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Figure 1: Screenshots of our game portal showing Drawer (left) and Guesser (right) activity during a Pictionary game. In this

case, the Drawer has violated the game rules by writing text (‘Spiderm’) on the canvas. An automatic alert notifying the player

(see top left of screenshot) and identifying the text location (red box on canvas) is generated by our system DrawMon.

ABSTRACT

Pictionary, the popular sketch-based guessing game, provides an op-
portunity to analyze shared goal cooperative game play in restricted
communication settings. However, some players occasionally draw
atypical sketch content. While such content is occasionally relevant
in the game context, it sometimes represents a rule violation and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3547747

impairs the game experience. To address such situations in a timely
and scalable manner, we introduce DrawMon, a novel distributed
framework for automatic detection of atypical sketch content in
concurrently occurring Pictionary game sessions. We build special-
ized online interfaces to collect game session data and annotate
atypical sketch content, resulting in AtyPict, the first ever atypical
sketch content dataset. We use AtyPict to train CanvasNet, a
deep neural atypical content detection network. We utilize Can-
vasNet as a core component of DrawMon. Our analysis of post
deployment game session data indicates DrawMon’s effectiveness
for scalable monitoring and atypical sketch content detection. Be-
yond Pictionary, our contributions also serve as a design guide for
customized atypical content response systems involving shared
and interactive whiteboards. Code and datasets are available at
https://drawm0n.github.io.
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1 INTRODUCTION

Shared digital whiteboards are becoming increasingly popular in
educational and workplace settings as a natural mechanism for
collaboration and communication [1, 8, 14, 22, 26, 36]. The sharing
aspect offers tremendous scope for interaction and a richer session
experience. Unfortunately, shared whiteboards sometimes present
situations where malicious participants draw controversial con-
tent [47]. Such activities tend to impair the collective experience of
participants. Therefore, it is important to have scalable mechanisms
for efficiently identifying and responding to such activities.

The popular social sketching game of Pictionary™, which we
employ as a use case in this paper, also presents scenarios involving
atypical sketched content. Pictionary is a wonderful example of
cooperative game play to achieve a shared goal in communication-
restricted settings [16, 40, 48]. The game consists of a time-limited
episode involving two players - a Drawer and a Guesser. The Drawer
is tasked with conveying a given target phrase to a counterpart
Guesser by sketching on a whiteboard [15]. The larger the number
of target phrases correctly identified and the earlier the phrases
are identified from the drawn sketch, greater the number of points
accrued for the participating players. The rules of Pictionary forbid
the Drawer from writing text on the whiteboard. This is usually not
an issue when players are physically co-located. In the anonymized,
web-based version of the game, however, the Drawer may cheat
by writing text related to the target word on the digitally shared
whiteboard, thus violating the rules. Intervention is possible by
physically monitoring game sessions. However, such manual inter-
vention is impractical and not scalable to an online setting involving
a large number of multiple concurrent game sessions. Providing
user interface options for player-triggered flagging of rule violation
is another possibility. But such mechanisms are not completely
reliable since the Guesser benefits from the content written on
the canvas and does not have real incentive to use the flagging
mechanism.

Apart from malicious game play, atypical sketch content can
also exist in non-malicious, benign scenarios. For instance, the
Drawer may choose to draw arrows and other such icons to attract
the Guesser’s attention and provide indirect hints regarding the
target word (see Fig. 2). Accurately localizing such activities can
aid statistical learning approaches which associate sketch-based

representations with corresponding target words [42]. Considering
both malicious and benign scenarios, the broad requirement is for
a framework which can respond to a variety of atypical whiteboard
sketch content in a reliable, comprehensive and timely manner. To
this end, we make the following contributions:

• We introduce AtyPict - the first ever dataset of atypical
whiteboard content.

• We introduce DrawMon, a distributed system for sketch
content-based alert generation (Sec. 5). We analyze sessions
with DrawMon deployed for Pictionary setting and demon-
strate its effectiveness (Sec. 6.2).

