Visual Coding for Machines
by
Bardia Azizian

M.Sc., Sharif University of Technology, 2018
B.Sc., University of Tehran, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science

Faculty of Applied Sciences

© Bardia Azizian 2022
SIMON FRASER UNIVERSITY
Fall 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration

Name:
Degree:
Thesis title:

Committee:

of Committee

Bardia Azizian
Master of Applied Science
Visual Coding for Machines

Chair: Andrew Rawicz
Professor, Engineering Science

Ivan V. Bajié
Supervisor
Professor, Engineering Science

Hadi Hadizadeh
Committee Member
Research Assistant, Engineering Science

Jie Liang

Examiner
Professor, Engineering Science

ii

Abstract

In this thesis, we study different approaches to visual data coding for machines and develop
new methods to address some issues in this area. We mainly focus on the Image and Video
signals processed by a Deep Neural Network (DNN)-based computer vision model. Our pro-
posed methods are designed to be utilized in DNN-based machines deployed collaboratively
on the edge and cloud. This framework is called Collaborative Intelligence (CI), in which
a DNN model is split into two parts such that the edge device runs the first few layers,
and the remaining layers are executed on the cloud. To that end, the intermediate feature
tensors need to be coded and transferred to the cloud. This research explicitly attempts to
provide solutions for efficient coding of these tensors, considering challenges such as motion

estimation and compensation for videos in the latent space, and privacy for images.

Keywords: coding for machines, feature coding, collaborative intelligence, deep neural

network, motion estimation and compensation, privacy

iii

Table of Contents

Declaration of Committee ii
Abstract iii
Table of Contents iv
List of Tables vi
List of Figures vii
List of Acronyms ix
1 Introduction 1
1.1 Collaborative Intelligence L. 2
1.2 Challenges of Feature Coding 3
1.3 Thesis Outline and Contributions 4

2 Privacy in Image Coding for Machines 5
2.1 Introduction e 5
2.2 Related Work 7
2.3 Proposed Method 10
2.3.1 Split Point 12

2.3.2 Autoencoder 13

2.3.3 Lossfunctions 13

2.3.4 Adversarial Training L oL 14

2.4 Experimental Results. o oo 15
2.4.1 Resistance to model inversion attack 16

2.4.2 Feature Compression Results 17

2.4.3 Best Weights 17

2.4.4 Discussion e 20

2.5 Conclusion e 21

3 Motion in Video Coding for Machines 23

iv

3.1 Imtroduction e 23

3.1.1 Traditional Video Codecs 23

3.1.2 ME Challenges in the Latent Space. 25

3.2 Related Work 27
3.3 Study of ME using H.265/HEVC 29
3.3.1 Experimental Setup o 30

3.3.2 High-precision motion estimation in HEVC 30

3.3.3 Motion Relationship between Input and Latent Space 33

3.4 DNN-based temporal prediction in the latent space 40
3.4.1 Experimental Setup 41

3.4.2 Proposed Methods L 41

3.4.3 Experimental Results 48

3.5 Conclusion e 55

4 Conclusions and Future Work 56
Bibliography 58

List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Bjontegaard-Delta values with respect to “Anchor-input” based on

mAP@.5:.95 (first step of the grid search) 20
Bjontegaard-Delta values with respect to “Anchor-input” based on
mAP@.5:.95 (second step of the grid search) 21

Bjontegaard-Delta values with respect to “Proposed” based on mAP@.5:.95 22

Total BD-bitrate and residual BD-bitrate for different videos, RDO
type, and precision; The anchor is HEVC with 1/4-pel motion precision. 33
Motion relationship table for all the channels, horizontal shift, AGC =

22.3% . e 36
Motion relationship table for all the channels, vertical shift, AGC =
26.5% . . 36
Motion relationship table for 20 channels with maximum horizontal
gradient, shift direction = horizontal, AGC =26.1% 37
Motion relationship table for 20 channels with minimum horizontal
gradient, shift direction = horizontal, AGC' =12.0% 37
Motion relationship table for 20 channels with maximum vertical gra-
dient, shift direction = horizontal, AGC =35.6% 38
Motion relationship table for 20 channels with minimum vertical gra-
dient, shift direction = horizontal, AGC' =11.4% 38
Motion relationship table for 20 channels with maximum standard de-
viation, shift direction = horizontal, AGC =30.3% 39
Motion relationship table for 20 channels with minimum standard de-
viation, shift direction = horizontal, AGC' =12.2% 39

Table 3.10 AGC values for different subsets of feature channels in the latent space 40
Table 3.11 The average BD-rate and BD-mAP over five test sequences for the

available methods with respect to “Anchor - original” 55

vi

List of Figures

Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6

Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7

The overall architecture of YOLOv5 with the selected split point

The overall block diagram of the proposed method. Conv(n, k, s) is
a 2D Convolution layer followed by a Batch normalization layer and
a SiLU() activation, with n being the number of output channels,
a kernel size of k X k, and stride=s. Deconv(n,k, s) is the same as
Conv(n, k, s) except with a Convolution Transpose layer. Note that
the Conv layers in the autoencoder do not have batch normalization,
and the last Conv in AE does not have the SiLU() activation either.
Conv3 x 3(n) is a single 3 x 3 Convolution layer with stride=1 and

“xk" indicates k times repetition of the blocks

n output channels.
specified by a dashed frame.
The kernels of horizontal and vertical Sobel filters
The benchmark pipelines
Model performance in terms of object detection accuracy and resis-
tance against model inversion attack for different values of w;.q.

Visual examples of input reconstruction in model inversion attack
(a) Original (b) Anchor-latent (¢) wypee = 0.0 (d) wyree = 0.5 (e)
Wree = 1.0 (f) Wree =2.0 . . o o 0oL
Compression and privacy efficiency curves of the proposed and bench-

mark models

Timeline of video coding evolution [99]
Block diagram of a video encoder [15]
(a) Original frame (b) Tiled tensor representation at layer 12 of
YOLOvV3 . . . oo
Bit-rate vs. PSNR curves with normal RDO for tiled tensor se-
quences from (a) BasketballDrill, and (b) Kimono
Bit-rate vs. PSNR curves with Q-pel-based RDO for tiled tensor
sequences from (a) BasketballDrill, and (b) Kimono
Bit-rate vs. PSNR curves with Q-pel-based RDO for original (input)
sequences (a) BasketballDrill, and (b) Kimono

11

12
14
16

17

18

19

24
25

31

32

33

The block diagram of the proposed video coding pipeline in deployment 42

vii

Figure 3.8

Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13

Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20

Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27

The overall block diagram of YOLOv5 with the autoencoder in the

training stage Lo Lo 42
The overall block diagram of the DNN predictor in the training stage 43
The encoder portion of the autoencoder 43
Mlustration of a 3 x 3 deformable convolution [26] 44
The architecture of Model-1 46
The architecture of the blocks existing in Model-1 (a) Conv_blk (b)

Deformable blk 46
The architecture of Model-2 47
The architecture of Model-3 48
Atest imageo 48
Offset field visualization for Model-1 49
Offset field visualization for Model-2 50
Offset field visualization for Model-3 50
Visualization of a channel in the latent space and its predicted ver-

sions generated by the DNN models 51
Object detection annotations on the predicted and ground truth tensors 51
The benchmark pipelines 52
rate-accuracy curve for PeopleOnStreet 52
rate-accuracy curve for Traffic 53
rate-accuracy curve for BasketballDrive 53
rate-accuracy curve for BQTerrace 54
rate-accuracy curve for ParkSceneo o000 54

viii

List of Acronyms

Al Artificial Intelligence

BD Bjgntegaard delta

BPP Bits Per Pixel

CI Collaborative Intelligence
CNN Convolutional Neural Network
CTU Coding Tree Unit

CU Coding Unit

DCT Discrete Cosine Transform
DNN Deep Neural Network

DP Differential Privacy

DPCM Differential Pulse Code Modulation
HDR High Dynamic Range

HEVC High Efficiency Video Coding
1IDCT Inverse Discrete Cosine Transform
TIoT Internet of Things

TIoU Intersection over Union

M2M Machine-to-Machine

mAP mean Average Precision

MC Motion Compensation

ME Motion Estimation

MI Mutual Information

ML Machine Learning

MV Motion Vector

MPEG Moving Picture Experts Group
PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

QP Quantization Parameter

RDO Rate-Distortion Optimization

VCM Video Coding for Machines

ix

Chapter 1

Introduction

The rapid growth of Artificial Intelligence (AI) applications such as Internet of Things (IoT),
smart cities, visual surveillance, autonomous driving, industrial machine vision, etc., has
resulted in a proliferation of “intelligent” edge devices, sensors, and their associated in-
frastructure. Our smartphones running a voice-controlled virtual assistant, traffic control
cameras together with their built-in object detection model, or a temperature sensor in
a smart home, are only some examples of such nodes that are usually a part of a wider
intelligent network. These nodes need to communicate with each other and cloud-based
services to accomplish specific tasks. According to Cisco’s annual Internet report [23], most
globally connected devices will be allocated to Machine-to-Machine (M2M) connections by
2023. Therefore, there is an urgent need to develop efficient data coding schemes specifically
for machines. Accordingly, significant research effort is being devoted to this area. Further-
more, standardization activities such as JPEG-AI [44] and MPEG-VCM [33] have also been
initiated to standardize image and video communications between machines and possibly
humans. We also focus on image and video data in this thesis.

For decades, many image/video coding standards have been designed for two ultimate
goals: decreasing the number of bits representing the input and maintaining the fidelity
between the original and reconstructed input. The latter is pursued since the end-users of
image/video codecs have always been humans. The higher quality of the reconstructed input
is indeed appealing to the human visual system, especially when the fidelity is measured
using perceptual metrics [56]. Increasingly, however, much of the visual content is only “seen”
by machines in applications like autonomous driving and navigation, traffic monitoring,
surveillance, etc. In such cases, it might be more efficient to code task-relevant features
derived from the input rather than the inputs themselves. The utility of feature coding has
been recognized even prior to the current wave of interest in DNNs through MPEG standards
on Compact Descriptors for Visual Search (CDVS) [67] and Compact Descriptors for Visual
Analysis (CDVA) [66].

More recently, feature compression has been studied in the context of Collaborative
Intelligence (CI) [7, 84], where a DNN is distributed between an edge device and the cloud,

and intermediate features need to be uploaded from the edge to the cloud to complete the

inference. We will introduce CI in more detail in the following section.

1.1 Collaborative Intelligence

The widespread popularity of Al and deep learning methods have given rise to deploying
these models in our daily life for various automated tasks with remarkably high accuracies.
Face recognition, speech recognition, natural language processing, and fingerprint detection
are some instances of deep learning-based tasks that our smartphones are capable of per-
forming. There are many other examples in larger-scale applications. However, the most
critical challenge in exploiting Al-based schemes is the limited computational power of edge
devices. Running a sophisticated DNN model entirely on an edge device would be severely
time and energy-consuming. The common practice to overcome this problem is transferring
the inputs to the cloud, where the whole DNN model can be executed on powerful GPUs
and CPUs. However, this approach has its own downsides. Transmitting a massive amount
of input data to the cloud would cause high bandwidth consumption. Besides, compressing,
coding, and transmitting this amount of data is not a simple task either for an edge device
and could be energy-consuming. Also, running the whole model on the cloud would lower its
throughput by escalating the server load. And lastly, the end-to-end latency to accomplish
a specific task becomes high [49].

