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Fig. 1. We present an approach for building photorealistic full-body avatars that can be animated using input driving signals such as 3D keypoints (left) or
body pose and facial animation codes (right). We build a disentangled latent space that is driving-signal aware to ensure that the model generalizes to novel
sequences while still producing photorealistic results.

We present a learning-based method for building driving-signal aware full-
body avatars. Our model is a conditional variational autoencoder that can
be animated with incomplete driving signals, such as human pose and facial
keypoints, and produces a high-quality representation of human geometry
and view-dependent appearance. The core intuition behind our method is
that better drivability and generalization can be achieved by disentangling
the driving signals and remaining generative factors, which are not avail-
able during animation. To this end, we explicitly account for information
deficiency in the driving signal by introducing a latent space that exclu-
sively captures the remaining information, thus enabling the imputation of
the missing factors required during full-body animation, while remaining
faithful to the driving signal. We also propose a learnable localized compres-
sion for the driving signal which promotes better generalization, and helps
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minimize the influence of global chance-correlations often found in real
datasets. For a given driving signal, the resulting variational model produces
a compact space of uncertainty for missing factors that allows for an impu-
tation strategy best suited to a particular application. We demonstrate the
efficacy of our approach on the challenging problem of full-body animation
for virtual telepresence with driving signals acquired from minimal sensors
placed in the environment and mounted on a VR-headset.
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mation.
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1 INTRODUCTION
The goal of this work is to build high quality full body models of
geometry and appearance that can be driven from commodity sen-
sors placed in the environment. Building expressive and animatable
virtual humans is a well studied problem in the graphics community.
The creation of so called digital doubles has roots in the special ef-
fects industry [Alexander et al. 2010], and in recent years has begun
to see examples of real-time uses as well such as Siren of Epic Games
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and DigiDoug of Digital Domain. These models are typically built us-
ing sophisticated multi-view capture systems with elaborate scripts
that span variations in pose and expression. They capture a low-
dimensional prior representation of human shape and appearance
that allows for animation using more modest capture settings [Blanz
and Vetter 1999; Loper et al. 2015; Romero et al. 2017]. Nonetheless,
these models rely on brittle hand-crafted assumptions to encourage
generalization to unseen poses, and overall sensor requirements for
animation remains significant (e.g., a full-body motion capture suit
for animation such as Xsens1 and OptiTrack2). Since these models
are learned independently from the sensor configurations used to
drive the model during animation, they can simultaneously be over-
and under-constrained, with limited ability to precisely match poses
observed by the sensors while exhibiting unrealistic contortions in
unobserved areas.

One approach to better integrate the driving signal into the model
building process is to simultaneously capture using both the mod-
eling sensors (i.e. an elaborate multi-view capture system) and the
animation sensors (i.e. a small set of cameras placed in the environ-
ment). In this scenario, one can learn a model that directly regresses
full shape and appearance from the information-deficient driving
signals captured by the animation sensors. Although this approach
significantly restricts the types of driving signals that can be used,
e.g. a motion capture suit for a regularly clothed digital double,
we argue that there is a more fundamental problem with this sce-
nario. That is, there exists information asymmetry between the
modeling and animation sensors which results in a one-to-many
mapping problem, where multiple combinations of model states can
equally likely explain the measurements. For example, a driving
signal based on body joint angles does not contain complete infor-
mation about clothing wrinkles and muscle contraction. Similarly,
facial keypoints typically do not encode the hair, gaze or tongue mo-
tion. As a result, a model that is trained naively, without specifically
taking into account such missing information, will either under-fit
and produce averaged appearance, or, given enough capacity, will
over-fit and learn chance correlations only present in the training
set. Some existing works have addressed the issue of information
asymmetry through the use of temporal models and adversarial
training [Alexanderson et al. 2020; Ginosar et al. 2019; Ng et al.
2020; Yoon et al. 2020]. However, these methods tend to prescribe a
specific imputation strategy that may not be appropriate in some
applications. Furthermore, they operate on models post-training,
making it difficult to overcome over- or under-fitting behavior that
may already exist in the model.
Our work aims to address the problem of learning a model for

a full-body digital avatar that is faithful to information-deficient
driving signals while also providing an explicit data-driven space
of plausible configurations for the missing information. To this
end, we introduce a variational model that explicitly captures two
types of factors of variation: observed factors that can be reliably
estimated from the driving signals during animation, and missing
factors, which are available only during the modeling stage. Our
core strategy is to encourage better generalization by minimizing

1https://www.xsens.com/
2https://www.optitrack.com/

the correlations between the observed factors, while maximizing it
for the missing factors, such that during animation the model is able
to produce plausible/realistic appearance and shape configurations
that are fully consistent with the driving signal. We achieve the first
by building a spatially-varying representation of the driving signal
that localizes its effects and breaks global chance-correlations that
might exist in the training set. The second is achieved by introducing
a latent space for variation that is disentangled from the observed
factors, forcing it to capture only the missing factors that are neces-
sary to reconstruct the data. In particular, better disentanglement is
achieved by explicitly accounting for coarse-long range effects of
the driving signal that would otherwise be modeled by the latent
space due to the localized conditioning used to encourage general-
ization. We achieve this using a coarse model of limb motion and
an ambient occlusion map that helps model self-shadowing without
overfitting. The resulting model can generate the space of plausible
animations that agree with the information contained in the driving
signal (Figure 1). Because of the explicit separation between the
observed and missing factors, our approach enables the freedom to
employ imputation techniques best suited to a particular application.
We demonstrate the effectiveness a particularly simple approach; we
assign the mean value to the missing factors for all frames during a
sequence, which results in compelling animations that avoids over-
or under-fitting effects observed in other approaches.

To summarize, the contributions of this work are as follows:

• A representation for a full bodymodel that explicitly accounts
for the driving signal during its construction. The model can
generate a diverse space of plausible configurations that agree
with the information contained in the driving signal.
• A method for achieving good generalization to novel inputs
while producing high quality reconstructions by employing
localized conditioning, accounting for coarse long range ef-
fects, and disentangling driving signals from the latent space.
• A demonstration of the utility of this approach on two scenar-
ios where driving signal information is deficient: performance
capture with a different attire and avatar animation for VR
telepresence.

2 RELATED WORK
Our main goal is to build personalized full-body avatars that can
be animated with information-deficient driving signals, while pro-
viding flexibility to practitioners to impute missing information
appropriately for the application at hand.