Although presented in a Pictionary game context, our contribu-
tions serve as a design guide for developing response frameworks
involving shared and interactive whiteboards. For code, models and
additional details, visit the project page https://drawm0n.github.io

2 RELATED WORK

Detecting and FlaggingAnomalousGameplay: Some approaches
employ a diverse mix of techniques for detecting cheating in online
games [21, 46]. Dinh et al. [10] use hand-crafted game features
and unsupervised machine learning approaches for offline detec-
tion of anomalous behavior. In our work, we introduce automatic
deep learning based detection and flagging of anomalous gameplay
in Pictionary. However, our system is also designed to detect sec-
ondary non-anomalous canvas entities which can potentially aid
statistical understanding of canvas contents.
Sketch datasets: Existing sketch datasets (e.g. TU-Berlin [11],
Sketchy [41], QuickDraw [23]) have been created primarily in the
context of sketch object recognition problem – assign a categorical
label to a hand-drawn sketch. The category labels correspond to
objects (nouns). Therefore, these datasets lack abstract sketches
which tend to be drawn when words from other parts of speech
(verbs, adjectives) are provided as targets. Existing datasets are
also unnatural because they do not include canvas actions such
as erase strokes or location emphasis. Also, no intermediate guess
words are associated with sketched content. For a similar reason,
these datasets do not contain atypical activities unlike the dataset
we introduce. Sarvadevabhatla et al. [42] explore neural network
based generation of human-like guesses, but for pre-drawn object
sketches. However, they do not accommodate interactivity and non-
sketch drawing canvas activities (e.g. erase, pointing emphasis). The
Kondate dataset [34] contains on-line handwritten patterns of text,
figures, tables, maps, diagrams etc. The OHFCD dataset [2] pertains
to online handwritten flowcharts. Although challenging in their
own way, these datasets are considerably more structured than our
setting. Additionally, they share the sketch datasets’ shortcoming of
being too cleanly curated because actions such as erase are absent.
As a unique aspect, our combination of a game setting and a time
limit unleashes greater diversity and creativity, causing sketches in
our dataset to be more spontaneous and less homogeneous com-
pared to existing datasets.
Detecting canvas items: Recognizing atypical activities can be
thought of as a stroke segmentation problem wherein each sketch
stroke is labelled as either belonging to an atypical class or the
default class (drawing). Stroke segmentation has been employed
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for labelling parts in object sketches either from stroke sequence
information [25, 37, 50, 53] or within an image canvas [28, 51].

Recognizing atypical sketch content can also be posed as an
object detection problem. In this case, the objective is to obtain
2-D spatial bounding boxes enclosing sketch strokes correspond-
ing to the atypical content. We adopt this approach because it is
faster and more amenable to near real-time operation compared
to segmentation. Handwritten text is the most common atypical
sketch content class in Pictionary. Hence, it is reasonable to con-
sider approaches solely designed for text detection in domains such
as outdoor scenes and documents [3, 9, 20, 29, 31, 33, 56]. Simi-
larly, detection-based approaches have been proposed for mixed
graphic structures [13, 24, 43]. However, graphic elements in these
scenarios are more structured compared to our Pictionary setting.
Pictionary-like guessing games: Borrowing terminology from
the seminal work of von Ahn and Dabbish [48], Pictionary can
be considered an ‘inversion game’ with full transparency. Riberio
and Igarashi [39] employ a sketching-based interactive guessing
game to progressively learn visual models of objects. A review of
Pictionary-like word guessing games involving drawing can be
found in the work by Sarvadevabhatla et al. [42]. In general, most
of the existing works are confined to idealized toy settings [18],
with some not even containing any sketching aspect [6, 12]. Unlike
what we propose in this paper, they do not discuss the possibility
of atypical content.

3 DATA COLLECTION

3.1 Game Sessions

Our browser-based game portal (Figures 1,5) is compatible with
mouse and touch inputs, scalable and can handle up to 50 multiple
concurrent Pictionary sessions. Consent is obtained and game in-
structions are provided when a player accesses the system for the
first time. Players are assigned random names and paired randomly
as Drawers and Guessers. The targets provided to the Drawers are
sampled from a dictionary of 200 guess phrases. We re-emphasize
that the target phrases can be nouns (e.g. airplane, bee, chair), verbs
(e.g. catch, call, hang) or adjectives (e.g. happy, lazy, scary). To en-
sure uniform coverage across the dictionary, the probability of a
guess phrase being selected for a session is inversely proportional
to the number of times it has been selected for elapsed sessions.
The game has a time limit of 120 seconds. The game ends when the
Guesser enters a word deemed ‘correct’ by the Drawer or when the
time limit is reached.