Collaborative Intelligence paves a promising way to overcome the abovementioned issues.
With advancements in the hardware design and computational power of edge devices, it is
possible to run the first few layers of DNN models on them. Then, the obtained feature
tensors can be coded and sent to the cloud to execute the remaining part of the model and
complete the inference. This idea would reduce the amount of transmitted data, relieve the
burden on the cloud and lower the end-to-end latency. In fact, the overall system would
be more efficient in terms of time and energy. References [31, 49, 29, 10] verified that
deploying the DNN models collaboratively on the edge and cloud would result in better
performance. They also studied the tradeoff between the latency and energy that existed
in the CI frameworks and attempted to optimize the utility of the system based on these
constraints.

CI has another benefit, in addition to lower latency and energy consumption compared
to the cloud-only approaches, which is providing better privacy. In a cloud-only framework,
the edge device has to transfer the original input signal to the cloud, which could bring
privacy risks if the communication channel or the cloud is untrusted. In a CI framework,
however, the intermediate feature tensors are sent to the cloud. The authors of [32] claimed
that recovering the input data from the latent feature tensors is impossible without having
knowledge of the counterpart decoder that brings back the input data from the intercepted

features. However, that is not a correct assumption since some methods, like model inver-

sion attack [39] in the context of DNN models, aim exactly to recover the input from the
intermediate features. Nevertheless, deeper layers of DNN models carry less information
about the input, which offers better privacy for sensitive data.

Collaborative Intelligence is known by other terms in the literature as well, such as
Collaborative Inference [39], Edge-Cloud Inference [59], Edge-Cloud Al [10], etc. There is
also another framework in the CI domain, which is employed in the training stage of the
DNN models [63, 29, 85, 34]. In this framework, called federated learning, multiple parties
contribute to training a single model using individual private datasets. These nodes share
some information about their own models during training, such as weight parameters or
gradient values, in order to have a synchronized model across all the nodes. Nonetheless,

we focus on CI at the inference stage in this thesis.

1.2 Challenges of Feature Coding

The previous section explained the advantages of CI over could-only and edge-only ap-
proaches in deploying DNN models. In order to utilize CI in a practical pipeline, a coding
scheme should be used to compress the intermediate feature tensors at the split point of
the DNN model. Then, the compressed features are decoded on the cloud and passed to
the remainder of the model to obtain the outcomes. Since deep learning is relatively new,
feature tensor coding is not as mature as natural input data coding. Image and video coding
standards have evolved for decades and now are able to exploit the redundancies that exist
in the natural signals to a great extent. But, deep feature coding has yet to be grown enough
to achieve good compression efficiency.

Dealing with spatial and especially temporal redundancies in video signals is more chal-
lenging. In traditional video coding standards (e.g., H.265/HEVC [87] and H.266/VVC [16]),
the spatial redundancies are removed using advanced intra-prediction modules, and tem-
poral redundancies are taken care of through inter-prediction using sophisticated Motion
Estimation (ME) and Motion Compensation (MC) schemes. But, ME and MC in the latent
space are not as easy as in the original input domain for the reasons elaborated in Chapter 3,
where we aim to propose learning-based ME and MC methods in the latent space.

Privacy is another critical challenge in the deep learning context [65, 58] which will be
addressed in this thesis. Privacy issue becomes more serious in Cl-based applications since
some features of input data are transferred to the cloud. As mentioned earlier, it is still
possible to recover the input data from the intermediate feature tensors to some extent. As
a result, an adversary eavesdropping on the communication channel or a malicious agent
in an untrusted cloud could gain access to sensitive data and jeopardize users’ privacy.
To overcome this threat, we propose a method in which the sensitive parts of the data are

removed from the feature tensors without significantly affecting the machine vision accuracy.

That is possible because the exact visual content of input data is not necessary for machine

vision.

1.3 Thesis Outline and Contributions

The rest of this thesis is organized as follows. Chapter 2 provides a privacy-preserving
solution for image coding for machines in a CI framework. In Chapter 3, we study the
motion relation in videos between the input and latent space and propose a couple of DNN
models for ME and MC in the latent space. The conclusions and future works are also
presented in Chapter 4.

Thus far, the research reported in this thesis has resulted in one conference paper:

e B. Azizian, I. V. Baji¢, "Privacy-preserving feature coding for machines," to be pre-

sented at 2022 Picture Coding Symposium

Chapter 2

Privacy in Image Coding for
Machines

This chapter is intended to elucidate the privacy issue in Collaborative Intelligence frame-
works and provide a solution for image coding for machines in a way that protects the
privacy of the end users. First and foremost, the importance of privacy in CI and the con-
cept of our proposed idea is demonstrated in Section 2.1. Then, a brief literature review is
given in Section 2.2, although the field of privacy in CI is less explored. We describe our
proposed method in Section 2.3 and provide the experimental results in Section 2.4 before

concluding this chapter.

2.1 Introduction

With the proliferation of Al-based applications such as IoT, smart home, smart city, au-
tonomous driving, etc., intelligent nodes (e.g., cameras, sensors) whose purpose is collecting
data are found in many places. This phenomenon brings about critical privacy challenges,
especially in edge-cloud inference applications, where the input data or some features of it
are transmitted to the cloud. In this case, an untrusted party or an adversary eavesdropping
on the communication channel can easily gain access to private data. Assume a scenario
where surveillance and traffic monitoring cameras are available in many public places; peo-
ple and their cars can be simply tracked. In a smart home application, a person’s private
information is also at risk even in their own home in case a data transmission to the cloud
happens.

As mentioned earlier, CI is not a perfect solution for privacy-preserving since some input
data information is recoverable from the intermediate features of a DNN model as will be
seen in our experiments. These sorts of privacy attacks on the learning models are mostly
explored in the context of pure machine learning or deep learning [65, 58], without taking the
concepts of CI and data coding for machines into account. The security and privacy attacks

on the deep/machine learning models fall into four general categories: model extraction,

model inversion, adversarial, and poisoning attacks. In the model extraction attack, the
adversary tries to obtain the model parameters, which is a threat to the intellectual property
of the provider. The adversarial attack is aimed at fooling a DNN model into outputting
wrong predictions with high confidence by applying imperceptible perturbations to the
input, which is invisible to the human eye [89]. The poisoning attack focuses on polluting
the training dataset by injecting malicious samples such that the resulting model would
not have a desirable accuracy in the inference stage [68]. On the other side, the adversary’s
goal in the model inversion attack is to access unexposed data of a DNN model during the
inference stage. The action of recovering sensitive data from the output or the intercepted
features of a DNN model is called “model inversion attack”, which is the primary concern
in edge-cloud inference applications.

Membership inference [86] is a type of model inversion attack where the adversary tries
to know whether a specific data point is in the training set of a model. In this research,
however, our focus is on resisting model inversion attack in which the adversary intends to
reconstruct the input from the latent space of an object detection DNN model. The model
inversion attack can be further classified into three subcategories based on the adversary’s

level of access to the model [39]:

1. White-box setting: The adversary knows everything about the DNN model, including

model architecture and parameters.

2. Black-box setting: The adversary knows nothing about the model but can query it
through the available APIs, i.e., it can feed the network with specific data and observe

the corresponding output.

3. Black-box query-free setting: The adversary knows nothing about the model, nor can

it query it.

The common approach to counter privacy threats of DNN models is adding noise to the
input or intermediate features insofar as the model’s accuracy is not affected considerably.
This way, the accuracy of the adversary in recovering the original input could drop. Cryp-
tography methods [83] also provide one possible solution to protect the data, although they
have their own risks and challenges. But, in the context of data coding for machines, one
can simply reduce or remove private information from data while retaining task-relevant
information because machine vision generally needs higher-level information, rather than
details of each pixel, in order to perform a given task. For example, the details of a vehi-
cle’s license plate or a person’s face are not necessary if the machine vision model is only
supposed to detect cars and pedestrians on the street [6]. To remove sensitive information
from the latent space of a model, we have adopted an adversarial training technique [35]

with proper loss functions, which will be explained in Section 2.3.

In this project, we pursue another goal besides privacy: decent compression efficiency. To
that end, a compressibility loss term is also employed during training to reduce the overall

bitrate of the system.

2.2 Related Work

Reference [39] was the first research work that categorized different settings of model in-
version attacks (black-box, white-box, and black-box query-free) and provided well-defined
methods to accomplish each attack. Its authors assumed an edge-cloud collaborative infer-
ence pipeline where the cloud is untrusted. They demonstrated that recovering the input
image from the intermediate feature tensors of a classification model is feasible even in
the black-box query-free setting. In the white-box setting, regularized maximum likelihood
estimation technique is used where the model inversion is treated as an optimization prob-
lem. On the contrary, computing the gradients is impossible in the black-box setting since
the parameters and probably the architecture of the front-end model are unknown to the
adversary. Thus, an auxiliary DNN model (Inverse-Network) is employed and trained on
the adversary’s dataset by querying the front-end network. According to their experimen-
tal results, there is not much difference in the accuracy of the recovered input between
the black-box and white-box settings. In the black-box query-free setting, a shadow model
is constructed first to imitate the front-end. Then, the adversary could query the shadow
model unlimitedly. In this case, the quality of the reconstructed input is less than that
in the white-box and the black-box settings. In this chapter, our adversary exploits the
Inverse-Network technique in the black-box setting, which would result in the best quality
of the reconstructed input among all the abovementioned settings, according to [39].

Although the privacy of the DNN models in the deployment phase is less studied, the
privacy of the models and their utilized training data has been on the radar of researchers
since a long time ago. The concept of Differential Privacy (DP) was first introduced by
Dwork et al. [28], whose intention was to protect the private information of individuals
contributing to a dataset used by a machine learning or analysis model. DP is defined as
follows [65]:

For € > 0, an algorithm A satisfies e-DP if and only if for any pair of datasets D and D’

that differ in only one element:
PIA(D) =t] < e“P[A(D') =t] Vt (2.1)

where, P[A(D) = t] denotes the probability that the algorithm A outputs t. DP attempts to
approximate the effect of an individual opting out of contributing to the dataset by ensuring
that any effect due to the inclusion of one’s data is small. In other words, DP mathematically
guarantees that anyone seeing the result of a differentially private analysis will essentially

make roughly the same inference about any individual’s private information, whether or

7

not that individual’s private information is included in the dataset of the analysis model.
Note that lower values of €, which is called privacy budget, offer better differential privacy.

It can be proved [28] that adding a Laplacian noise, Lap(%), to a deterministic function
f(-) would generate a randomized algorithm that satisfies e-DP equation (2.1). Ay is the
global sensitivity of f(-) and is defined as Ay = sup |f(D)— f(D’)| over all the dataset pairs
(D, D’) that differ in only one element.

In fact, DP was initially designed to withstand the membership inference attack based on
its definition. For example, in [45], a multi-party collaborative inference setting is assumed,
where each party owns a private model trained on its respective data, and the client submits
a set of data for inference to these parties. The goal is to prevent the client or an adversary
from performing a membership inference attack on the parties’ private data. DP is employed
to achieve this goal by adding noise to the inference results that should be returned to the
client.

On the other hand, some research works have adopted DP to protect neural networks
against input reconstruction in model inversion attack [78, 96, 45, 40]. For instance, the
authors of [96] add Laplacian noise to the intermediate features of the DNN model that
should be transmitted to the cloud, as suggested in DP. Since finding the global sensitivity
of the features is difficult, they first bound the infinity norm of the tensors by a specific
value. In addition to the Laplacian noise, a nullification operation is also conducted to
enhance privacy. To increase the robustness of the back-end to these feature perturbations,
it is retrained on the manipulated features. However, the performance of their model is
severely impacted by increasing the intensity of the noise and nullification process.