2.1 Avatar Modeling
In the last decade, many efforts have beenmade for achieving expres-
sive and animatable 3D models for human avatars, including face,
hands and body. Due to the complexity in geometric deformation
and appearance, data-driven methods have become popular [Blanz
and Vetter 1999; Loper et al. 2015; Romero et al. 2017]. Linear mod-
els, e.g. PCA or Blendshapes, have been employed to model the
muscle-activated skin deformation space, and were demonstrated
to be effective for facial models [Blanz and Vetter 1999; Lau et al.
2009; Lewis et al. 2014; Vlasic et al. 2005]. For hands and body, an
articulated prior is usually explicitly modeled by a kinematic chain,
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while the surface deformation associated with the pose is obtained
through skinning [Lewis et al. 2000], which generates the deformed
surface by a weighted set of the influences from neighboring joints.
Combining with the statistical modeling tools, a more expressive
model can be developed by learning the pose-dependent corrective
deformation across different identities for a body [Anguelov et al.
2005; Loper et al. 2015] and a hand [Moon et al. 2020; Romero et al.
2017]. Expressiveness can be further improved by localizing the de-
formation space [Osman et al. 2020; Tena et al. 2011; Wu et al. 2016].
These geometric models enable to learn a shading-free appearance
model across different identities a hand [Qian et al. 2020], to auto-
matically create a textured full-body avatar from a video [Alldieck
et al. 2018; Alldieck et al. 2018], and to render avatars under new
poses and camera views by using neural rendering [Prokudin et al.
2021]. Building on the above, unified avatar models, which model
face, hand and body altogether, have been developed, including the
Frank model [Joo et al. 2018] and the SMPL-X model [Pavlakos et al.
2019]. However, even given the limited training data, the generated
results by these models are still underfit and constrained by the
fidelity they can produce.

With the advent of deep neural networks, deep generative models
have been successfully applied to modeling human bodies. For exam-
ple, various convolutional mesh autoencoders have been proposed
for building models for faces [Ranjan et al. 2018], or hands and
bodies [Zhou et al. 2020b]. Compositional VAEs [Bagautdinov et al.
2018] model facial geometry with a hierarchical deep generative
model, leading to a more expressive learned space of deformations
and better modeling of high-frequency detail. Deep Appearance
Models [Lombardi et al. 2018] learns a personalized variational
model for both geometry and texture of a face, enabling a photore-
alistic rendering. However, extending those methods to full-body
avatars is non-trivial, and, since those do not explicitly account for
the missing information, they are prone to artifacts in scenarios
with deficient driving signals.

Modeling clothing is another aspect closely related to our work,
as we are primarily interested in animating clothed bodies. [Stoll
et al. 2010] combine the cloth simulation with a body model from a
multi-view capture so that the clothed body can be animated with
the simulation. Recently [Joo et al. 2018] has extended the Frank
model to Adam for modeling clothed surface with deformation
spaces. Simulated dynamic clothes are used to model the interaction
between cloth and the underneath body by explicitly factoring out
the dynamic deformation [Guan et al. 2012]. CAPE [Ma et al. 2020]
employs Graph-CNN to dress 3Dmeshes of human body from SMPL.
However, it is learnt purely on geometry and only on the scans for
sparse sampling of poses, and thus cannot be driven to generate
photorealistic renderings with dynamic clothing.
Another line of work on animating photorealistic human ren-

dering skips the complicated 3D geometry modeling, and rather
focuses on synthesizing photorealistic images or videos by solving
an image translation problem, e.g., learning the mapping function
from joint heatmaps [Aberman et al. 2019], rendered skeleton [Chan
et al. 2019; Esser et al. 2018; Pumarola et al. 2018; Shysheya et al.
2019; Si et al. 2018], or rendered meshes [Liu et al. 2019c,b; Sarkar
et al. 2020; Thies et al. 2019; Wang et al. 2018], to real images. Al-
though these methods often do generate plausible images, they tend

to have challenges in generalizing to different poses, due to com-
plex articulations of the human body and dynamics of the clothing
deformations. For example, methods [Chan et al. 2019; Liu et al.
2019c] do manage to reproduce overall body motion, but tend to
produce severe artifacts on the hands and do not transfer facial
expressions correctly. Moreover, these methods are not capable of
producing renderings from arbitrary viewpoints, which is critical
e.g. for telepresence applications.
Concurrent work to ours, SCANImate [Saito et al. 2021], intro-

duces a method for building animatable full-body avatars from
unregistered scans, which relies on implicit representations to learn
both skinning transformations and pose-dependent geometry cor-
rectives; interestingly, that work also discovered that localized pose
conditioning is critical to tackle spurious correlations. [Peng et al.
2021] introduces a method for novel-view synthesis for human-
centered videos, which combines an articulated model (SMPL) with
implicit appearance representation based on neural radiance fields.
Although this method is capable of producing renders of arbitrary
viewpoints, it does not allow for generalization across different
poses, and is primarily tailored to short videos. Neural Parametric
Models [Palafox et al. 2021] introduce a multi-identity parametric
model for human body geometry that uses learnable implicit func-
tions for shape and deformation modeling. Although promising,
this method does not model appearance, and requires expensive
optimization during inference, thus making it unsuitable for driving
with incomplete signals.

2.2 Disentangled Representations
The ability of a learning algorithm to discover disentangled fac-
tors of variation in the data is considered to be a crucial property
for building robust and generalizable representations [Bengio et al.
2013]. A large body of work has been focusing on building generic
methods for building disentangled representations both with [Lam-
ple et al. 2017; Schwartz et al. 2020] and without [Higgins et al. 2016;
Jiang et al. 2020; Zhou et al. 2020a] supervision.

𝛽-VAE [Higgins et al. 2016] identified that a slight modification
to the original VAE objective - putting a stronger weight on the
prior term - can lead to automatic discovery of disentangled repre-
sentations. In [Burgess et al. 2018] authors study the properties of
𝛽-VAE from the perspective of the information bottleneck method,
suggesting the reason behind the emergence of disentangled repre-
sentations. MINE [Belghazi et al. 2018] provides an efficient way to
compute a lower bound on the mutual information between two sets
of variables, which can be used as a proxy objective to encourage
disentanglement.

In the context of human modeling, disentanglement has recently
received a lot of attention as a way to improve model generalization.
FaderNet [Lample et al. 2017] incorporates adversarial training with
facial attributes for images synthesis of human faces, allowing dis-
entanglement based on attributes. In [Schwartz et al. 2020] authors
propose a generative model for facial avatars which uses several dis-
entanglement techniques including FaderNet to encourage a model
to better make use of gaze conditioning information. [Zhou et al.
2020a] introduces a generative model for human body meshes that
uses a set of consistency losses as a way to separate the space of
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pose- and shape-based deformations. [Jiang et al. 2020] achieve dis-
entanglement for cross-identity shapes and poses by incorporating
a deep hierarchical neural network.
In our settings, there are by design explicitly two groups of fac-

tors, corresponding to the observed and missing data, respectively.
Thus our main objective is not to discover the unknown underlying
factors of variation in an unsupervised way, but rather to encour-
age separation between the known observed factors (which are
pre-defined) and the missing factors (learned space). In Section 3.5
we discuss our approach to handling missing information in more
detail.