For the Guesser, a text box is provided for entering guess phrases.
For the Drawer, the interface provides a canvas with tools to draw,
erase and highlight locations (via a time-decaying spatial animation
‘ping’) for emphasis (see Fig. 1). In addition, and buttons enable
Drawer to provide ‘hot/cold’ feedback on guesses. A question ()
button is provided to the Guesser for conveying that the canvas
contents are not informative and confusing. The canvas strokes are
timestamped and stored in Scalable Vector Graphic (SVG) format
for efficiency. In addition to canvas strokes (drawing and erasure
related), secondary feedback activities mentioned previously ( , ,
, highlight) are also recorded with timestamps as part of the game
session.

Sketch Content Type Number of Number of Number of
class occurrences sessions target phrases

containing containing
Text 2419 478 180

Individual letter 2244 460 178
Running hand 175 103 81

Numbers 331 73 28

Circles 110 90 67

Iconic 750 377 147

Arrow 497 292 129
Question mark 158 116 78
Miscellaneous 95 54 37

Table 1: Statistics of atypical sketch content categories in

game sessions.

Via our portal, we successfully gathered 3220 timestamped episodes
of diverse, realistic game play involving a total of 479 participants
in a large age range (14 years to 60 years) and educational demo-
graphics (middle and high school students, graduate and undergrad-
uate university students and working professionals). Please refer
to project page for sample videos of game sessions, architectural
overview of the game play system and plots with additional game
session statistics.

3.2 Atypical Data

An atypical sketch content instance can be thought of as a subse-
quence of sketch curves relative to the larger sequence of curves
that comprise the game session. We first describe the categories of
atypical content usually encountered in Pictionary sessions:

• Text: Drawer directly writes the target word or hints related
to the target word on the canvas.

• Numerical: Drawer writes numbers on canvas.
• Circles: Drawers often circle a portion of the canvas to em-
phasize relevant or important content.

• Iconic: Other items used for emphasizing content and ab-
stract compositional structures include drawing a question
mark, arrow and other miscellaneous structures (e.g. double-
headed arrow, tick marks, addition symbol, cross) and strik-
ing out the sketch (which usually implies negation of the
sketched item).

Examples can be viewed in Fig. 2. It is important to remember
that we consider only Text writing as a rule violation in Pictionary.
Other categories mentioned above are atypical but their presence
is not considered a violation of game rules.

To annotate atypical content, we use our custom-designed, browser-
based annotation and visualization tool dubbed CanvasDash (see
Fig. 3) - please refer to project page for details.

Using the described annotation procedure, we obtain our atypical
Pictionary sketch dataset AtyPict. The occurrence statistics of
atypical sketch categories across game sessions can be viewed in
Table 1. Representative visual examples can be viewed in Fig. 2.
Although we had earlier defined atypical content in terms of curve
subsequences, the illustrations in Fig. 2 show that the content can
have a defined 2-D spatial extent and context relative to the canvas.
For ease of processing, we consider this latter interpretation. In
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Figure 2: Some examples of atypical sketch content in Pictionary game sessions are shown as canvas screenshots. The content

instances span text, numbers, question marks, arrows, circles and other icons (e.g. tick marks, addition symbol) categories -

refer to Sec 3.2 for details.

Select current
stroke
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stroke

Deselect current
stroke

Activity Category choices

Current stroke
 (zoomed)

Navigation 
buttons

Noti�cation zone

Annotation
description

Current stroke
(highlighted in

yellow)

Figure 3: An illustration of annotation using the Canvas-

Dash interface.

other words, we consider atypical content instances to be category-
labelled 2-D spatial patterns sketched over time on the canvas. In
terms of Fig. 2, detecting such content therefore corresponds to
accurately detecting and categorizing 2-D spatial extents of entities
shown color-coded on the canvas.