Reference [78] has studied the privacy-utility trade-off based on the DP approach. This
trade-off can be controlled by the privacy budget’s parameter (). Similar to [96], a Laplacian
noise is added to the intermediate features of the DNN model. The model inversion attack
for the white-box setting, introduced in [39], is used to measure privacy.

The authors of [39] have also improved their research in a more recent paper [40] by
providing solutions to defend against their proposed types of model inversion attacks intro-
duced in [39]. Noise obfuscation, using Laplacian and Gaussian noise, and dropout technique
have been studied in their paper. Dropout, which deactivates random neurons in a layer
of a DNN model, turned out to be substantially better than adding noise in terms of the
privacy-utility trade-off.

Unlike the abovementioned schemes, in which noise addition was the most common
practice, [5] incorporated the privacy-preserving method into the feature compression task.
Features with less private and more non-private information are only lightly compressed,
whereas those that carry more private information are compressed more heavily to pro-
tect privacy. Distinguishing between private and non-private data is conducted through an
information-theoretic privacy approach called privacy fan. Here, features from a DNN are

scored according to the Mutual Information (MI) [25] relative to the private and non-private

tasks. At its core, privacy fan is a feature selection method based on MI between features
and private/non-private tasks, which is difficult to estimate in high-dimensional spaces [51].
However, our proposed approach avoids this challenge by using an autoencoder to reduce
the dimensionality of the bottleneck. For this reason, it is also more flexible than the privacy
fan because it enables not just feature selection but also feature modification.

Furthermore, our approach employs an adversarial training strategy to modify the bot-
tleneck’s features via proper loss functions. In this sense, the DNN model would be optimized
in a way to preserve the crucial task-relevant information and remove or manipulate the
information related to accurate input reconstruction. Optimization through learning could
definitely be more efficient than general nonadaptive approaches such as noise obfuscation.

Besides privacy, the compression efficiency of feature coding schemes should also be
studied since one of our main objectives is reducing the bitrate to the extent that justifies
using feature compression instead of input compression. Like images, features derived from
intermediate DNN layers can be encoded either using traditional or DNN-based codecs.
Early works on this topic [18, 30, 4] preferred traditional codecs; such approaches are still
appealing due to traditional codecs’ computational simplicity relative to DNN-based codecs,
and their wide availability in the existing cameras and devices. In order to use a conventional
codec for feature coding, the feature tensor usually needs to be tiled into an image, scaled,
and pre-quantized [18]. The authors of [30] additionally reduced the dimensionality of the
latent space in terms of both the number of channels and spatial resolution using an au-
toencoder prior to coding the bottleneck tensors via JPEG. Such dimensionality reduction
usually helps compression efficiency.

The abovementioned schemes replaced the utilized traditional codec with an identity
function in the backpropagation phase of the training. In other words, the effect of com-
pression/decompression and the bitrate of the generated bitstream has not been taken into
account in their training processes. On the other hand, more recent schemes [52, 104] employ
DNN-based coding tools, especially advanced entropy models, to code features. An advan-
tage of such schemes is their ability to be trained end-to-end, with a loss function that
combines a differentiable rate estimate and task accuracy. In such end-to-end approaches,
the rate estimate is usually done by measuring an approximate entropy of the bottleneck’s
elements whose distribution is assumed to be Gaussian [8].

Although end-to-end trainable coding pipelines are more flexible, the downside is in-
creased complexity and the fact that their coding engines are not widely available in existing
devices. For that reason, some research works are still being conducted to provide proper
differentiable proxies for the hand-crafted codecs and their associated bitrates [36, 79, 37].
This way, standard-codec-based approaches can be trained in an end-to-end manner as well.
The authors of [36, 37] have designed a differentiable proxy for JPEG and claimed that it
suffices to represent more complex codecs such as HEIC. Their main objective is to deploy a

DNN-based pre-processor and post-processor together with a standard codec for the purpose

of transporting high-resolution (super-resolution) or High Dynamic Range (HDR) images.
In their framework, the standard codec is substituted with a quantizer proxy, an 8 x 8
Discrete Cosine Transform (DCT), and an 8 x 8 Inverse Discrete Cosine Transform (IDCT).
The corresponding rate is also estimated via a smooth logarithmic differentiable function
computed on the DCT coefficients. Reference [79] attempts to approximate the bitrate of an
HEVC encoder for the same scenario of exploiting neural pre-processing and post-processing
modules with that. It combines the rate estimation idea of the end-to-end trainable hyper-
prior model [9] with some heuristic approximation of the existing modules in HEVC to
create a differentiable rate proxy.

The mentioned proxies have not considered the effect of prediction in conventional
codecs. Prediction is the foundation of all the hand-crafted codecs through which a huge
portion of the input redundancies is removed. The authors of [4] have provided a rate proxy
assuming a simple model to imitate the effect of prediction. In their proposed rate estima-
tion, spatial prediction is modeled as a simple averaging over the top and left neighbors of
each pixel. This approach is less complicated compared to the abovementioned estimators.
We have also employed the same proxy in our training loss functions to encourage more
compressibility of the bottleneck features with a traditional codec like H.266/VVC. More

detail is presented in Section 2.3.3.

2.3 Proposed Method

In our proposed method, we essentially follow two key objectives: 1) resistance to model
inversion attack and 2) good compression efficiency. In order to achieve these goals, we
train an autoencoder, inserted in the middle of a machine vision model, together with an
auxiliary network trying to reconstruct the input in an adversarial manner [35]. The overall
block diagram of our design is shown in Fig. 2.2. In this chapter, we chose object detection
by YOLOV5 [48], although our scheme is applicable to other DNN models and tasks as well.
The overall architecture of YOLOvV5 is depicted in Fig. 2.1.

YOLOvV5 was released by a company named Ultralytics in 2020. There has not been a
published paper for this model yet, but its code is available in a GitHub repository' by
Glenn Jocher, Founder and CEO of Ultralytics. This model is quite similar to YOLOv4
[14]. YOLOv5 has been developed in the Pytorch framework as opposed to official versions
of YOLOv3 or YOLOv4. YOLOv5 has a variety of models with varying complexity and
accuracy. We selected YOLOv5m that has been trained on images of the COCO dataset [55],
resized to the width (or height) of 640 with preserved aspect ratio.

Yhttps://github.com /ultralytics/yolov5

10

- Cutting point

Figure 2.1: The overall architecture of YOLOv5 with the selected split point

11

YOLO - front-end YOLO - back-end

ResBlock (n)

& = & o B . clps RRERIORNL LI) o
= o 5 . \ :] o] Il
= i o o o L Comidxd_ o Bomaa L ¥ 2 Object Detection
put —> F H § > 2 2 2 | T s {m g 8 % g annotations.
> > o) e © > M o
&| | & §| |9 || mempemmmmmemeemmmpeeaea- g =
F—J {—J Autoencoder \\
IS SR =1 7 . S L — = - I 2+ 1 () D
} x k H = = = = = = * K
' bt bbbt bl P e S| @ o Q|| T
o - - s tae .
1 I o = = 1 -] x oo vel Conv Conv | conv .
| conv | Conv Canv l i 88T a0 G a P e e e T !
T w2 £, 0T Tlea 4 0 (e g0 W B 0 =2 T = g = Prlad D) e L] AN “‘“-”,—L__. R
' ARy T B % ® g g [£ " X B
S & o o)8 =pon-- b
' Conv Conv | 1 = St i T Conv Conv
" n2, 1, 1) (m 0 1)) 0 » {m 1. 1) (2. 1. 1)
R Dt bmsrprda] pE Ap et s Sl e
M
sllsgll=sl=lld"l|sl|8]|7
(N Clipping Bzl a < 3 i))
| s 1 = L o B3 | 5 Reconstructed
Bitstream <—— VVC-Intra M & e g-u‘é-p?_b-r%!-ba ,,—u-g %—h Input
| Quantization 5 ‘ - = 3 ‘ 5 ‘: E 2
= o = > o _: a Q
e8] (2])]|& NER

Figure 2.2: The overall block diagram of the proposed method. Conv(n, k, s) is a 2D Con-
volution layer followed by a Batch normalization layer and a SiLU() activation, with n
being the number of output channels, a kernel size of k x k, and stride=s. Deconv(n, k, s) is
the same as Conv(n, k, s) except with a Convolution Transpose layer. Note that the Conv
layers in the autoencoder do not have batch normalization, and the last Conv in AE does
not have the SiLU () activation either. Conv3 x 3(n) is a single 3 x 3 Convolution layer with
stride=1 and n output channels. “xk" indicates k£ times repetition of the blocks specified
by a dashed frame.

2.3.1 Split Point

Choosing a split point is a design issue [49, 29], which depends on energy considerations,
computational resources at the edge, the type of connection between the edge and the
cloud, and so on. Here, we should also consider privacy as a determinant factor in choosing
an appropriate split point. In [39], it is practically shown that the accuracy of the input
recovery from the deeper feature tensors is lower. In the following, we try to argue this
claim based on information-theoretic considerations [6].

Let X be the input image and Y; be the feature tensor at the i-th layer. Since X —
Y — Vi1 forms a Markov chain, by the data processing inequality [25] we have that

I(X;Yi) 2 1(X; Yig1), (2.2)

where I(+;-) is the mutual information. Hence, deeper layers carry less information about the
input and are, therefore, more resilient to model inversion attacks. Also, as shown in [21],
deeper layers are more compressible. These arguments would suggest choosing a split point
as deep as possible.

On the other hand, limited computation and energy resources on the edge device favor

selecting a shallower split point. Moreover, the YOLOv5m model branches out at layer 5

12

(see Fig. 2.1), meaning that if we select the split point after layer 5, we would have to encode
and transmit multiple feature tensors, which would increase both the complexity and the

total bitrate. Hence, we choose to split the YOLOvbm model at layer 5.

2.3.2 Autoencoder

At the split point, we insert an autoencoder, aiming at reducing the dimensionality of the
original latent space and creating features with improved compressibility and resistance to
model inversion attacks. This is a plug-and-play strategy and can be used for other models
and tasks as well. The autoencoder’s architecture is shown in Fig. 2.2: its encoder portion
is referred to as AE and decoder as AD.

AE is supposed to transform the YOLO’s native latent space at the split point (with 192
channels) into a lower-dimensional space called the bottleneck (with 64 channels). Besides,
AE is responsible for removing private information and preserving the required information
for the object detection task. AD consequently tries to provide the back-end with desirable
tensors having the same dimensionality as the native latent space. Note that the spatial
dimensions of the tensors remain unchanged in AE to preserve the spatial precision of
subsequent object detection.

In the end, the resulting bottleneck feature tensor is tiled, pre-quantized to 8-bits per
element, and encoded using Versatile Video Coding (VVC)-Intra [16] via VVenC [97] video
coded software with the lowdelay-faster preset. At the cloud side, the encoded bitstream
is decoded by a VVC decoder and AD, then fed to the YOLOvbm back-end to get the

inference results.

2.3.3 Loss functions

To train our network, we use three main loss functions that will be described in the following:

¢ Object Detection: This is the native object detection loss function utilized in
YOLOV5 [48] and computed as follows.