3 METHOD
Our goal is to build a data-driven model for full-body avatars that
stays faithful to the driving signal, while also providing the flexi-
bility to generate the information that might be missing from the
inputs. For example, the driving signal for a human body might
consist of sparse keypoint detections around the skeletal joints,
which are insufficient to disambiguate different states of clothing,
hair and facial expressions. Our key insight is that generalizability
and controllability can be achieved through disentanglement, while
explicitly taking into account the information that is missing from
the driving signals.
When driving signals are sufficiently reliable, it is desirable to

break their inter-dependencies as much as possible to achieve better
generalization. For human bodies, this naturally leads to the notion
of spatially localized control, such that, for example, a change in a
facial expression does not have any influence on the state of the legs.
At the same time, driving signals often do not contain sufficient
information to fully describe free viewpoint images of the body,
leading to a many-to-one mapping problem. This results in one
of two cases; 1. overly smooth estimates, as the model averages
over all possible unobserved states given the driving signal, or 2.
overfitting to the dataset, which manifests as chance correlations
between the driving signal and all unobserved factors. One approach
to mitigate this problem is to add an additional latent code that
spans the missing information space. However, as we will see in
§4, without special care, the model can learn to partially ignore the
control signal and use the latent space to capture the full information
state. The resulting model, then, will fail to faithfully reconstruct the
driving signal at test time, where the true latent code is unobserved.

In this work, we argue that, while indeed a latent space is useful
to explicitly account for the missing information, it is also necessary
to ensure that the latent space only contains information that is not
present in the driving signal. In other words, the latent space and
the driving signals should be disentangled. As we will describe in
the sections that follow, the elements of our proposed architecture
are explicitly designed to achieve disentanglement through multi-
ple and complimentary means. The result is a model that exhibits
good generalization, is faithful to the driving signal during anima-
tion, and achieves good reconstruction accuracy efficiently for a
representation that covers the full human body.

3.1 Overview
An overview of our architecture is shown in Figure 2. It takes as input
the driving signals and viewing direction, and produces registered
geometry and a view-dependent texture as output using a deconvolu-
tional architecture. Together, these outputs can be used to synthesize
an image through rasterization. There are three main components
of our construction that encourage generalization through disentan-
glement, namely: spatially localized conditioning, capturing coarse
long range effects, and information disentanglement.

3.1.1 Spatially Localized Conditioning. To reduce overfitting to
driving signals seen during training, we employ a location-specific
low-dimensional embedding. These embeddings are used to late-
condition the deconvolutional architecture, such that their footprint
in the output texture and geometry have localized spatial extent.
Together, the embedding and late conditioning extract the most
relevant information from the driving signal at each spatial location.
This reduces the tendency to learn spurious long-range correlations
which might be present in the training data.

3.1.2 Coarse Long Range Effects. Although localizing the effects of
driving signals can reduce overfitting, there exists some long range
effects that are difficult to capture with such a representation. To
capture these effects without reintroducing overfitting, we iden-
tify two major sources of long range effects for human bodies and
model them explicitly: rigid limb transformations and the effects of
shadowing. For rigid limb transformations we employ linear-blend
skinning (LBS) [Kavan et al. 2008; Magnenat-Thalmann et al. 1989]
that explicitly models rigid motion of the limbs through a compo-
sition of transformations along an articulated tree structure that
spans the entire body. We thus decouple our decoder into using
joint angles via LBS, and producing correctives in the form of a
displacement map generated using the deconvolutional architecture.
To handle long range shadowing effects, we explicitly compute an
ambient occlusion map using the LBS-generated geometry, and pass
it through a UNet [Ronneberger et al. 2015] to produce a gain map
that is applied on the output texture. The ambient occlusion map
serves as a substitute for a shadow-map since our capture space
has roughly uniform illumination. Together, the LBS and shadow
branches complement the localized conditioned described above, so
that major long-term effects are accounted for while maintaining
good generalization performance.

3.1.3 Information Disentanglement. The main motivation for in-
troducing a latent space is to capture information not contained in
the driving signal, yet necessary to fully explain image evidence.
Unlike the driving signal, where avoiding overfitting is primary,
variations that have no supporting evidence during animation re-
quire the strongest possible prior to ensure compelling imputation.
Thus, we use a vector-space representation at the bottle-neck of
our architecture for the latent space that has spatial support over
the entire output. To ensure drivability, we encourage the latent
codes to contain the least amount of information about the driving
signal as possible by employing disentanglement strategies during
training. We train all these components of our model jointly using
a Conditional Variational Auto Encoder (cVAE) [Sohn et al. 2015]
that has been used effectively to produce well-structured latent
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Fig. 2. General overview of the architecture. The core of our full-body model is a conditional variational auto-encoder, which takes as input driving signals
and view direction, and outputs geometry and view-dependent texture. These are rendered to produce a full-body avatar. Spatially localized encoding of the
driving signals helps reduce spurious correlations. Additionally, an LBS module and a quasi-shadow branch capture coarse, long-range effects. Information not
present in the driving signals (e.g., clothing state) is captured by a disentangled latent code z.

spaces in human-centric datasets [Lample et al. 2017; Lombardi et al.
2018]. For supervision, we directly use multi-view images, which
we achieve by applying differentiable rendering [Liu et al. 2019a] to
generate synthetic images for a direct comparison with the ground
truth.

3.2 Variational Autoencoder
The core of our model is a conditional variational auto-encoder
(cVAE), consisting of an encoder 𝐸 (·|W𝐸 ), and a decoder 𝐷 (·|W𝐷 ),
both parameterized as convolutional neural networks, with weights
W𝐸 and W𝐷 , respectively. The cVAE is trained end-to-end to re-
construct images of a subject captured from a multi-view camera
rig. Our system presumes the availability of a registered mesh,
G𝑖 ∈ R𝑁𝑣×3, for each frame 𝑖 that we acquire using LBS-based track-
ing with surface registration [Gall et al. 2009], followed by Laplacian
deformation to 3D scans for better registration [Botsch and Sorkine
2008; Sorkine et al. 2004]. The LBS joint angles, 𝜽𝑖 ∈ R100, as well as
3D facial keypoints, f𝑖 ∈ R𝑁𝑓 , are the driving signals that we use to
condition our model. For settings where 3D face keypoints are not
available, such as in the experiment with a VR headset in §4.2.2, we
use the latent codes of the personalized facial model from [Wei et al.
2019] instead. Finally, we note that the goal of our cVAE training
is to produce a decoder that we can use to animate an avatar from
driving signals at test time. To this end, the role of the encoder is
strictly to facilitate learning and ensure a well structured latent
space. It can be discarded once training is complete.