4 CANVASNET

An effective approach for detecting atypical sketch instances needs
to tackle the diversity in scale and appearance of various categories
- a glance at Fig. 2 makes this amply clear. In addition, the approach
needs to utilize spatial context and be robust to the presence of
similar looking yet semantically distinct regular (sketch) canvas
content. To meet these requirements, we cast the problem as image-
based object detection. In our case, the drawing canvas containing
accumulated sketch strokes is the image. Any atypical content
instances (e.g. Text) present are considered spatially localized 2-D
objects to be detected. For the object detection, we design a novel
deep neural networkwhichwe dubCanvasNet. Before delving into

details of CanvasNet, we first describe the data setup employed
for its training and evaluation.

4.1 Data Preparation

As mentioned previously, the canvas elements for a given game
session are represented as timestamped SVG curve elements. Each
SVG element is either a drawing stroke or an erasure stroke. We
group drawing strokes into subsequences which are separated by
erase strokes. The curves are converted to a 2-D point sequence
representation and adaptively downsampled into line-based strokes
using Ramer–Douglas–Peucker [38] algorithm (𝜖 = 2). The strokes
are rendered on a 512× 512 2-D canvas with a stroke thickness of 4
for the purpose of data annotation and representation. Note that a
drawing stroke either belongs to one of the atypical classes (Sec. 3.2)
or is a normal sketch stroke. The spatial extents of labelled stroke
subsequences are used to automatically generate ground-truth data
for training and evaluation of CanvasNet (Sec. 4). Examples of
ground-truth bounding boxes for atypical categories can be seen
as solid (non-dashed/non-dotted) rectangles in Fig. 7.
Data Augmentation: The number of game sessions containing
atypical instances are considerably smaller compared to the total
number of game sessions. To increase the amount of data available
for deep network training in a realistic manner, we first isolate
atypical instance stroke subsequences. We sample from this set
and add the resulting subsequences to other sessions which share
the same target phrase, but do not contain any atypical content.
The atypical content subsequences are also randomly rotated and
localized carefully. This ensures they are spatially disjoint from
strokes of the reference game sessions (which originally lack such
atypical entities) – examples can be viewed in project page.

4.2 CanvasNet Deep Network

Inspired by the success of deep networks which attempt to detect
text in photos [29, 32, 44], we adopt a similar efficient approach for
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Figure 4: Architecture of CanvasNet deep neural network. Refer to Sec. 4.2 for details.

our CanvasNet deep network to detect atypical sketch instances
on a drawing canvas. CanvasNet consists of two stages.

Feature Extractor: The first stage consists of a stem block
containing three 3 × 3 unit separable convolution layers [5]. Our
choice of seperable convolution layers is motivated by the reduction
in number of parameters and operations involved. The first layer in
stem block uses a stride of 2 to downsample the input features. The
stem block is then followed by a repeating three segment structure
consisting of (i) a 2 × 2 max pooling layer (ii) a 6 layered dense
block [19] with a growth rate of 48. Each of the 6 layers consists of a
1×1 separable convolution followed by a 3×3 separable convolution
(iii) a 1 × 1 separable convolution layer denoted as SC Transition
layer. This three segment structure is then repeated three times
with similar parameters - see project page for additional details.

Multi-scale Predictor: Atypical content (e.g. handwritten text,
arrows) can occupy varying amounts of drawing canvas area, to
detect them we use multi-scale predictor for prediction on multiple
scales of feature maps [29, 44]. For our setting, we use a customized
multi-scale predictor for both handwritten text and non-text classes.
The second stage sub-network is responsible for generating multi-
scale feature maps and generating predictions over each of the
feature maps. The output of third segment structure of the Feature
Extractor is considered the first scale of the multi-scale feature map.
The other feature map scales are obtained as outputs of successive
downsampling blocks applied to the Feature Extractor’s output
(Fig. 4) - see project page for additional details. The feature maps
are passed individually through a prediction block. The multi-scale
prediction features are concatenated and non-maximal suppression
is applied to generate the final bounding box predictions.