Lobjidet = Wobj * Lobj + Wpog * Lbox + Weys - Lcls (23)

where Ly, Lyog, and L are objectness, bounding box localization, and classification

losses that are combined with respective weights of wep;, Whoe, and wes.

o Compressibility: L.;:s is a loss function borrowed from [4] and encourages com-
pressibility of the tensors with traditional image codecs. It attempts to emulate the
intra-prediction and transformation processes, which are the foundation of hand-
crafted codecs. Intra-prediction is performed based on the neighboring pixels, and
transformation is applied to the residuals (the difference between the original and

predicted pixels). In the end, the transformed coefficients are quantized and encoded

13

into the bitstream. The authors of [4] introduced a 2-D Differential Pulse Code Modu-
lation (DPCM)-based matrix that computes the average difference between the current
pixel and its upper and left neighbors. The resulting values are somewhat equivalent
to the residuals obtained in the traditional codecs. Then, a DCT is performed, and

the £1-norm of its coefficients forms the compressibility loss, Lemprs-

Reconstruction: This loss function (L) is for reconstructing the input image from
the intermediate tensors. L,.. itself consists of two terms. One is the typical #1-norm of
the error, and the other is to emphasize the edges since private information is usually

associated with fine details. L,.. is computed as follows:
_1! X B X B X 2.4
Lyec = EHX — X+ EHSI * X — Sy x X1 + EHSy * X — Sy x X1, (2.4)

where X and X are the original and reconstructed images, | - ||; is the ¢;-norm, S,
and S, are the horizontal and vertical Sobel filters, respectively, * is the convolution
operator, and n is the total number of tensor’s elements in the batch. The value of

is empirically set to 5.

The kernels of the horizontal and vertical Sobel filters are shown in Fig. 2.3.

-1 0 1 1 2 1

2|0 2 0 0 0

-1 0 1 1] -2 (-
Vertical Horizontal

Figure 2.3: The kernels of horizontal and vertical Sobel filters

2.3.4 Adversarial Training

We have adopted a specific training strategy to generate compressible bottleneck features

with resilience towards model inversion attacks. This is done through an auxiliary DNN

model, called Reconstruction Network (RecNet), whose purpose is to reconstruct the input

image from bottleneck features. As depicted in Fig. 2.2, the architecture of RecNet is roughly

a mirror of the YOLOv5m front-end and AE. We adversarially train the autoencoder and

RecNet together. During the training process, RecNet tries to recover the input image from

the bottleneck features as best it can, while the AE simultaneously tries to disrupt RecNet’s

performance by manipulating the generated bottleneck features. At the same time, both AE

and AD attempt to keep object detection accuracy high. Besides, the bottleneck features

become more compressible over the training stage through the compressibility loss function.

14

Note that the pre-trained YOLOv5m model is kept intact, and its weights are frozen during
the entire training process. The training process for each batch of data is summarized in

the following steps:

1. The input images X go through the front-end, AE, and RecNet, and the respective

reconstruction loss is computed according to (2.4).

2. Gradient of L,.. backpropagates only through the RecNet and updates its weights.

The autoencoder’s weights are frozen at this step.

3. The same batch of images goes through the whole network (YOLO front-end, AE,
AD, YOLO back-end), and the total loss is computed as follows:

Ltot = Lobj_det + Wemprs * Lcmprs — Wrec * Lrec; (25)

where Lop; dets Lemprs, and Lye. are the loss terms defined in section 2.3.3. Wemprs

and wy.. are the balancing weights for combining these loss terms.

4. Gradient of Ly, backpropagates only through the autoencoder and updates its weights.
RecNet’s weights are frozen in this step. Note that the negative sign of the L. in (2.5)
leads AE to make reconstruction more difficult for RecNet. Meanwhile, the positive
sign of Loy; det and Lemprs cause AE and AD to improve object detection accuracy

and increase the compressibility of the feature channels with traditional image codecs.

2.4 Experimental Results

We trained our networks on the COCO-2017 object detection dataset [55] using an NVIDIA
Tesla V100-SXM2 GPU with 32GB memory. In the first step, only the autoencoder got
trained with Lop; ger (2.3) for 50 epochs. Next, we trained only the RecNet with Lye. (2.4)
for 20 epochs, with the autoencoder’s weights frozen to those obtained in the first step.
Finally, with the autoencoder and RecNet initialized to the previously obtained weights,
the adversarial training was conducted as described in Section 2.3.4 for 40 epochs. In all the
steps, we used Stochastic Gradient Descent (SGD) optimizer with the initial learning rate
equal to 0.01, changing by a cosine learning rate decay [38], which is claimed to be better
than common exponential step decay methods, over the training.

The results of our proposed method are compared with two benchmarks. “Anchor-input”
refers to the case where the input image is encoded by VVC, and the decoded image is passed
to the original object detection YOLOv5m model to get the inference results, as shown in
Fig. 2.4a. “Anchor-latent” corresponds to the case where the original YOLOvbHm latent
space at layer 5 (without the AE) is clipped, scaled, encoded by VVC, and the decoded
tensor feeds the original YOLOv5m back-end, as depicted in Fig. 2.4b.

15

Input ——{ YOLOVS front-end |— £

Input Object I_De_tection Object Detection
Predictions Predictions

(a) Anchor-input (b) Anchor-latent

Figure 2.4: The benchmark pipelines

All the encoding and decoding processes take place using VVC-Intra. Prior to that, the
channels in the bottleneck (or latent space) are clipped, quantized to 8 bits, and tiled into an
8 x 8 matrix for the bottleneck (or 12x 16 matrix for the Anchor-latent) to create a gray-scale
image. On the decoder side, the bitstream is decoded, and the resulting tensors are passed
to the rest of the model for inference. As noted in [24], feature compression performance
can be improved via clipping. We empirically found 6o the best clipping range, where o is
the standard deviation of the to-be-coded tensors on the COCO validation set.

2.4.1 Resistance to model inversion attack

As mentioned before, RecNet is an auxiliary DNN model exploited in the adversarial training
stage. So, it is not part of the final pipeline. In a real situation, however, if an adversary
can get hold of the edge device in a black-box setting, they can try to train their own input
reconstruction model using input-bottleneck pairs. In order to test our model against this
attack, we train a new, randomly initialized RecNet on the bottleneck features generated
by the autoencoder obtained in the adversarial training stage. This RecNet is trained with
a {1-norm loss (the first term in (2.4)) as it has been claimed in [106] that ¢;-norm usually
provides better quality for human vision compared to £o-norm. All the following results are
based on the output of the mentioned RecNet. In addition to the main pipeline, we have also
trained another RecNet, whose first three layers are removed, on the original YOLOv5m
latent space at layer 5. This RecNet is associated with the Anchor-latent.

At first, we trained a number of autoencoders with wemprs = 0 and different values of
Wree t0 see the effect of reconstruction loss (Lye.) on the models’ performance without doing
VVC compression. Fig. 2.5a shows the mAP@.5:.95 (mean Average Precision over the IoU
thresholds of .5 to .95) curve versus wy. on the COCO-2017 validation set. The average Peak
Signal to Noise Ration (PSNR) of the recovered input images using the adversary’s RecNet
models versus wy.. is also shown in Fig. 2.5b. As expected, increasing the value of w,.. makes
the object detection model less accurate, although the mean Average Precision (mAP) drop
is negligible. Conversely, wye. can significantly affect the quality of the recovered input
image in the model inversion attack. As seen, the PSNR drop is approximately 4.5 dB when

Wree changes from 0.0 to 2.0

16

Some visual examples are also given in Fig. 2.6. We can deduce from these images
that the adversary’s RecNet models are able to reconstruct the input at a relatively good
quality from the YOLOv5m’s original latent space at layer 5 and also from the bottleneck
of the autoencoder trained with w,.. = 0.0. But, the quality of the recovered input drops
noticeably by increasing the value of w;.., especially near the edges and textured areas due
to using the Sobel filter in the reconstruction loss term as presented in equation (2.4). This
edge-concentrated distortion makes the faces hard to recognize and the text hard to read,

which is favorable in terms of privacy.

COCO-2017 COCO-2017

mAP @.5:95
PSNR (dB)

0,00 0.0 0.80 0.60 080] 120 Lan 160 L8 200 .00 0.20 0.40 0.60 0.80 100 120 140 1.60 180 200

w_rec w_rec

() Wpee vs mMAP@.5:.95 (b) wree vs PSNR

Figure 2.5: Model performance in terms of object detection accuracy and resistance against
model inversion attack for different values of w;.q.

2.4.2 Feature Compression Results

The compression efficiency of the system was examined by plotting the rate-accuracy curves,
where the rate is computed as the number of bits per pixel, and the accuracy is mAP at
the IoU threshold of 0.5. The points of a curve were obtained by changing the value of
Quantization Parameter (QP) in the VVC compression process. Fig. 2.7a shows the rate-
accuracy curves for different models and various values of wye. and wemprs. Only a limited
number of (Wyee, Wemprs) Pairs are included in Fig. 2.7a such as not to make the chart
unclear.

We have also plotted another set of curves, called quality-accuracy, that could represent
privacy efficiency. These curves are depicted in Fig. 2.7b, where the x-axis is the average
PSNR of the recovered input images, and the y-axis is the mAP of the object detection
model on the COCO-2017 validation set. The points lying on the top-left part of the chart

are better since high mAP and low PSNR are desirable in our privacy-preserving application.

2.4.3 Best Weights

The most important hyperparameters in our DNN model are wpe. and wepmprs through

which one can adjust the bitrate of the coded bitstream and the amount of existing private

17

Figure 2.6: Visual examples of input reconstruction in model inversion attack (a) Original
(b) Anchor-latent (¢) wyee = 0.0 (d) wyree = 0.5 (&) Wyee = 1.0 (f) Wyee = 2.0

information in the bottleneck. To obtain suitable weights, we ran a 2-step grid search on the
W = (Wree, Wemprs) space. In the first step, 16 different points with w,.. € {0.5,1,1.5,2}
and Wemprs € {1,2,3,4} were tested. In order to quantitatively compare their performance
2 similar to those presented
in Fig. 2.7, are computed. The first two columns of Table 2.1 are BD-Rate and BD-mAP

between the rate-accuracy curves, and the third is BD-PSNR between the quality-accuracy

Bjontegaard-Delta values [13] between their associated curves

curves. Note that the accuracy metric is mAP@.5:.95, and the Bjgntegaard-Delta values are

computed with respect to “Anchor-input”.

2Calculated based on the MPEG-VCM reporting template [41]

18

C0C0-2017

65
60
55
g
(T]
: 50
®
o
<
E as 7
e=fi==Anchor - input
== _rec=0.5; w_cmpr=3.0
40 === Anchor - latent
= _rec=0.5; w_cmpr=0.0
35 =0= w_rec=0.0; w_cmpr=0.0
é =@= w_rec=2.0 ; w_cmpr=3.0
= == w/o Compression
30 / i
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Bits-per-pixel
(a) Rate vs mAP@.5
C0C0O-2017
65
=== Anichor - input
o s _rec=0.5; w_cmpr=3.0 »
=== Anchor - latent @
- ===\ _rec=0.5; w_cmpr=0.0 (
g =@ w_rec=0.0; w_cmpr=0.0 ‘ [/
P =@= w_rec=2.0 ; w_cmpr=3.0 | [/
- 50 ® [
S]
< ' p
E 45 I []
é [/
40
I
]
]
35
]
30
0.0 5.0 10.0 15.0 20.0 25.0 30.0
PSNR (dB)

(b) PSNR vs mAP@.5

Figure 2.7: Compression and privacy efficiency curves of the proposed and benchmark mod-
els

19

Table 2.1: Bjgntegaard-Delta values with respect to “Anchor-input” based on mAP@.5:.95
(first step of the grid search)

| BD-Rate | BD-mAP | BD-PSNR |

Wree = 0.9 Wemprs = 1.0 —7.1% 0.4 —13.87 dB
Wree = 0.55 Wemprs = 2.0 | —12.9% 0.7 —13.59 dB
rie = 05 wenpre — 5.0 | RGN 1170 a©
Wree = 0.5 5 Wemprs = 4.0 | —14.0% 0.5 —12.85 dB
Wree = 1.0'5 Wemprs = 1.0 —1.3% 0.0 —14.32 dB
Wree = 1.0 Wemprs = 2.0 —7.3% 0.1 —15.31 dB
Wree = 1.0 Wemprs = 3.0 | —11.8% 0.4 —16.20 dB
Wree = 1.0 Wemprs = 4.0 | —10.3% 0.1 —16.01 dB
Wree = 1.55 Wemprs = 1.0 —2.2% 0.0 —15.04 dB
Wree = 1.55 Wemprs = 2.0 | —11.0% 0.4 —15.53 dB
Wree = 1.5 5 Wemprs = 3.0 | —10.3% 0.2 —16.27 dB
Wree = 1.5 5 Wemprs = 4.0 | —11.7% 0.2

Wree = 2.0 5 Wemprs = 1.0 —0.3% -0.2 —14.93 dB
Wree = 2.05 Wemprs = 2.0 —8.4% 0.2 —15.71 dB
Wree = 2.0 5 Wemprs = 3.0 | —11.2% 0.3 —16.19 dB
Wree = 2.0 Wemprs = 4.0 | —13.0% 0.3 —16.17 dB

According to these results, Wy = (0.5, 3.0) provides the best compression efficiency and
W; = (1.5,4.0) shows the best resistance to model inversion attack. However, the quality of
the recovered input from the model trained with Wy is 14.70 dB below the Anchor-input,
which is quite significant. Looking at the visual examples of Fig. 2.6, it can be seen that
the text, licence plate, and faces are not recognizable even for w,.. = 0.5. Thus, Wy is also
acceptable in terms of privacy performance. We select Wy as the best weight and perform
a finer search around it in the second step.