During training, the encoder takes as input geometry,G𝑖 , that has
been unposed using LBS, and produces parameters of a Gaussian
distribution, N , from which a latent code z ∈ R512 is sampled:

𝝁𝑖 ,𝝈𝑖 ← 𝐸 (G𝑖 |W𝐸 ) , z𝑖 ∼ N(𝝁𝑖 ,𝝈2
𝑖 ).

Here, G𝑖 is first rendered to a position map in UV space before
being passed to the convolutional encoder. The reparameterization
trick [Kingma and Welling 2013] is used to ensure differentiability
of the sampling process. Given the latent codes z𝑖 , driving signals
(𝜽𝑖 , f𝑖 ) and a viewpoint v𝑖 ∈ R3, the decoder produces reconstructed
geometry G̃𝑖 and view-dependent texture T̃𝑖 :

G̃𝑖 , T̃𝑖 ← 𝐷 (𝜽𝑖 , f𝑖 , z𝑖 , v𝑖 |W𝐷 ) .

G̃𝑖 is then passed to the LBS module to produce the final geometry,
and T̃𝑖 is multiplied by a quasi-shadow map to produce the final
texture. The generation of the quasi shadow map is detailed in
§3.4.2. Differentiable rasterization [Liu et al. 2019a] is used to render
an image using the output geometry and texture, which is then
compared with the ground truth image using an L2-error. Along
with other supervision and regularization losses described in §3.6,
the system is trained end-to-end, solving for the cVAE parameters
W𝐸 and W𝐷 .

Once the model is trained, animation is performed by taking the
driving signals (𝜽 , f ) e.g. estimated from an external sensor, imputing
the latent code z (e.g. by sampling or employing a temporal model),
and then synthesizing the geometry and texture by running the
decoder 𝐷 (𝜽𝑖 , f𝑖 , z𝑖 , v𝑖 |W𝐷 ) followed by rasterization. The reason
for separating conditioning signal between (𝜽 , f ) and z comes from
the fact that, in practice, access to the complete conditioning signal
is available only during training. This stems from differences in their
capture setup: training data collection often allows for sophisticated
multi-camera rigs whose data can be processed in post, whereas
during animation, the capture system is typically more constrained
and requires real-time processing. Our specific choice of (𝜽 , f) in
this work is informed by attributes that can be reliably inferred from
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limited sensing setups in real-time, such as keypoints and skeleton
joint angles from a simple stereo camera pair [Gall et al. 2009; Tan
et al. 2020]. Ultimately, this means that the information contained
in the driving signal is often insufficient to fully describe the output,
and we need to introduce z that describes the remaining part of the
signal, so as to avoid model overfitting or smoothing out the results.
In Section 4, we provide a comparison with a baseline version of
the model that does not use a latent space.

3.3 Spatially Localized Driving Signals
For a model to be truly drivable, it has to generalize well. That is,
it should produce realistic outputs for all real combinations of the
driving signals. We are focusing on building data-driven models,
and thus a naive approach to achieving generalization would be to
collect an exhaustive amount of data that would sufficiently cover
the space of variations. Unfortunately, even for personalized full-
body models with a single attire, collecting a dataset that can cover
all possible combinations of body posture, facial expressions and
hand gestures is intractable due to the combinatorial explosion of
part variations. A common approach is to instead capture range-of-
motion data, with the aim of spanning the full range of each body
part with the hope that the model can learn to factorize these parts
accordingly. However, if one considers highly-expressive models,
such as deep ConvNets, relying on such limited data can lead to
situations where the model discovers spurious correlations and thus
learns to encode capture-specific dependencies that are not present
in other sequences. For example, if during the capture of hand ges-
tures the subject keeps the same facial expression throughout, there
is no incentive for the model not to learn an association between
that facial expression and the hand gestures. An example of this
phenomenon occurring on real data is shown in Figure 3.

Fig. 3. Spurious Correlations. A naive model learns to associate clothing
and shadows facial expression. Combining the pose from the sample on
the left, and the facial expression from the image on the right produces an
unrealistic sample where pose-dependent effects are fully controlled by the
facial expressions (e.g. the collar and armpits, which should be independent
of expression).

However, if we assume that the driving signal is sufficiently re-
liable, and it is not necessary to capture correlations between all
of its individual components, we can build a model in a way that
encourages decoupling between those individual components. For
the human body this would correspond to the fact that spatially
distant parts (e.g. fingers on different hands) can move completely
independently from each other. Similar intuition has been applied
for human geometry in STAR [Osman et al. 2020], which proposes a

localized version of pose correctives aimed at reducing spurious cor-
relations: instead of global blendshapes as in SMPL [Bogo et al. 2016],
the authors propose local blendshapes with a non-linear blending
scheme. Note that this reasoning is valid primarily for geometrical
deformations and appearance effects which are local, but does not
hold for global ones, such as shadowing, and one has to model them
separately, as we will discuss in §3.4.2.

In this work, we rely on the structure of our decoder network to
achieve conditional spatial independence given our driving signal.
Specifically, our decoder is a fully-convolutional network which
takes as inputs several encoding maps, e∗ ∈ R𝑁∗×32×32, one for each
driving source, ∗ ∈ {𝜽 , f}, where:

e∗ = proj(M∗ ⊙ tile2d(∗, 32, 32) |W∗) .

Here, tile2d(x, ℎ,𝑤) is an operation that repeats a given vector x
into a ℎ ×𝑤 feature map, and proj(·|Wx) is a projection operation
that applies a location-dependent compression at each point of
the input feature map. It is implemented using a two-layer 1x1-
convolutional network with untied biases. We also apply a binary
mask M𝑥 ∈ {0, 1}100×32×32, where each channel roughly defines
the region of influence for each parameter, which we define using
downsampled LBS skinning weights and capture the local effects of
each joint angle. In principle, these masks can also be learned, but
we did not observe improved results by doing so in our experiments.
Figure 4 visualizes the effects of using localized driving signals,
where varying one of them leads to spatially (and semantically)
coherent changes in the corresponding region of the output.

Fig. 4. Effects of localized representations. Heatmaps indicate the areas
with largest changes in the output of our model when varying a single
control variable. From left to right: face, neck, right wrist.