Prediction block: This consists of a 3 × 5 separable convolution
layer, followed by a fully connected layer comprising the prediction.
The rectangular filter dimensions (3 × 5) used in the block ensure
that elongated objects can be detected reliably.

Anchor boxes with vertical offsets: Among the atypical object cate-
gories, words have larger aspect ratios and range of box orientation.
Therefore, we set anchor aspect ratios to 1, 2, 3, 4, 5, 1/2, 1/3, 1/5
with ±0.25 as the vertical offset.
Optimization: We formulate the loss function for CanvasNet
as a combination of a classification loss 𝐿𝑐𝑙𝑠 and a bounding-box
localization loss 𝐿𝑙𝑜𝑐 :

𝐿 = 𝛼

(
1
𝑁

𝑁∑︁
𝑖=1

𝐿𝑐𝑙𝑠 (𝑃𝑖 ,𝐺𝑖 )
)
+ ©« 1

𝑀

𝑁∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝐺𝑖 𝑗 ∗ 𝐿𝑙𝑜𝑐 (𝐵𝑖 , 𝐵
𝑔𝑡

𝑖
)ª®¬ (1)

where 𝐺 is the ground truth label matrix (𝐺𝑖 𝑗 = 1 if 𝑖-th anchor
box belongs to atypical category 𝑗 , else 𝐺𝑖 𝑗 = 0), 𝑃 is the predicted
confidence score matrix (𝑃𝑖 𝑗 indicates the confidence score that
𝑖-th anchor box belongs to category 𝑗 ), this means 𝑃𝑖 is a row of
confidence scores for 𝑖-th box to belong to various atypical cate-
gories, similarly 𝐺𝑖 is a row where values for all atypical category
is 0 except for one(to which 𝑖-th box belongs). In the above loss
function formulation, 𝐵𝑔𝑡

𝑖
and 𝐵𝑖 denotes the ground truth and

predicted offsets for the 𝑖-th anchor box. 𝑁 is the total number of
anchor boxes, 𝑀 is the total number of ground truth anchor boxes
not belonging to background class, 𝑐 represents the number of atyp-
ical categories. We use focal loss[30] for 𝐿𝑐𝑙𝑠 which prioritizes a
sparse set of hard examples and prevents large number of negatives
from overwhelming the detector. For localisation task, we adopt
Distance-IoU Loss [54]:

L𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2

(
b, b𝑔𝑡

)
𝑐2

where 𝑏 and 𝑏𝑔𝑡 denote the central points of predicted and
ground truth bounding box, 𝜌2

(
b, b𝑔𝑡

)
gives the square of the Eu-

clidean distance between them, and 𝑐 is the length of the diagonal
of the smallest enclosing box covering the two bounding boxes.

5 DRAWMON

Consider a scenario with multiple online Pictionary game sessions
in progress. We require a framework for automatic and concurrent
monitoring of these game sessions for any atypical activities (e.g. a
rule violation such as writing text on canvas). Such a framework
needs to be reliable, scalable and time-efficient. To meet these re-
quirements, we propose DrawMon - a distributed alert generation
system (see Fig. 6). Each game session is managed by a central
Session Manager which assigns a unique session id (Fig. 5). For a
given session, whenever a sketch stroke is drawn, the accumulated
canvas content (i.e. strokes rendered so far) is tagged with session
id and relayed to a shared Session Canvas Queue. For efficiency,
the canvas content is represented as a lightweight Scalable Vector
Graphic (SVG) object. The contents of the Session Canvas Queue
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Table 2: Results for atypical content detection

(a) CanvasNet performance for atypical content

classes. IoU=0.5 refers to detection threshold. Refer

to Sec. 6.1 for details.

Atypical Content Category IoU=0.5
mAP mAR

Text 0.58 0.80
Number 0.44 0.61
Icon 0.55 0.68
Circle 0.72 0.85

(b) Performance comparison with baselines. mAP = mean Average Precision, mAR

= mean Average Recall, #Parameters = the number of trainable weights in the cor-

responding deep network in millions, ADT = average detection time per image in

milliseconds.