In the second step, nine different points with finer precision around Wy = (0.5, 3.0) were
examined, where wye. € {0.25,0.5,0.75} and wemprs € {2.5,3.0,3.5}. The corresponding
Bjontegaard-Delta values are given in Table 2.2. As seen, Wy = (0.5,3.0) still has the
best compression efficiency among all the tested weights. Since its privacy performance is

acceptable as well, we choose Wy = (0.5, 3.0) and its respective model as the best.

2.4.4 Discussion

We call the model trained with the weights of Wy = (0.5,3.0), “Proposed” model. The
rate-accuracy and quality-accuracy curves of the Proposed model are shown in Fig. 2.7
with orange color. The Bjontegaard-Delta values between the curves, presented in Fig. 2.7,
are also given in Table 2.3. Note that in this table, the anchor is our Proposed model based

on which all the values are computed.

20

Table 2.2: Bjgntegaard-Delta values with respect to “Anchor-input” based on mAP@.5:.95
(second step of the grid search)

] | BD-Rate | BD-mAP | BD-PSNR |

Wree = 0.25 5 Wemprs = 2.5 —13.9% 0.7 —14.82 dB
Wree = 0.25; Womprs = 3.0 | —13.1% 0.5 —13.95 dB
Wree = 0.25 5 Wemprs = 3.5 | —16.9% 0.7 —11.93 dB
Wree = 0.50; Wemprs = 2.5 —13.8% 0.7 —15.06 dB
Wree = 0.50 ; Wermprs = 3.0 ~14.70 dB
Wree = 0.50 5 Wemprs = 3.5 | —8.9% 0.1 —13.90 dB
Wyee = 0.75; Wemprs = 2.5 —15.3% 0.7 —15.45 dB
Wyee = 0.75; Wemprs = 3.0 —14.5% 0.5 —15.10 dB
Wyee = 0.75; Wemprs = 3.5 —15.0% 0.5 !

These results show that our proposed method is able to reduce the bitrate by almost
21% and 153% on average compared to Anchor-input and Anchor-latent, respectively. The
corresponding mAP value gain for the same anchors is also 0.9 and 4.2. Comparing the
Anchor-latent with (wyec, Wemprs) = (0.0,0.0), we notice that the autoencoder itself drops
the reconstruction quality by only 5.80 — 5.55 = 0.25 dB and reduce the bitrate by 153.3 —
80.7 = 72.6% (relative to the bitrate of “Proposed”). Thus, part of the bitrate reduction
is due to the autoencoder’s dimensionality reduction. However, Lcy,prs plays the main role
in bitrate reduction since (Wree, Wemprs) = (0.5,3.0) (Proposed) has 76.5% lower bitrate
compared to (Wree, Wemprs) = (0.5,0.0). Also, increasing wre. from 0.0 to 0.5 (when wepprs =
0) causes a PSNR drop of 5.55 — 1.44 = 4.11 dB, which proves the efficacy of L;.. and the
adversarial training scheme. Despite that, higher values of w,... are not significantly effective.
For instance, (Wyec, Wemprs) = (2.0, 3.0) has 4 times larger wy. relative to Proposed, which
reduces the PSNR by 1.41 dB. This phenomenon can be also seen in Fig. 2.5b.

The major problem of high values of (wyec and wemprs) is the object detection perfor-
mance at the high bitrates, as shown in Fig. 2.7a. For instance, (Wyec, Wemprs) = (2.0, 3.0)
has the highest values of (wye. and wemprs) and consequently, the worst performance on the
high-end. Nonetheless, this mAP drop at the high bitrates is negligible, especially for our
Proposed model with the selected weights.

2.5 Conclusion

In this chapter, we presented a novel feature coding scheme for machines with improved
resistance to model inversion attacks. The features of the YOLOv5bm latent space were
transformed into a lower-dimensional space using an autoencoder, which was trained in
an adversarial manner to reduce the ability for input reconstruction while maintaining

object-detection accuracy. Visual and quantitative results showed that our method is able

21

Table 2.3: Bjgntegaard-Delta values with respect to “Proposed” based on mAP@.5:.95

| | BD-Rate | BD-mAP | BD-PSNR |

Anchor-input 21.0% —0.9 14.70 dB
Anchor-latent 153.3% —4.2 5.80 dB
Wree = 0.5 5 Wemprs = 0.0 76.5% —-3.3 1.44 dB
Wree = 0.0'5 Wemprs = 0.0 80.7% —3.5 5.55 dB
Wree = 2.0'5 Wemprs = 3.0 7.9% —0.5 —1.41 dB

to degrade the quality of the recovered image using a model inversion attack, especially near
the edges. The PSNR drop between the cases, where the model inversion attack is applied
to the original latent space of YOLOv5m at layer 5 and the bottleneck of the adversarially
trained autoencoder, is 5.8 dB. Meanwhile, coding the features produced by our autoencoder
resulted in more than 20% bit savings, on average, at the same object detection accuracy
compared to coding the input image, and more than 153% compared to coding the original
YOLOv5m features. Therefore, our proposed method provides both privacy and a desirable

compression efficiency at the same time for an object detection model.

22

Chapter 3

Motion in Video Coding for
Machines

In this chapter, we attempt to propose a method for efficient video coding in the latent
space of a machine vision model. First, an introduction to traditional video codecs and
their central core, motion estimation and compensation, is given in Section 3.1, where we
also discuss the challenges that exist in ME and MC in the latent space. Then, a literature
review is presented in Section 3.2. Before proposing our DNN-based ME and MC modules
in Section 3.4, a study of motion in the latent space and its relationship to the input-space

motion is conducted in Section 3.3.

3.1 Introduction

Video signal is currently the largest source of data consumed globally. The amount of data
existing in a video is far more than in other signals like image, audio, etc. Therefore, the
need to efficiently compress video signals has always been vital, and consequently, video
codecs have become more complicated. However, these codecs are designed for human use
and may not be as efficient for machines. As the amount of data being used by machines
is rapidly increasing, the need for an efficient video coding scheme optimized for machines

should accordingly be acknowledged.

3.1.1 Traditional Video Codecs

Different video coding standards have been introduced since the early 1990s, in parallel
with increasing popularity of digital videos having various applications in entertainment,

archiving, surveillance, etc. The two prominent standardization bodies in this area are ITU!

nternational Telecommunications Union

23

ITU-T H.263 (H.263++) (2nd Ed.) (MCYV)
H.120 H.261 H.262| (H.263+) H.264 (SVC) H.265 H.266
' |
1984 1988 1996 1998 2000

2003 2005 2007 2009 2013 2020
1993 1995 1999 | | |

time |
11172-2 14496-101 (SVC) 23008-2
SO 13818-2 14496-2 (2nd Ed.) (MVC) 23090-3
MPEG-1 MPEG-4 AVC HEVC VVC
MPEG-2

Figure 3.1: Timeline of video coding evolution [99]

and ISO/IEC?. An overview of the timeline for the major standards proposed by these two
standardization bodies is shown in Fig. 3.1.

The high volume of video distribution over the Internet made a significant need for
improving compression efficiency. This demand might be one of the reasons for the Joint
Video Team (JVT) of both organizations being formed. Their first collaboration led to the
development of H.264/AVC 3 [98] standard in 2003. This team continued its activity under
a new name, Joint Collaborative Team on Video Coding (JCT-VC), to develop future stan-
dards. They introduced H.265/HEVC [87] in 2013, and their most recent efforts resulted in
finalizing the first edition of H.266/VVC [16] in August 2020. The second edition was re-
leased in April 2022. The mentioned standards have been successful and are widely used due
to their high compression efficiency. Each of these standards outperforms its predecessors
by saving roughly 50% bitrate at the same quality.

The main goal of all these video coding standards is to reduce the bitrate of a video as
much as possible by removing the redundancies. There are two types of redundancy in a
given video. One is between the pixels within a frame, referred to as spatial redundancy,
and the other is between the pixels of different frames, called temporal redundancy. Video
compression algorithms try to predict the pixel values inside a video by exploiting these
redundancies and correlations. Intra-prediction and inter-prediction refer to the predictions
used to remove spatial and temporal redundancies, respectively. After prediction, the en-
coder obtains the residuals, i.e., the difference between the original and predicted values,
applies a DCT-type transform to them, quantizes the coefficients, and runs the entropy
coding on the results. The general block diagram of a video encoder is depicted in Fig 3.2.

The temporal correlations between video frames are considerably higher than the spatial

*International Standardization Organization/International Electrotechnical Commission

3 Advanced Video Coding

24

Input Video Signal Residual Coefficients Favels Output

@'—' Quantization T g’;gglpgy 010110..
= 1 Bitstream
Divided into Blocks %:S:m
HEdiEaon Reconstructed Residual
™ (incl. quantization error)
In-Loop
@+ Intra-Picture Filter
A Prediction
L
\‘_ Motion
- Output
Comp ke
Prediction Video Signal
Motion Data
Motion
Estimation

Figure 3.2: Block diagram of a video encoder [15]

correlations between the pixels of a single frame. As a result, Inter-prediction plays a more
critical role in video compression, which is the focus of this research as well.

The key component of inter-prediction is motion estimation, in which the encoder should
find the best match for a block of the to-be-coded frame in the reference frame. The dis-
placement between the current Prediction Unit (PU) and the selected block in the reference
frame is called Motion Vector (MV). The encoder considers the selected block in the refer-
ence frame as a prediction for the current PU and codes only the residuals. This procedure
is called motion compensation. In the end, the encoder signals the MVs and the quantized
transformed residuals, through which the decoder can reconstruct the input video.

Inter-prediction could be done in two ways regarding the number of reference frames.
Uni-prediction is the case where only one reference frame is used for the ME process of a
PU. In contrast, Bi-prediction uses two reference frames, and the two selected blocks of the
references are combined in a specific way to form the final prediction for the current PU. In
Bi-Prediction, both reference frames are obviously before the current frame in the decoding
order but not necessarily in the displaying order.