3.4 Coarse Long Range Effects
Some common driving signals used for human body animation
have long range effects that couple distant locations on the body.
Explicitly localizing the effects of the driving signal, as described
previously in §3.3, can therefore limit the model’s ability to recon-
struct real data with high accuracy. But naively reintroducing global
influence can lead to over-fitting. As such, we identify two major
sources of long-range effects in human body appearance, rigid limb
motion and self-shadowing, and propagate these effects spatially
using parametric forms that have been shown to generalize well to
novel poses.
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3.4.1 Rigid Limb Motion. Similar to some existing work [Anguelov
et al. 2005; Loper et al. 2015; Osman et al. 2020], our geometric
model composes the localized model, described in §3.3, with an
explicit skeleton model based on LBS, which captures large rigid
transformations of limbs:

Ḡ = 𝐿𝐵𝑆 (𝜽 , 𝐷𝐺 (𝜽 , f, z) + Ḡ𝑇 ).

Here, 𝐷𝐺 is the geometry branch of the decoder, Ḡ𝑇 is the template
mesh in canonical pose, and Ḡ is the final geometry after posing3. In
particular, given the template and the pose parameters, each vertex
x𝑖 ∈ R3 of Ḡ is computed as:

x𝑖 =
∑
𝑗

𝑤𝑖 𝑗 · (R𝑗 · x𝑖𝑇 + t𝑗 ) ,

where𝑤𝑖 𝑗 are the pre-defined skinning weights, which describe the
influence of 𝑗-th joint on the 𝑖-th vertex x𝑖 , and R𝑗 , t𝑗 are per-joint
transformation parameters, which are computed from 𝜽 via forward
kinematics.
The LBS model has been demonstrated to capture large coarse

motion of the human body, linking distant locations via a kinematic
chain. Although many of its limitations are well known, e.g., the
candy wrapper effect [Kavan et al. 2008] and inability to model more
complex nonlinear effects [Jacobson and Sorkine 2011; Loper et al.
2015], these deficiencies tend be localized and have been shown to
be addressable by using localized corrective models [Osman et al.
2020]. Our approach builds on these prior findings, complementing
LBS with the localized model described previously in §3.3.

3.4.2 Self-Shadowing. Whereas rigid limb motion accounts for
much of the long range geometrical effects, self-shadowing accounts
for the majority of long-range appearance effects. This is partic-
ularly the case during self-interaction, where limbs touch, or are
in close proximity to each other. Explicitly accounting for these
effects frees up the localized model in §3.3 to focus on the remaining
sources of appearance variations, which tend to be more localized,
such as skin wrinkles, clothing shifts, and view-dependent effects.
Physically correct estimation of self-shadowing is an extensive

process [Hill et al. 2020]. It requires an accurate model of the lighting
environment and geometry that may not be readily available. In our
case, this would require first running the whole geometry branch
before an estimate of shadowing can be used to inform the texture
branch, which limits the use of parallelism for achieving fast de-
coding. Instead, in this work we compute a fast approximate model
for depicting environment-occlusion, and then learn the shadowing
effect implicitly.
Ambient occlusion (AO) captures environment visibility at each

location of the body. It is a strong feature for self-shadowing in a
static environment that can be computed efficiently [Miller 1994].
Additionally, for roughly uniform illumination conditions, as in our
case, dependence on the global pose with respect to the environment
is unnecessary. For computing an AO map, we use the LBS-posed
template geometry as it is efficient to compute and does not require
the full evaluation of the geometry branch to generate. Although
this reduces the precision of the AO map, our goal here is to capture
coarse long-range appearance effects, and the differences resulting

3We have dropped the frame index 𝑖 from 𝜽𝑖 , f𝑖 and z𝑖 to reduce clutter.

from using the posed template geometry tend to be localized. This
AOmap is then passed through the shadow branch; a neural network
with a UNet architecture [Ronneberger et al. 2015] that produces a
quasi-shadow map. The result is multiplied with the output of the
texture branch to produce the final texture. Note that the shadow
branch is not supervised directly. Rather, it is used as an inductive
bias in cVAE, where its supervision is implicit through a comparison
of the final rendered image with the ground truth capture (see
§3.2). In practice, we found that it is sufficient to produce a low-
resolution quasi-shadow map (4x less compared to the texture) to
obtain plausible soft shadows. An example of input and output of
the shadow branch is given in Figure 5.
Owing to its physically inspired formulation, AO computation

generalizes to novel geometry generated through LBS, which has
already demonstrated its ability to generalize to new poses, given
that reliable joint angles can be acquired from the driving signals.
The UNet architecture has been shown to exhibit good generaliza-
tion [Ronneberger et al. 2015], especially when its input and outputs
differ mostly by local changes, as in our case, by allowing it to rely
mostly on shallow skip connections4. As with LBS for geometry,
the shadow branch frees up the texture branch to focus on local ap-
pearance effects since the majority of long range effects are already
accounted for through the shadow maps.

Fig. 5. Shadow branch inputs and outputs. The left image is an example
of a conditioning signal for the network, and the right image is the prediction
of our network on a test sample. Note that even though there is no explicit
supervision provided to the shadow branch, it naturally learns to capture
approximate global shadowing.

3.5 Handling Information Deficiency
In this section, we describe our approach for handling the problem
of information deficiency during animation that was outlined in
§3.2. Our main assumption is that one can identify an explicitly
defined set of control variables, such as 𝜽 and f , that can be reliably
estimated during both training and animation. The choice for driving
signals is mainly driven by the application and the sensors it affords.

4For non-uniform lighting environments, the generalization performance of this net-
work may be affected since the input AOmap would differ from the output shadowmap
more severely. One solution to this might be to perform a full shadow map calculation
that the UNet would then only need to refine. We leave that investigation as future
work.
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A common set of signals that can be acquired for driving include
the full-body pose and facial keypoints estimated from an cameras
placed in the scene, or, when deploying to a VR-based application,
on a headset.
Only providing the model with body joints and face keypoints

is, however, insufficient, as they do not contain all the information
required to explain the full appearance of a body in motion, such
as the specific state of clothing, hair and internals of the mouth
for a given image. Due to the high dimensionality of the inputs as
well as the high capacity of neural networks, directly regressing
the output from these signals alone typically overfits to the data,
where it learns correlations between the driving signal and outputs
that are not generalizable, e.g. by remembering a certain shadow or
wrinkle combination.

To address this problem, a naive solution would be to simply
introduce an additional latent variable z that contains the remaining
information about the outputs, e.g. by encoding that latent code
from the outputs. However, this approach leads to another problem;
there is no guarantee that z is independent of the driving signal.
In practice, it tends to retain some information about (𝜽 , f), which
leads the decoder to ignore either of the two variables, or worse,
learn to "spread" the information between the two, eliminating the
ability to remain faithful to the driving signal during animation5.
One example of such a failure mode is illustrated in Figure 6.

Fig. 6. The need for disentangling. A model with a latent space but no
disentangling mechanism produces reasonable reconstruction (left) but
ignores the pose conditioning, which leads to severe artifacts when driving
(right). For example, incorrect shading on the arms, ghosting artifacts on
the collar and overly smoothed clothing wrinkles.