Method Text only Multiclass # Parameters ADT
mAP mAR mAP mAR M=million (m.sec)

CanvasNet 0.78 0.90 0.41 0.53 1.90 M 35
BiLSTM+CRF [7] 0.06 0.04 0.02 0.03 0.01 M 85
SketchsegNet+[37] 0.56 0.32 0.04 0.11 3.90 M 21
Tiny-YOLOv4[49] 0.26 0.65 0.31 0.51 5.88 M 40
TextBoxes++[29] 0.41 0.65 0.25 0.39 29.31 M 51
DSOD[44] 0.43 0.66 0.25 0.40 17.49 M 52
CRAFT [3] 0.47 0.69 0.17 0.30 1.18 M 34

Figure 5: System architecture for Pictionary game setup and

DrawMon (Sec. 5).

are dequeued and rendered into corresponding 512 × 512 binary
images by Distributed Rendering Module in a distributed and par-
allel fashion. The rendered binary images tagged with session id
are placed in the Rendered Image Queue. The contents of Rendered
Image Queue are dequeued and processed by Distributed Detection
Module. Each Detection module consists of our custom-designed
deep neural network CanvasNet which processes the rendered im-
age as input. CanvasNet outputs a list of atypical activities (if any)
along with associated meta-information (atypical content category,
2-D spatial location).

The outputs from multiple distributed CanvasNet instances
within the Distributed Detection Module are routed to the Alert
Generator Module. An activity Record Table within this module
records information related to ongoing game sessions and atypical
content instances. This table is analyzed with respect to a Rule
Base sub-module which generates appropriate alerts and relays
them to the appropriate game sessions. Since rule violations are of
predominant interest, other atypical content alerts can be filtered
out. Incoming alerts are finally displayed on the game session user
interface (UI) - see Fig. 1.

Also note that two manually-controlled mechanisms related
to alert generation exist within the game UI. The Guesser player
can press a button labelled ‘Drawer is violating rule!’. This simply

generates the alert (but does not highlight the canvas location
where violation occurs). On the Drawer’s side, the button ‘False
Alarm’ can be used to dismiss false positive alerts (see Fig. 1). In
the current deployment, we utilize the Text detection variant of
CanvasNet to detect text writing event on canvas.

6 EXPERIMENTS AND RESULTS

We first describe the experiments and results for atypical content
detection. Following standard machine learning protocols, we di-
vide data into training, validation and test splits. For each target
phrase, the sessions containing atypical content are randomly split
in the ratio 70 (train) : 15 (validation) : 15 (test). Since we perform
data augmentation on atypical content-free sessions, we divide
such sessions in the aforementioned ratio as well. The respective
data splits are combined to obtain the final groups.

6.1 Atypical content detection

Baselines: All along, our approach for detecting atypical activi-
ties treats the canvas as a 2-D image. In effect, the game session is
considered to be a video-like frame sequence of 2-D canvas images.
We also consider alternate approaches wherein the game session is
processed as a sequence of curves. Each curve is labelled either as
a regular sketch stroke or one associated with an atypical content
category. Briefly, the baselines we consider are the following: BiL-
STM+CRF [7] - This classifies each stroke in a sketch sequence as
one of the atypical classes using a bidirectional Long Short Term
Memory (BiLSTM) neural network [17] and Conditional Random
Field (CRF) [45]. The input to this model is a set of hand-crafted
features of the strokes. SketchSegNet+ [37] - This classifies each
point in a sketch sequence as one of the atypical classes using bidi-
rectional LSTM. For image based models, we train appropriately
modified versions of two state-of-the-art generic object detectors
– DSOD [44] and Tiny-YOLOv4 [49]. We also train modified ver-
sions of two popular scene text detection models – TextBoxes++ [29]
and CRAFT [3]. Please see project page for architectural details of
baselines.
Evaluation Protocol: We conduct evaluation using two protocols.
In the first protocol, we considermodels trained to detect all atypical
content classes. To score performance, we use the standard object
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Figure 6: A pictorial overview of DrawMon - our distributed atypical sketch content response system (Sec. 5). Also see Fig. 5 for

additional architectural details.