The video frames are categorized into three different types based on the predictions
used for their PUs. In I-frames, all the PUs are coded via intra-prediction, while P-frames
comprise both intra-prediction and Uni-prediction blocks. B-frames are like P-frames with
at least one Bi-predicted PU.

3.1.2 ME Challenges in the Latent Space

As mentioned in Section 1.2, video coding in the latent space of a machine vision model has

some challenges due to the difficulty of ME and MC in the feature channels. These challenges

25

can cause compression inefficiency in the case of using traditional ME approaches. Some of

these challenges are listed below:

1. Low resolution of the channels: As we go deeper into convolutional DNN models,
the resolution of the feature channels typically decreases. The pooling layers in these
models are employed to reduce the spatial dimension and increase the number of
channels. Therefore, the resolution of the channels in the cutting layer of DNN models,
where the channels should be coded, is usually a fraction of the original resolution.
In traditional codecs such as H.264/AVC and H.265/HEVC, ME is performed with
a quarter-pel precision, i.e., the MVs could be fractional numbers with 1/4 pixel
precision. However, the ME precision has increased to 1/16-pel in H.266/VVC. Since
these codecs are designed to apply to the input-space videos with high resolutions,

using the same precision in the latent space does not seem to work as efficiently.

2. Noise-like channels: The resolution reduction in the deep layers of DNN models
contributes to the coarseness of feature channels. However, the size is not the only
contributing factor. In addition, the deeper layers in DNN models tend to carry more
abstract and task-relevant features of the input, while the shallower layers contain a
more general and smoother representation of the input images. In other words, some
deeper feature channels look like noisy images. Hence, the dependence between the
neighboring pixels in the deep layers is smaller in comparison with the input space.
In fact, the fluctuation across the pixels in the feature channels is far more than
that in a natural input image. These fluctuations disrupt the utility of interpolation
filters aimed at providing proper pixel values in the fractional positions. As a result,

high-precision ME may not be suitable in the feature channels of DNN’s deep layers.

3. Location-dependant representation in the latent space: In convolutional DNN
models, the value of a component in a feature channel is affected by the neighboring
pixels when a convolution layer with a kernel size bigger than 1 x 1 is employed. The
set of pixels of the input image contributing to the value of a channel’s component is
called the receptive field. The receptive field typically gets larger for the deeper layers
since the number of prior convolution layers increases. Accordingly, a single object
in the input image does not have a unique representation in different locations of a
specific feature channel. This phenomenon could disrupt the ME in the latent space

since the pixel values of a single object change as it moves.

4. Difference in motions of different channels: As it is well-known, the DNN models
are essentially nonlinear functions of the input. Some of these nonlinear layers, like
max-pooling, could cause the same motion of the input to emerge slightly differently
in various channels. Therefore, considering the same motion for all the channels is not

reasonable. Even using similar interpolation filters might not be effective.

26

All the points mentioned above suggest that traditional video codecs may not be a good

fit in the latent space. In Section 3.3, however, we try to prove this claim experimentally.

3.2 Related Work

Research on video coding in the latent space is fairly scarce in the literature. Most of the
studies focus on optimizing the coding performance for humans, and the machine-targeted
schemes are not taken into account thoroughly. However, the ME and MC algorithms that
are being used in the human-targeted codecs could probably apply to machine-targeted
codecs as well. Therefore, we review some of these methods in this section.

Before the current wave of interest in DNN-based image/video codecs, most of the studies
had focused on optimizing the ME and MC tasks of the conventional video codecs, especially
in terms of complexity. According to [80], most of the execution time of the HM [46], an
H.265/HEVC encoder, is spent on motion estimation. The encoder takes almost 96% of the
overall execution time for motion estimation in the Full Search algorithm. This percentage
is roughly 70% and still high when using a more practical search algorithm like TZ Search.

To perform a good inter-prediction, efficient partitioning is needed in the first place.
Different parts of a frame having independent motions should lie in separate partitions.
The best way of partitioning a Coding Tree Unit (CTU) is, indeed, the exhaustive search,
where all the possible partitions are executed by running the full Rate-Distortion Opti-
mization (RDO) process. However, such a method is not feasible due to the huge number
of partitioning modes and the time-consuming process of running the whole encoding-
decoding loop to obtain the RDO cost for each case. Therefore, many algorithms have
been proposed to narrow the search space down and speed up the motion estimation pro-
cess [105, 94, 71, 50, 90, 101, 2, 72, 75].

The main idea of such algorithms is to conjecture the optimal partitioning based on
the previously coded blocks (or frames) and some other information related to the frames’
contents. For instance, the authors of [81] and [53] have presented a method for boosting the
partition size decision process and skipping some unnecessary depths of Coding Units (CUs)
that are less likely to be selected. They skip specific CU depths based on the depth of the
neighboring or co-located CUs. In [53], the depths that are rarely used in the previous frame
are skipped in the current frame for all the CUs as well.

In addition to the complexity of the ME, an important concern in video coding for
machines is the utility and efficiency of ME itself. In order to encode the latent-space feature
channels, one simple solution is to convert them to an image with pixels in the typical range
of [0,255] and use traditional image/video codecs [18]. But, this approach might not be the
best since the conventional codecs have been optimized for the human visual system.

On the other hand, the advantage of using trainable DNN models in image/video coding

is their flexibility in getting tuned for different purposes via an appropriate loss function and

27

training procedure. Deep neural networks entered the area of image/video coding through
the article of Ballé et al. [8], published in 2016, and evolved in 2018 with [64, 9]. Currently,
there are a lot of end-to-end image codecs performing better than Ballé’s models in the
literature, such as [17], but still not completely better than VVC-Intra in all the well-known
quality metrics. The main idea that enabled the DNN models to be used as an entropy model
was estimating the bitrate in a differentiable manner by assuming a Gaussian distribution
for the elements of the latent space. Since then, end-to-end trainable video codecs have
started to emerge as well [62, 12].

The research works of [60] and [100] were the first end-to-end video encoders in which a
frame interpolation takes place using a DNN model based on the previous (or future) frames
and some motion information. In the end, the residuals will be coded through an entropy
model similar to that employed in [8]. The authors of [60] also use a DNN-based optical
flow estimation [73] as a ME engine. They improved their method [61] by implementing new
ideas, such as an adaptive quantization layer for different bitrates to reduce the number of
parameters for the entropy coder. Various models with different complexity and performance
have been introduced in their new paper as well.

The end-to-end video codecs usually use a simple linear warping for the motion com-
pensation, and the motion data comes from another part of the DNN model that processes
the reference and current frames. The same procedure is followed in more recent works
[76, 57, 27, 1] as well. Reference [76] introduces a modified structure for the whole DNN
model, which benefits from a trainable state of tensors. This tensor state plays the role
of a system memory with a mechanism to automatically populate the useful information
and update it across time steps. In fact, the current frame uses the information of all the
previous frames to exploit the existing redundancy better. Multi-scale ME and MC are the
innovation of [57]. In this method, the motion estimation network generates the flow map
in multiple scales. The warping is also done in those scales, and the final prediction is a
combination of them. We also follow the same idea in our proposed models since the motion
would be captured more accurately with different precision.

The authors of [27] engage two reference frames based on which two flow maps are
produced by the optical flow network of [88]. In a sense, their proposed model conducts
Bi-prediction. They also utilize an interpolation network that takes the optical flow maps,
warped reference frames, and the current frames as inputs and creates a latent tensor to be
coded in the entropy model. The decoder extracts two blending coefficient maps in addition
to the flow maps from the coded data, and the final predicted frame is constructed with the
weighted combination of the warped reference frames. The recent end-to-end video codec
introduced by Google [1] has a relatively simpler design compared to other learning-based
video encoders. This method focuses on addressing the challenges that exist in video coding,
such as disocclusions and fast motions. In order to produce smaller residuals in such cases,

various Gaussian-blurred versions of a frame with different intensities are generated, and

28

the model uses them in case of uncertainty. Thus, the entropy model encodes an additional
dimension other than the 2-D motion flow, which specifies the proper filtered version of the
reference frame to be used for making the prediction.

On the other hand, there is another technique to shift the pixels based on motion
information other than pure warping. Deformable Convolutional Networks [26] are able to
warp their input tensors based on an offset map that is a trainable tensor itself. In fact,
warping is a particular type of deformable convolution in which the kernel value is 1 at
the center and 0 elsewhere. Thus, the flexibility of deformable convolution layers is higher
since the warped sampling points are combined with trainable weights. References [42] is an
end-to-end video encoder based on deformable convolution layers. We have also used this
technique in our proposed methods. The concept of deformable convolutional networks is
described in more detail in Sections 3.4.2.

Apart from the end-to-end video codecs in the literature, some studies aim to replace
a specific module of the traditional video codecs with DNN models to get a better gain.
For example, [54] has designed a DNN model that receives the neighboring pixels of a
block as inputs and predicts the pixels of that block. Since the DNN models’ flexibility is
substantially higher than hand-crafted methods, the authors of [54] provided the network
with more rows of nearby pixels compared to the regular intra-prediction performed in
traditional codecs. In [103], the fractional motion compensation module of the HM encoder
is replaced with a DNN model. In other words, a trainable network handles the interpolation
task to generate the pixel values for fractional positions. Reference [3] also attempts to
improve the quantization process of the HEVC to make the final output more pleasant to
human vision.

There is also another research field whose primary goal is frame interpolation to in-
crease the frame rate of a video for a better and smoother quality [11, 82, 69, 70]. These
learning-based methods could also be employed in video compression as they can create
an intermediate virtual frame between two actual frames. Therefore, the same techniques
could be used in frame prediction based on the information of nearby frames. The authors
of [107, 108] have proposed the same idea and inserted the virtual interpolated frames into
the reference picture buffer of HEVC to be used as references for coding future frames. In-
spired by [70], the authors of [19, 20] predict the to-be-coded frame based on two previously
decoded frames and define a new syntax element in the HEVC bit-stream, indicating three
types of prediction for the current block: regular inter-prediction, regular intra-prediction,

and the prediction generated by frame interpolation.

3.3 Study of ME using H.265/HEVC

The primary purpose of this section is to study the motion in the latent space and its

relationship with input-space motion. If a suitably strong relationship exists between input-

29

space and latent-space motion, this can be exploited in various ways, for example, by using
input motion to predict the latent space motion. This may further be used to optimize
latent-space compression efficiency by improving motion estimation, motion compensation,
and motion coding. This motion relation between the input space and latent space has been
demonstrated in [92]. Yet we want to study the selected motions by an H.265/HEVC video

encoder, which are obtained through minimizing a Lagrangian cost function:
L=D+XR (3.1)
where R is the rate, D is the distortion, and A is the Lagrangian multiplier.

3.3.1 Experimental Setup

In this section, we use HM-16.20 [47] as an H.265/HEVC video encoder. YOLOv3 [74]
object detection is our computer vision model whose Darknet implementation in C++ [93]
is employed. YOLOvV3 is split into two parts at layer 12. The latent space of YOLOv3 at
layer 12 consists of 256 channels with the resolution of 64 x 64, assuming an input resolution
of 512 x 512. In order to encode the latent space by HM, the channels are quantized to 8
bits and tiled into a 16 x 16 matrix to create a gray-scale image. An example of the tiled
tensor representation of an input image is shown in Fig. 3.3. Then, the tiled tensor video is
encoded via HM with the “low-delay P” configuration.

Since our experiments are conducted using HEVC, first, we need to increase the precision
of HEVC motion vectors to be able to capture subtle motion in the latent space due to
the low resolution of the feature channels. In Section 3.3.2, we describe the procedure of
increasing the motion vector precision in HEVC and provide some experimental results.
Afterward, we would be able to study the motion relation between input space and the

latent space quantitatively in Section 3.3.3.