In this work, we propose three strategies to disentangle the two
sets of variables, which one can select between to best match the
characteristics of the data at hand.

3.5.1 Variational Preferencing. cVAEs have a built-in mechanism
for disentangling conditioning variables from the latent space. This
stems from the propensity of a VAE with a factorized Gaussian
posterior to push a portion of its latent dimensions to become un-
informative in order to better minimize its KL-regularized loss. In
effect, it squeezes information at the input to the encoder into a
5A related problem is that of posterior collapse [Aliakbarian et al. 2019], where a
high capacity decoder or strong conditioning signal can lead to the latent space being
ignored. This scenario is more common in temporal auto-regressive models, where
the history used for conditioning can be highly predictive of the current state. We did
not observe this behavior in our setting, possibly due to the conditioning signal not
being strong enough or exhibiting a complex relationship with the output, where the
information path from encoder to decoder is learned more easily.

lower-dimensional subspace within its latent space, the dimension-
ality of which can only be reduced as the KL weight increases.

In cVAE, when the conditioning variable shares some information
with the input to the encoder, there is a preference to let the decoder
use the copy of that information contained in the driving signal,
so as to allow it to be squeezed out of the latent space, thereby
achieving lower KL-divergence while still providing the decoder
with information necessary for good reconstruction. This results in
disentanglement between the latent space and conditioning vari-
ables.
By employing a cVAE architecture, our model already exhibits

a built-in disentangling mechanism between the latent space and
the driving signal which is used to condition the decoder. However,
VAE’s disentangling mechanism is not perfect. Architecture choices
for the encoder and decoder, as well as optimization strategies and
even the characteristics of the data can either encourage or impede
disentanglement. Furthermore, increasing the KL-weight as a way
of achieving better disentanglement can negatively impact recon-
struction accuracy as the effective dimensionality of the latent space
becomes further reduced.

3.5.2 Mutual Information Minimization. A more direct approach
to disentangle the two sets of variables is by minimizing the mutual
information (MI) between them:

I(z, c) = KL(𝑝 (c, z) | |𝑝 (c)𝑝 (z)) ,
i.e. a KL-divergence between the joint distribution and the factorized
one, where c = (𝜽 , f). Since directly computing MI is intractable,
we use MINE [Mattei and Frellsen 2019] - a generic data-driven
approach for estimating the mutual information between random
variables. It introduces a parametric approximation to MI through a
"statistics network" implemented using a deep neural network:

𝑚 ← 𝑓 (z, c) ,
where𝑚 ∈ R is a scalar that is high when the mutual information
between z and c is high, and low otherwise. This statistics network
𝑓 (·) is trained using the following loss function with each mini-
batch:

Lmi = −(
1
𝐵

𝐵∑
𝑏=1

𝑓 (c𝑏 , z𝑏 ) − log
∑
𝑏=1

1
𝐵
𝑒 𝑓 (c𝑏 ,ẑ𝑏 ) ) , (1)

where 𝐵 is the size of a mini-batch, and ẑ𝑏 is a shuffled, or randomly
sampled, embedding. Thus, the network is trained to maximize the
difference in 𝑓 -function scores between when the data is paired vs.
randomized. This results in a (biased) estimate of MI, which can be
used to evaluate how independent c and z are. The loss in Eq.1 can
be used to define an adversarial term Ldis = −Lmi, which we add
to the full model training objective described in §3.6. This way, our
cVAE learns to reconstruct the training data while disentangling
the latent space from the driving signals.

3.5.3 Perturbation Consistency. When the driving signal has a di-
rect physical interpretation with respect to the model’s output, there
is an even more direct way to encourage disentanglement. For ex-
ample, when the driving signal comprises a set of keypoints on
the surface of the body, it may be possible to define direct cor-
respondence with vertices on the output geometry. In this case,
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disentanglement between the latent code, z, and the driving signal,
c, can be achieved using a perturbation consistency loss:

Lpc = E𝑝 (z)

[∑
𝑘∈C
∥c𝑘 − S𝑘 𝐷 (z, c|WD)∥2

]
, (2)

where 𝑝 is the prior over the VAE’s latent space, C is the set of
driving signal components that admit a correspondence with the
output from the decoder, 𝐷 , and S𝑘 is a selection matrix that picks
the corresponding elements in the output. In practice, the expected
value is approximated by a discrete sampling of z for each minibatch
during training. If z contains information about c, a random sample
will perturb the corresponding elements of the decoded output away
from c. Similarly, if c and z are independent, modifying z will have
little impact on c-corresponded outputs of 𝐷 , so long as 𝐷 can
reconstruct the data well.

Although the perturbation consistency loss is the most direct way
of encouraging independence between the latent space and driving
signal, it is not always possible to define direct correspondence
between all elements of the driving signal and the output of the
decoder. In practice, we find a good heuristic is to start by relying
simply on variational preferencing, and if that is not enough, add
mutual-information minimization, and finally to add perturbation
consistency whenever it is available.

3.6 Training Details
We train all our models with Adam, using an initial learning rate of
1.0e-3, and batch size 8. All models are trained until convergence
on 8 NVidia V100 GPU with 32GB RAM. For full body models,
training takes approximately 1.5−2 days. We optimize the following
composite loss:

L = 𝜆ILI + 𝜆MLM + 𝜆lapLlap + 𝜆GLG + 𝜆KLLKL + 𝜆disLdis , (3)

whereLI is the inverse rendering losses for images I and foreground
masks M

LI = | |Igt − Î| |1 ,LM = | |Mgt − M̂| |22 ,

LG is the per-vertex tracked mesh loss:

LG = | |Ggt − Ĝ| |22
Llap is the Laplacian loss with respect to the ground truth tracked
mesh, which encourages smoothness

Llap = | |𝐿(Ggt) − 𝐿(Ĝ) | |22 ,

where 𝐿(·) is the mesh Laplacian operator. LKL is the variational
term, which is a standard VAE KL-divergence penalty [Kingma and
Welling 2013], and Ldis is the disentangling loss as described in §3.5.
In practice, we only use mesh supervision LG during the first 2000
iterations so as to provide a reasonable initialization for the model.
After that, the inverse rendering loss on images and masks further
improves the shape and correspondence, as the initial tracked mesh
may exhibit artifacts due the tracking challenges of human body
surface. We find that this two phase procedure leads to improved
estimates of shape and correspondence, which boosts the accuracy
at which our decoder can reconstruct the images.

Fig. 7. Data Processing Pipeline. From left to right: input image, fore-
ground body mask, reconstructed 3d shape, detected keypoints, registered
surface mesh.