detection measures – mean-average-precision (mAP) and mean-
average-recall (mAR) [55]. These measures are typically reported
on a [0, 1] scale – larger the better. mAP and mAR are reported at
an Intersection-over-Union (IoU) threshold of 0.5. In other words,
an overlap of 50% or greater between predicted bounding box and
ground-truth bounding box is deemed correct (assuming predicted
category label also matches).
Training: For trainingCanvasNet, we employAdamoptimizer [27]
with a mini-batch size of 8, the exponential decay rate for 1𝑠𝑡 and
2𝑛𝑑 moment estimates set to 0.9 and 0.999 respectively. We stop
training after 50 epochs. Classification loss weight (𝛼) is set to
1000 for quick convergence. The training takes approximately 4.5
hours on two GTX 1080Ti 11GB GPUs. We use mish [35] activation
function since it provides fast convergence and improved perfor-
mance compared to the standard relu activation. For training the
text-only model, we used hard mining training regime wherein false-
positive samples having IoU overlap value with ground truth in the
range [0.45, 0.55] are chosen for mining. We observed significant
increase in 𝑚𝐴𝑃 , 𝑚𝐴𝑅 compared to regular training regime due
to this regime. For training the multiclass model, we used mini-
batch re-sampling with class balancing to counteract the presence
of imbalanced per-class sample distribution.
Detection Results: CanvasNet’s performance for all the atypi-
cal categories can be viewed in Table 2a. Fig. 7 depicts examples
of CanvasNet detections, including some failure cases. We con-
ducted ablation experiments to determine the relative importance
of our architectural and optimization choices. Details of the ablation
configurations and results can be viewed in the project page. The
comparative evaluation of CanvasNet with baseline approaches
is summarized in Table 2b. Note that the comparison also includes
compute-related aspects (number of trainable parameters in the
approaches and average detection time).

Table 2a shows CanvasNet’s performance for various atypi-
cal content categories. The consistent depictions of Circle enables
good performance for the category. Detecting isolated numbers is
slightly more challenging. Empirically, we observed that sketched
content resembling letters (e.g. a mountain sketch) or numerals
(e.g. vertical bar groups) accounted for most of the false positive

detections. Text spanning a significantly large extent of the can-
vas and unusually oriented numbers accounted for majority of the
missed detections (false negatives). Performance scores for ablative
variants of CanvasNet are included in project page.

From Table 2b, we see that CanvasNet clearly outperforms a
variety of baseline approaches (Sec. 6.1). This is predominantly due
to the carefully considered architectural and optimization choices
in designing CanvasNet. The results also illustrate the superi-
ority of image-based approaches compared to the sketch stroke
processing approaches (BiLSTM +CRF, SketchSegNet+). Keeping the
rule-violation detection scenario in mind, we also trained variants
designed to detect the single class Text. As the ‘Text only’ column
in Table 2b shows, CanvasNet remains the best performer. Conse-
quently, we utilize this model variant as part of DrawMon in our
game deployment scenario (Sec. 5). From the table (column named
‘Parameters’), we also note that CanvasNet achieves its superior
performance despite containing a smaller number of parameters
relative to most of the baselines.

6.2 DrawMon User Study Experiments

To quantify the efficacy of DrawMon, we analyzed game session
data with DrawMon deployed to detect text. The canvas contents
are relayed to DrawMon every 1 second. We deployed 4 Canvas-
Net instances within the Distributed Detection Module on two
2080Ti GPUs alongside 16 worker processes for svg to image con-
version. The combined peak usage of GPU RAM was 20 GB while
peak CPU RAM usage was 15 GB. 23 participants (11 male, 12 fe-
male) in the age group 19−25 (mean=20.8, std.=3.1), recruited using
social media and from the institution’s student pool, participated in
the study. Each session had an average duration of 47.5 sec (std.=
37.4) with the maximum being 120 seconds. Over the study period,
the maximum number of concurrent game sessions managed by
DrawMon was 4. From the resulting set of 145 game sessions, 69
contained atypical text activities. During the sessions, we recorded
timestamped alerts from DrawMon, false alarm notifications by
the Drawer player and rule violation notifications from the Guesser
player. The results from the study are summarized in Table 3. To de-
termine DrawMon’s throughput, we measured two quantities. The
first, processing time (p-time), is the average elapsed time between
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Figure 7: Examples of atypical content detection by CanvasNet. False negatives are shown as dashed rectangles and false

positives as dotted rectangles. Color codes are: text, numbers, question marks, arrows, circles and other icons (e.g. tick marks,

addition symbol).

