|I − S(Z,L)|+ f(Z) (56)

Where I is the input log-image, and λ is a multiplier
that trades off the importance of the reconstruction
terms against the regularizer on Z. f(Z) and S(Z,L)
are the same as defined in the paper. Optimization
is done using our multiscale optimization algorithm.
This SFS algorithm is similar to past algorithms which
optimize over a linearized representation of a depth
map, with the primary difference being our choice of
f(Z).

This SFS algorithm is run on the shading images
produced by the “intrinsic image” algorithms we
benchmark against. This is a very generous compar-
ison on our part, as we are effectively giving these
other algorithms one-half of the model we present
here, and we are assuming that illumination is known.
We used our own shape-from-shading algorithm for
fairness’s sake, as it appears to outperform previ-
ous SFS algorithms. This means, however, that our
improvement over these algorithms is not as much
a reflection of the effectiveness of f(Z) in isolation,
but is instead a demonstration of the effectiveness
of optimizing over f(Z) and g(A) to jointly recover
shape and albedo, as opposed to recovering a shading
image and then recovering shape from that shading
image.

Fig. 21. Here we have a single image from the
MIT-Berkeley Intrinsic Images dataset, under three
color/illumination conditions. For each condition, we
present the ground-truth, the output of SIRFS, the
output of SIRFS+S (which uses external shape infor-
mation), and the two best-performing intrinsic image
techniques (for which we do SFS on the recovered
shading to recover shape).
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Fig. 22. Here we have another image from the MIT-
Berkeley Intrinsic Images dataset.

Fig. 23. Here we have another image from the MIT-
Berkeley Intrinsic Images dataset.
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