3.3.2 High-precision motion estimation in HEVC

As we go deeper into the DNN models, the resolution of the feature channels gets reduced.
As a result, we need to increase the precision of the motion vectors if we want to capture
more subtle motion, and relate the input-space motion to the latent-space motion. The
standard accuracy of the motion vectors in HEVC is 1/4-pel precision, while it is 1/16-pel
in VVC. One solution is to encode the tiled tensor videos in the latent space using VVC.
However, the complexity of VVC is considerably higher than HEVC, which does not help
the study of motion analysis. So, we decided to implement the interpolation filters of VVC
into HEVC reference software and adjust the motion estimation and motion compensation
parts of the HM to search for the best motion vectors with higher precision (e.g., 1/8-pel or

1/16-pel). Note that the entropy coding procedure of the motion vectors remains the same.

30

(b)

Figure 3.3: (a) Original frame (b) Tiled tensor representation at layer 12 of YOLOv3

The bitstream of the HEVC-coded videos for P-frames (or B-frames) mainly consists of
the motion vector and residual data. By increasing the motion vectors’ precision, the amount
of data needed for representing the motion vectors would increase. Also, the amount of the
data related to the residuals would possibly decrease if the higher precision search occurs
around the best 1/4-pel precision motion vectors. However, the encoder’s decisions in RDO
would also change because of the higher cost of representing the motion vectors. In other
words, the video encoder may end up selecting smaller motion vectors, due to their lower
rate cost, when the precision is higher. Therefore, there is no guarantee that the residual
data will decrease.

To better examine the effect of increasing motion vector precision, we have considered
two cases for the RDO. In one case, RDO is performed based on the motion vectors’ real
cost, i.e., higher-precision motion vectors have a higher representation cost. We refer to this
case as “normal.” In the other case, the motion vector cost is based on 1/4-pel precision
motion vectors, even though the actual precision is higher. We refer to the second case as
“Q-pel-based” (Quarter-pel-based). It is evident that the amount of residual data in the
Q-pel-based case would decrease (or remain the same) compared to the normal case since
a finer search may find lower residuals without incurring extra cost (because the extra cost

of motion vector representation is ignored in this case). At the same time, the amount of

31

motion data would increase (or remain the same, in the best case) since the actual cost of
motion vectors has not been considered in the RDO process.

Fig. 3.4 shows the bit-rate vs. PSNR curves for two tiled tensor video samples with the
“normal” RDO and three different precisions. As seen in the figure, there is no noticeable
difference between the curves corresponding to different motion vector precision. The same
is true in the Q-pel-based RDO, shown in Fig. 3.5.

BasketballDrill_tiled_tensor (1024 x 1024) Kimano_tiled_tensor (1024 x 1024)

w— Precision 1/4 == Precision 1/8 —8— Precision 1/16 — Precision 1/4 ++# - Precision 1/8 #— Precision 1/16

ot | S

a - e a —

40 / 40 /n""
= — = o
z o z -
£ L -

£ / £ -

o
3 ,/ 34 -
/
EH EH q/
30 30
2000 7000 12000 17000 22000 27000 32000 17000 42000 2000 12000 22000 32000 42000 52000 62000
Total bit-rate {kb/s) Total bit-rate (kb/'s]
(a) (b)

Figure 3.4: Bit-rate vs. PSNR curves with normal RDO for tiled tensor sequences from (a)
BasketballDrill, and (b) Kimono

BasketballDrill_tiled_tensor {1024 x1024) Kimano_tiled_tensor (1024 x 1024)

s Precision 1/4 -+ -# - Precision 1/8 #— Precision 1/16 — Precision 1/4 ++# - Precision 1/8 #— Precision 1/16

o
a - a2 —
- e

40 40
5 -~ = -
= -~ g .
ke = o £ -
g " L -

6 _/ 6

-~ -~
34 - 34 2
~
£t} i /
30 30
2000 7000 12000 17000 22000 27000 32000 37000 42000 2000 12000 000 32000 42000 52000 62000
Total bit-rate {kb/s] Total bit-rate (ib/s)
(a) (b)

Figure 3.5: Bit-rate vs. PSNR curves with Q-pel-based RDO for tiled tensor sequences from
(a) BasketballDrill, and (b) Kimono

To better understand the differences between various cases, we have measured the BD-
bitrate related to the entire bitstream and the residual part of the bitstream with respect to
the regular HEVC precision, which is 1/4. The results are shown in Table 3.1 for four test
sequences: the original BasketballDrill and Kimono videos (input videos), and their tiled
tensor videos. In this table, different RDO cases have also been considered. For completeness,
Fig. 3.6 shows the bit-rate vs. PSNR curves with the Q-pel-based RDO for input sequences.

As shown in Table 3.1, for the tiled tensor test sequences with normal RDO, increasing

the motion vector precision causes a loss in both residual and total bit-rate in most cases.

32

Table 3.1: Total BD-bitrate and residual BD-bitrate for different videos, RDO type, and
precision; The anchor is HEVC with 1/4-pel motion precision.

Video RDO mode Precision Total BD-bitrate Residual BD-bitrate
1/8 042 % 0.77 %
normal) _
116 1.18% 255%
BasketballDrill_tiled_tensor
- - 1/8 0.87 % -1.60 %%
Q-pel-bazed)
116 243 % -212%
1/8 -0.08 % 0.48 %
normal)
.) 1/16 0.30% 158%
Kimono_tiled_tensor
1/8 0.17 % -131%
Q-pel-based)
1/16 1.12% -1.43 %
o /8 323 % -6.17 %
BasketballDrill_original Q-pel-based - - -
116 =276 % -8.73 %
)) 18 042% 149 %
Kimono_original Q-pel-based - -
1/16 146% -2.14 %
BasketballDrill (832 x 480) Kimono (1920 x 1080)
—a—Presicion 1/4 e Precision 1/8 —s—Precision 1/16 ——Prosicion 1/8 =#= Precision 1/ —s— Precision 1/16
a a
. e
a5 —
a I
—
a1 @ /,ﬂ'"
" & -~
By 4 /
- &0 /
36
EL]
35 ‘-/
34 38
[] 1000 2000 2000 4000 5000 6000 1,000 &,000 11,000 16,000 11,000 26,000
Residual bit-rate [kb/fs) HResidual bit-rate (kb/s)
(a) (b)

Figure 3.6: Bit-rate vs. PSNR curves with Q-pel-based RDO for original (input) sequences
(a) BasketballDrill, and (b) Kimono

However, ignoring the cost of high-precision motion vectors in the Q-pel-based mode RDO
leads to a gain in the residual part and a loss in the motion vector part (since the total
BD-bitrate is positive). An interesting point about these results is that the coding gain in
the residual part due to increasing the motion vector precision is higher for the input videos
than the latent-space tensor sequences. That might be because of the interpolation filters’

inefficiency in the low-resolution feature channels, as explained in Section 3.1.2.

3.3.3 Motion Relationship between Input and Latent Space

Analysis of optical flow through various processing blocks in a Convolutional Neural Network
(CNN) [92] shows that an approximate relationship between an input-space motion vector

v and the latent-space motion vector v/ at the same location is

v = v/nk, (3.2)

33

where k is the number of pooling layers between the input and the location of the latent-
space feature tensor in the CNN, and n is the downsampling factor (stride) used in the
pooling layers. While this explains why motion in the latent space looks roughly similar to
the input motion, the question is whether this approximate relationship is accurate enough
for improving latent-space compression efficiency. In other words, “is v/ the selected motion
vector in the RDO process when encoding the latent-space video?”

In order to study the motion relationship, we have performed an experiment on the

BasketballDrill test sequence. The steps of this experiment are as follows:

1. A frame of the input video is considered.

2. The whole frame is shifted in the horizontal (or vertical) direction by a specific vector
like S = (54, 5y).

3. The corresponding tiled tensor images of the original and the shifted frames are ex-
tracted.

4. Inter-prediction using HM is performed on the tiled tensor image obtained from the
shifted frame with a reference frame equal to the tiled tensor image obtained from the

main input frame.

5. The estimated latent-space motion vectors MV = (mwv,,mv,) are compared with
input motion S to examine whether (3.2) holds. Suppose the resolution of the input
video is m x n and the resolution of the feature channels is m' x n’. If (3.2) holds,

latent space motion vectors should be equal to (s, - %’, Sy - %/)

The resolution of the BasketballDrill sequence is 832 x 480, and frames are rescaled to
512 x 512 prior to feeding them to the YOLOv3 model. With the input size of 512 x 512,
the resolution of the feature channels at layer 12 of YOLOv3 is 64 x 64. So, the ratio of
the resolutions is 13 horizontally and 7.5 vertically. This means that, according to (3.2), a
horizontal shift of 13 pixels in the input video should translate to a 1-pixel horizontal shift
in the feature channels, and a vertical shift of 7.5 pixels in the input video should translate
to a 1-pixel vertical shift in the feature channels. Since the precision of the latent-space
motion vectors is 1/16, we will consider the two closest 1/16-pel precision motion vectors
as the expected motion in the tiled tensor.

The following tables show the results of our experiments. In these tables, rows correspond
to the different values of the shift in the input space in the horizontal (or vertical) direction,
i.e., the values of s, (or s,). Columns correspond to different values of muv, (or mwv,) with
1/16-pel precision, such that column i corresponds to an MV in the latent space equal to
(i/16,0) for horizontal input shifts, and (0,7/16) for vertical input shifts. The last column
corresponds to motion vectors with values other than those specified in the first 17 columns.

The values in the tables are the percentages of the pixels in the tiled tensor images having

34

an MV specified by its column. For example, in Table 3.2, the value of 1.2 in the blue cell
means that 1.2% of the pixels in the tiled tensor image have the motion vector equal to
MV = (6/16,0) when the input frame is shifted by 7 pixels in the horizontal direction. The
green cells are the expected motion vectors. If (3.2) were completely accurate, the values
in green cells would add up to 100% in each row. Meanwhile, the red cells are the peaks
(i.e., relatively large number of MV's) away from the expected MV's. We call these tables
“Motion Relationship Tables.” In each motion relationship table, we compute the average
of the sum of the green cells in each row and refer to it as “AGC” (Average of Green Cells).
Tables 3.2 and 3.3 are the motion relationship tables for all the feature channels in the case
of horizontal and vertical input shifts, respectively.

Note that the green cell in the last row in Table 3.2 has a value of 94.9. This means
that when the input horizontal shift is 13 and corresponds to the latent-space horizontal
shift of 16/16 = 1, equation (3.2) holds for 94.4% of the M Vs in the latent space. In this
case, (3.2) is a good model. However, in other rows of the table, the values in the green
cells add up to a much smaller percentage, indicating that (3.2) is less accurate in these
cases. In summary, (3.2) is a reasonably good model when the expected latent-space motion
corresponds to an integer-pixel shift, but not a good model for fractional-pixel motion. This
is probably because of the HEVC and VVC interpolation filters’ inefficiency in the latent
space.

In order to further examine the relationship between input-space and latent-space mo-
tion, we also looked at different subsets of feature channels in terms of their texture content
to see the effects of texture on the latent-space motion. Specifically, we obtained the mo-
tion relationship tables for a subset of 20 channels with maximum horizontal and vertical
gradient, minimum horizontal and vertical gradient, and maximum and minimum standard
deviation. The results are given in Tables 3.4-3.9 for the horizontal shift. The motion rela-
tionship tables for the vertical shifts look similar to those for the horizontal shifts, and are
therefore not included. As seen in the tables, the value of AGC is higher in channels with a
stronger gradient and larger standard deviation, indicating better agreement with (3.2) in
such channels. Meanwhile, low-textured channels with lower gradient and lower standard
deviation show poorer agreement with (3.2), as illustrated by the higher number of red cells
and lower AGC values.