Fig. 8. Geometry Improvement by Inverse Rendering. Left: our result
after inverse rendering; right: initial tracked mesh from data processing.

4 EXPERIMENTS
In this section, we provide an experimental evaluation of our ap-
proach for creating realistic full-body human avatars.We first shortly
describe our capture setup and the data. We then provide qualitative
results on multiple identities on reconstruction and driving tasks.
Finally, we provide a quantitative evaluation and an ablation study
on different components of our model.

4.1 Data
Our capture setup is a multi-camera dome-shaped rig with 140
synchronized cameras, each capable of producing 4096x2668 images.
We collect data from three subjects, where for each subject, we
capture sequences of 50-70k frames in length, which include a range
of motion and natural conversation sequences. Out of those frames
roughly 5000 were left out for testing purposes. For one of the
subjects, we also collected two additional testing sequences: one
where the individual is wearing different clothing, and another
where they are wearing a VR headset. In both cases, the full state of
the model built from the subject’s original capture is not observable.
In the first, the specific state of clothing is not transferable due to
differences in attire between the two captures. In the second, parts
of the face are occluded by the VR headset.
To train our full body models, we need to obtain skeletal poses

as well as registered surface meshes for every frame of the multi-
view captures. For this, we employ a traditional computer vision
pipeline that is capable of generating reasonable estimates for both.
Specifically, we follow a two-step approach: first, we run multi-
view 3d reconstruction [Galliani et al. 2015], keypoint detection
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reconstruction captured image reconstruction captured image

Fig. 9. Qualitative Evaluation: ReconstructionQuality.We demonstrate the ability of our model to produce high-quality reconstructions given full inputs
(body pose 𝜽 , facial keypoints f and latent codes z). Note that none of these frames were observed during training.

ACM Trans. Graph., Vol. 40, No. 4, Article 143. Publication date: August 2021.



Driving-Signal Aware Full-Body Avatars • 143:11

OURS captured image OURS captured image

Fig. 10. Qualitative Results: Driving. For all identities the model is conditioned on pose 𝜽 , facial keypoints f , and an imputed latent code z. We use a naive
imputation strategy with a constant latent code.
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and triangulation [Tan et al. 2020] and foreground body segmen-
tation [Kirillov et al. 2020]. Second, we perform skeletal pose es-
timation using a personalized body rig and LBS by matching the
various features computed in the first step as well as pose priors
over joint angles [Gall et al. 2009]. We further refine these esti-
mates by running a deformable ICP algorithm on top of the tracked
meshes so as to fit the 3D scan details better with surface Laplacian
regularization [Sorkine et al. 2004]. One example from the various
stage of the pipeline can be seen in Figure 7. Processing the entire
dataset for a single subject takes 14 days with 160 GPUs (20 DGX
servers with 8 GPU each). This data processing pipeline is robust
enough to process most of the data, and only has challenges in poses
with heavy self-occlusions, like heavy hand-cloth interactions. We
discard on average roughly 10 percent of frames by filtering out
frames where the tracked surface has large error compared with
the scans. Notice that even on successfully registered frames, due
to limited 3D scan resolution or foreground mask inaccuracies, the
registered mesh may exhibit errors in shape or correspondence. We
observe that these errors are greatly reduced during model training
by using inverse rendering with an image reconstruction loss. One
example of such improvement can be seen in Figure 8, where the
decoded mesh shows greatly improved alignment with respect to
the initial tracking mesh in high detail areas such as the fingers and
around creases or folds.

4.2 Qualitative Results

4.2.1 Reconstruction. We first evaluate our model’s ability to gen-
eralize to new poses that are held out from the training set. For
this we optimize all the model’s parameters, including the global
pose, skeletal joint angles 𝜽 , face parameters f and latent codes z, to
minimize the reconstruction loss over images from the multi-view
cameras as well as the tracked mesh. Figure 9 shows the reconstruc-
tion results for three different identities and different combinations
of poses and facial expressions, along with the ground truth capture
images as a reference. The results demonstrate good reconstruction,
capable of capturing subtle details of expression and pose.

4.2.2 Driving. Our main goal is to build drivable models, which
produce realistically looking virtual humans given real driving sig-
nals. In this section, we thus evaluate the quality of our model on
the task of driving, where only partial information about the full
model’s state is available via the driving signals. The latent codes
are not provided and have to be imputed.

Matched Setting. First we would like to evaluate how much infor-
mation is really missing from a full body model that is not accounted
for by skeletal joint angles and facial expressions. In Figure 10 we
show driving results where only the pose 𝜽 and facial keypoints f
are presumed to be available, and we simply set the latent code to
zero; a maximum likelihood imputation. A video sequence of this
driving can be found in the supplemental video. The first point to
note is that the pose and facial expressions appear to be matched
well between the avatar and the ground truth images, demonstrat-
ing the efficacy of the disentanglement scheme described in §3. The
second point to notice, is that the reconstruction attained by the

driven model is of less quality than the reconstructions, with er-
rors concentrated around clothing; areas where we expect joint
and facial keypoints to have limited disambiguation capabilities. A
comparison between driving and reconstruction can be found in
Figure 11.

Now that we have established the extent of missing information,
we would like to evaluate the effects this has on models that ig-
nore it or model it without disentangling. In Figure 14 we provide a
comparison between our method and two baselines: one without
the latent space (pose+face) and one without latent-space disen-
tanglement (pose+face+latent). Both baselines appear to exhibit
a number of visual artifacts, including incorrect shadows, ghost-
ing, and over-smoothing. For example, extraneous shadows on
the pants in (pose+face) and missing shading in the armpits for
(pose+face+latent) in the top row images. Another example is the
unnatural wrinkles in the torso for (pose+face) and ghosting artefact
in the neck area of the shirt for (pose+face+latent) in the bottom
row. At a glance, static views of these models without a latent space
can look acceptable, but over-fitting artifacts are significantly more
noticeable in dynamic sequences. We encourage the reader to view
the accompanying supplementary materials, in which we also pro-
vide additional comparison to an image-space method [Thies et al.
2019].