Table 3: User study statistics with DrawMon deployed.

Game Event Type Count

(True Positive) DrawMon generates ‘Rule Violation’ alert. Drawer doesn’t press ‘False Alarm’ button. 62
(False Positive) DrawMon generates ‘Rule Violation’ alert. Drawer presses ‘False Alarm’ button. 32
(False Negative) No ‘Rule Violation’ alert. Guesser presses ‘Drawer is violating rule’ button. 6

the canvas representation being sent to DrawMon and receiving
an alert. In case no alerts were generated, the timestamp corre-
sponding to end of CanvasNet processing was considered. From
our data, p-time was 0.4s. The other measurement was the maxi-
mum number of concurrently active sessions (n-sess) – this was 4.
Defining the effective throughput rate to be tpr = p-time/n-sess,
we obtain an average processing rate of 10 items per second.
Results and Analysis: The results from Drawmon deployment
user study are summarized in Table 3. From the table, we see that
a significant fraction of DrawMon generated alerts are valid (see
‘True Positives’). From the results, DrawMon’s precision is 0.66
while recall is 0.91. Post the user study, we conducted a brief survey
with Likert-type questions on a 1 to 5 scale with 5 being the best.
‘Q: How responsive was DrawMon to valid rule violations?’ : The
average score was 3.63 (s.d.=0.74), indicating reasonably high sys-
tem throughput despite multiple concurrent sessions. This is also
supported by the recorded throughput rate (tpr) mentioned previ-
ously in this section. ‘Q: How was the overall game experience?’ :
The score was 3.91 (s.d.=0.60), suggesting a positive session expe-
rience and satisfaction with rule violation detection and response
mechanisms.

User study plots and sample videos of game sessions with Draw-
Mon in action can be viewed in project page.

6.3 Application Scenarios

Application Scenarios:Althoughwe have used Pictionary as a use
case scenario, we expect DrawMon to be suitable for other shared

and interactive whiteboard scenarios. For instance, in a writing
related setting, the notion of atypical categories can be the exact
opposite of Pictionary scenario: text on canvas would be routine
while drawings might be considered abnormal. This can be tackled
by appropriate data labelling, for e.g. using our CanvasDash anno-
tation tool, and subsequently retraining CanvasNet deep network.
In another scenario, consider participants grouped into teams for a
collaborative scene drawing task [8, 52]. DrawMon, using a Can-
vasNet configured for sketched scene recognition [57], can alert
the instructor on progress and task completion. For this task, a Can-
vasNet instance trained to recognize individual objects and iconic
components from our dataset (e.g. arrows, ‘addition mark’) could
also be included as additional detection component for expanding
the detection capability.

7 CONCLUSION AND FUTUREWORK

DrawMon is a distributed framework for monitoring multiple
shared interactive whiteboards for detecting atypical content. We
use a Pictionary-like sketching game as the use case scenario.Draw-
Mon is enabled by a number of equally important lateral contribu-
tions - (i) CanvasDash - an intuitive dashboard UI for annotation
and visualization (ii) AtyPict - a first of its kind dataset for atypical
sketch content (iii) CanvasNet - a deep neural network for atypi-
cal content detection. Together, these reusable contributions create
the possibility of developing similar frameworks for other shared
and interactive whiteboard scenarios. Apart from atypical content
detection, we expect our game session dataset to be a valuable re-
source in itself for analyzing player characteristics and strategies in
communication restricted non-adversarial games [16]. In addition,
we plan to develop practical AI agents which can mimic human
Pictionary players in a more interactive, realistic manner compared
to existing non-interactive works [4, 18].
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