Unmatched Setting. In the matched setting above, information
deficiency was contrived in order to evaluate its effect on animation.
In practice, one could have chosen to solve for the latent code that
minimizes the reconstruction error since the capture setting for the
model and the performer are identical. However, a far more common
scenario is when there is a domain gap between the capture setting
during modeling and during driving. In this case, the model can
not fully span the appearance in the driving image, and must rely
instead on robust features that can be equivalently extracted in both
domains to drive the model. We consider two such scenarios for one
of our capture subjects.
In the first, the subject is captured in a different attire; different

colored clothing, sandals instead of shoes, and hair out instead of
tied in a bun. This mimics the scenario where a new performance
for free-viewpoint video needs to be captured at a different time,
where the actor’s appearance has changed or the old attire is not
accessible. Here, the skeletal pose and facial keypoints extracted
from the capture studio are used to drive the avatar. Some frames of
this capture along, with the animated avatar, are shown in Figure 12.
In the second, the subject is driving the model while wearing

a VR headset which occludes parts of her face. There is a pair of
stereo cameras in the scene as well as on the headset that extract
driving signals that comprise the skeletal keypoints and facial ex-
pression codes obtained using the approach in [Wei et al. 2019]. This
setting is a minimal sensing configuration for enabling VR-based
telepresence for two-way interaction. Some frames demonstrating
the performance of the system are shown in Figure 13.
In both the attire and headset settings, our model remains faith-

ful to the information content present in the driving signal, while
producing plausible imputations of information that is missing by
simply setting the latent code in all cases to zero. Further results
of these driving results can be found in the supplementary video,
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Fig. 11. Information Deficiency. Driving by setting the latent code to zero produces plausible results but does not match the data where the driving signal
is deficient, for example to model specific clothing states.

Fig. 12. Qualitative Evaluation: Driving in Different Clothing. The model is conditioned on pose 𝜽 , facial keypoints f , and an imputed latent code z. We
use a naive imputation strategy with constant latent code.
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Fig. 13. Qualitative Evaluation: Driving with a Headset. The model is conditioned on pose 𝜽 , facial expression codes f , and an imputed latent code z.

where we additionally visualize results that use different methods
for latent code synthesis, such as through random sampling and by
using a temporal model. By disentangling the latent and driving
signals, our method opens up the possibility of applying a variety
of different imputation strategies that could be suited to particular
applications. A deeper investigation into latent code synthesis is
out of the scope of this paper, but it is an interesting direction of
future work.

4.3 Quantitative Evaluation
In Table 1, we report numerical results in terms of image error with
respect to capture images. Because our main goal is to evaluate how
drivable the models are, all models are conditioned on the same set
of driving signals (i.e. facial expression codes f and skeletal poses
𝜽 ), and all the models that have a latent space are all conditioned
on the same constant latent code z = 0. On the training set, the
model without a latent space (i.e. pose+face) achieves the lowest
error, albeit at the cost of severe overfitting, as it suffers a very
significant performance drop on the test set. Among the variations
of our methods, the lowest error is obtained by a version without
compression mechanism, which we also attribute to overfitting. The
baseline with a latent space (pose+face+latent) performs worse on
both train and test - which we attribute to the fact that it does not
employ any disentanglement-promoting mechanism. Similarly, out
of all the versions of our approach, the model without an explicit
disentanglement performs slightly worse on both.

On the test set, our method has a clear advantage over the model
without latent space disentanglement (pose+face+latent). Perfor-
mance of the model without the shadow branch indicates that it
is useful for generalization; the model without the shadow branch
is able to fit the training data well, but suffers significant degra-
dation on the test set. Similarly, the version of our model without
spatially localized embeddings has significantly lower training error,
but performs significantly worse on the test set. We can also infer

that the version without disentangling is prone to poor generaliza-
tion; the model is able to fit the training data but leads to the worst
performance amongst all variants of our model.

Table 1. Quantitative Evaluation. Image reconstruction error for driving
on training data (train) and testing (unseen) samples. The baseline without a
latent code (pose+face) is prone to learning chance correlations and leads to
severe overfitting, the baseline with a latent code (pose+face+latent) without
disentanglement mechanisms has poor drivability.

method train test
OURS 11.578 15.546
pose+face 7.647 17.509
pose+face+latent 14.861 19.885
OURS (no disent.) 11.926 16.364
OURS (no spat.local.) 9.424 16.461
OURS (no shadow) 10.872 16.792

5 LIMITATIONS AND FUTURE WORK
Our model relies on tracked meshes for supervision and is thus
limited by the tracking quality. As tracking extremely loose clothing
with topological changes is still an area of active research, it would
be challenging to apply our model to those complex scenarios. More-
over, our network architecture relies heavily on the assumption of
fixed topology, as it operates on UV-based mesh representation,
which limits the applicable scenarios, and may be tackled by instead
relying on implicit surface representations [Park et al. 2019; Remelli
et al. 2020]. UV-based representations can also be prone to seam
artifacts (noticable e.g. in Figure 13), especially when combined with
2D convolutions [Groueix et al. 2018]. This issue can be addressed by
using mesh convolutions [Bronstein et al. 2017; Zhou et al. 2020b],
albeit at a higher computational cost.

ACM Trans. Graph., Vol. 40, No. 4, Article 143. Publication date: August 2021.



Driving-Signal Aware Full-Body Avatars • 143:15

OURS pose+face pose+face+latent capture image

Fig. 14. Qualitative Comparison. We use a naive imputation strategy with a constant latent code. Both baselines struggle at capturing shadows (white and
black arrows) and avoiding ghost artefact (blue arrows).

Although latent codes do capture clothing variations and some
of the high-frequency deformations, the limited capacity of the
latent space can lead to loss of details, which could be the reason
that reconstructions in Figure 9 do not capture all of the clothing
deformations. One potential future direction to tackle this would be
to apply hierarchical generative models [Bagautdinov et al. 2018;
Vahdat and Kautz 2020], which tend to have better representational
power.

We employed a naive strategy for imputing missing information
by setting the latent codes to a constant value for every frame, which
means that the state of clothing will be fixed during animation (of
course, pose-dependent deformations can still be captured). An in-
teresting direction of future work is to investigate more advanced
approaches that can be tailored to a specific application. For example,
employing temporal models or style-dependent generation [Alexan-
derson et al. 2020; Ginosar et al. 2019] may enable more semantically

meaningful imputations. At the same time, methods for visualizing
the space of uncertainty may be relevant for applications that rely
on the authenticity of the animation, such as telepresence.
Our data collection and experimental evaluation are primarily

focused on natural conversations, and thus it is not fully clear if
our pipeline generalizes to particularly challenging poses which are
far apart from the training distribution. In the supplementary, we
provide an interactive tool for t-SNE-based visualization [Van der
Maaten and Hinton 2008] of the poses in our training and testing
sets.

6 CONCLUSION
We introduced a novel method for building high-quality photorealis-
tic full-body avatars that integrates, in its construction, the specific
modality of driving signal that is available during the model’s use.
Information deficiency in the driving signal is accounted for by
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using a latent space that is disentangled from the driving signal,
enabling the generation of diverse plausible configurations that
remain faithful to the information contained in the driving signal.
We showcase the capabilities of the model by applying it in two
example scenarios where the driving signal is information deficient,
demonstrating improved generalization and fidelity compared with
other approaches.
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