The summary of AGC values from these experiments is given in Table 3.10. According to
the results, it can be inferred that input motion tends to be better preserved (in accordance
with (3.2)) in textured channels, i.e., channels with a strong gradient or high standard
deviation. Therefore, texture analysis may indicate which channels or regions in a channel
could benefit from estimated input motion. This conclusion confirms claim number 4 in
Section 3.1.2. However, the values of AGC are relatively low to deduce that there is a
linear relationship (according to (3.2)) between the input-space motion and the latent-

space motion, especially given the fact that the largest contributing factor for AGC is the

35

Table 3.2: Motion relationship table for all the channels, horizontal shift, AGC = 22.3%

O| 1|2 |34 |5|6 |7 (8|9 |10|11|12(13|14|15(16(~

55.1/144|131|0.2|01)|00|00|00|00]|00]|00)|00]|00]00]0.0]0.0]0.0]|27.0

450 4.8 |105(29 (0.7 |0.1|0.1(00|00|00|00|00)|01]|00]0.0](0.0]0.0/|357

393/ 17|38|69|32|04)03|01/|01|00]00)01]|01)]0.0]0.0]|0.0]0.0}44.2

215/05|16|26|68|43|21|05|02|01)|01)|00|01)|00]|0.0]0.0]0.0/|59.7

90(01(03(0.7(20|5.7(115(23(10|02,01/01(00(00(0.1(0.0(0.0(66.8

56|00(02(02(04|10|69|75|74|11|0.7|03|03|0.0|0.1]|0.0[0.0|682

40|00(02(01]|02)|04 08|61 (85|66|10|05(02(02]01]0.1(69.9

2410201010101 03|04|09 (3.6 (12.1{11.7| 1.6 | 0.7 | 0.3 |0.2|0.1 |654

24|00(00(01(01|00|01|00|03|02|28(59|99|23)|13]|04]05]/|73.7

18|00(|00(0.1(|00|00|00|00|00|01|06]|09]|6.4]|16.0|57]|1.5]1.1|658

15(00|00(00(01|00|00(00|01]|00(01|01]1.0]4.1]|158(10.0| 6.1 |61.0

18|00(|00(00(|00|00|00|00|00|00|00]|00]02]|04]3.9]|21.7(29.1|42.7

—_| = =] =
Slelalsle|x|v|a|al s w|w|~

19(00|00(00(00|00|00(00|00|00|00|00)|00]|00][0.0](0.2]949]3.0

Table 3.3: Motion relationship table for all the channels, vertical shift, AGC = 26.5%

112|3(4|5|6(7 8|9 |10|11|12|13|14(15]|16| ~

98 |242140(09|01]01|00(01(00]00]01|00|0.0[0.0]0.0]0.0(60.6

08|41 |119(238|49(20|05|01(0102)]01|00]0.0(00]0.0]0.0(51.3

06|10 |17 |22 |73 |178|65|20(0607)01|03)|0.1(0.2]|0.1]0.0(58.9

01|02|02|04)|08(20|3.0|98(79(103]|21(13|1.0(0.7]|0.7]0.1 (594

00(00|01(02|01]03)|02|06(0.8]11.0{14.3|86 3.2 (3.7]| 12|11 [54.7

00|00|00|00)|00(00|00]|0.0(00]|05]0.7|4.2|14.2(12.6/13.8| 5.7 (48.1

U =20 S [IS RN N AS T

00|00|00|00)|00(00|00]|00(00]|01]01]|0.1]0.2]|29 |40.3|37.6(18.7

36

Table 3.4: Motion relationship table for 20 channels with maximum horizontal gradient,
shift direction = horizontal, AGC = 26.1%

34.7(19.2| 41 (04 |01 (00|00 |00 Q0 |0QO0)|00 (00 |00|0.0)|0.0(00)|00 (418

20.1| 54 |12.5| 48 (09 (0.0 | 00 |00 |00 |00 (00|00 00|00 |00 00|00 |562

i50| 0.7 |44 |0.9|51 (0.2 (02 |00 |00 |00 |00 (00 (0.0 |0.0|0.0)| 00| 0.0 (635

70 03 | 06|26 (58 |56|11 |08 |00)01|00)|00)|00|0.0|0.0]00|0.0 |76.0

23 0001|0103 |83 (122|110 (1.2 (0.1 |00 |00 |00)|0.0|0.0)| 00|00 |745

i2 (00|00 |01 |01 |06 |34 |47 (70(05)01 |04 |0.1|00|0.0|00) 00 |TET

05|00 (01|00 (00|01|01|00 (509833 |09 |00)0.0|00]01]|0a1 |BO02

0.1 |00 00|00 |00 |00|00 |03 |06 (19 (14.7|14.7| 0.6 |0.0 (0.0 (0.0 (| 0.0 |G73

01|00 (00|00 |00|00)|00 |00 |01 (0.2 (11|78 |11.1|0.3 |03 |00 (04 |7ES

01|00 00|00 |00)|00|00|00|00)|00|00)|01)|04)7.2 2088|8330 |60.1

01|00 00|00 |00|00)|00 |00 |00 |00|00)|00 |0.0)0.8B 48 (31.0(12.8|50.5

aa:a‘@mwmmbwm—

00|00 00|00 (00 |00|00)|00 |00 |00|00)|00)|00]|0.0|0.0)]00|99.7 0.2

Table 3.5: Motion relationship table for 20 channels with minimum horizontal gradient, shift
direction = horizontal, AGC = 12.0%

621|77 |16 |03 (03 (00| 00|00 |00 |0O0|00|00 |(00D)|0.0)|00|00| 00 250

549 (63 |61 (09 |21 (09|12 (00 0000|0100 |00|0.0)00]|00)]01 [27.9

533(26 |49 (03 |20 0.2 | 03|00 |08 01|00 |02 |00|0.0)|00](00]|0.0 351

455|04 | 28 | 3.2 (56 (1.5 |38 |05 |09 |00 |04 |04 (0.4)|0.0|0.1 |00 |00 348

351(00|09 (45|72 00|36 |66 1.>(03|05 (00)|00|0.0)00]|00)]|00 [39.8

425(00|07 (0.7 |07 (25|14 |14 |14 (21|08 (01 |0.1|0.0)|0.8|01)00 (446

326(56 |00 (20|02 (02|05 |14 0.0 (12|07 (17 |03 |57 |10 02|00 (47.6

37200 |00(|(06 |03 (00|00 |00 |08 |00)|18 |12 30|03 |06 (05|05 (532

255|00 | 01|09 (01 (00|00 |04 |02 |07 |11 |09 16|16 |52 |16 21 (579

11100 |00 (00|23 |0.1 |00 |00 |06 |06 |00 (00 11|20 |133(12.6| 43 (520

42|00 00 (0.0 |01 (0.0 |00 (00 |00 | 00|00 (00 |0.0[1.2 |48 (13.5|20.4 (458

a;:ammwmmhwm—

135| 01 |00 |00 (OO (OO (OO |00 |00 |00|00 (00 (0.0|0.0|0.1] 16 |73.9(10.8

37

Table 3.6: Motion relationship table for 20 channels with maximum vertical gradient, shift
direction = horizontal, AGC = 35.6%

342 (269|776 (04 |01 (00|00 |00 Q00 |0Q0)|00 (00 |00|0.0)|00](00)]|00 [30.8

213|533 |219|7%3 (11 (00|00 |00 |00 |00 |00 |01 (0.0)|0.0)|0.0 |00 00 430

16.1| 0.3 | 53 |16.6(103 (05 (0.2 |01 |00 |00 |00 (00 |0.0(0.0]|0.0)|00) 0.0 (506

70|02 |09 |50 (10899 |18 |06 |0.1 01|00 |00 |00)0.0|0.0]00|0.0 |B35

28 (00 |02)|0.1 |08 |131|27.1|15 |09 00|00 |00 |00|0.0|0.0]|00]| 00 |635

ii1 (00|00 |01 |02 |07 |52 (128(105(0.0)| 02|05 |0.1|00 (0.1 (00| 0.0 |6EE

06|00 00|00 (00|01|01)|08 138|158 44 |07 |03 |0.0 0.0 01|01 |633

03|00 (00|00 |00 |00|00 (03 |14 (52 |222|17.1|0.6|0.2 (0.1 |00 | 00 |525

03|00 (00|00)|00|00)|00 (00 |00 (03|25 |154|12.7|06 (0.2 |03 | 04 |67.2

0.2 |00 00|00 |00)|00|00)|00 |00 | 00|08 |14 |87 |333|29 |08 |09 |50.9

03|00 00|00 |00)|00|00)|00|00)|0.0[01]|01]|0.7|117(27.5|10.0| 3.1 |465

0.2 00| 0O0O|0O0)|00|0O)|00 (00 (00O (00|00)|00 |0.0|08 |B.E |355|13.0417

Dl |ale|o|~|o|v|s|w | =

01|00 00|00 (00)|00|00)|00 |00 |00]|00)|00)|00]|0.0|0.0)]00|99.4 0.5

Table 3.7: Motion relationship table for 20 channels with minimum vertical gradient, shift
direction = horizontal, AGC = 11.4%

532 (64|58 (07|21 |02 | 04|00 |00 (00|00 (00 |00|0.0)00](00)]|00 (311

438(30 |49 (15|21 (01|04 |00 |00 |00)|00 (02 |0.1|0.0)00]|00)|0.0 [380

452\ 00 | 20 |36 (54 (1.8 (18 |07 |10 |00 |03 |04 (0.0 |0.0|0.0| 00|00 379

330(00|09 (47 |76 00|29 (58 1.8 (03|00 (00 |00|0.0)00]|00)]00 [43.0

388(00 |04(05 (0.1 (17|13 |04 |18 |18 |05 (04 |0.1|0.0)05|00) 00 (507

3946|0003 |11 00 (03 (00|11 |07 |00|70|11 (09|09 |03 |03 0.0 464

31.7(57 00|24 |00 (|04 05|14 00 (11)|16 (04 04|16 |05 00|00 (534

351(00|00(10|0.1 (00|00 |03 |07 00|17 |20 |29 |03 |06 04|04 [543

233| 00 | 01|08 |00 (00D|00)|02 |01|00|09 |07 |07)|1.8|55|15(18 (623

115(00 |00 (00|23 (0.0 |00 |00 |06 |06 |00 (|00 |19 |20 118 (12.0| 5.7 (515

14200 | 0.1 (0.0 |00 (0.0 |00 |00 |00 |0.0)|00 (00 |0.1[1.2 |40 (88 |19.7 (521

olnl2|ale|lo|~]|o|o|a|w| |~

i30|0.1 |00 |00 (OO (OO (OO |00 |00 |00|00 (00 (0.0|0.0)|0.0) 16 |F2.0(13.2

38

Table 3.8: Motion relationship table for 20 channels with maximum standard deviation,
shift direction = horizontal, AGC = 30.3%

36.7(23.0| 4.7 (0.6 |01 (00|00 |00 Q0 |0QO0)|00 (00 |00|0.0)|0.0(00)|00 [348

220| 54 |15.5| 0 (1.1 (0.0 (OO |00 |00 |00 |00 |01 (0.0)|0.0|0.0 |00 |00 490

16.7| 1.5 | 4.7 |12.8|7.1 (0.2 (0.2 |01 |00 |00 |00 (00 (0.0 (0.0 |0.0)| 00| 0.0 (566

83|02 (10|34 |85 |87 (10|06 (00|01 (00|00 00|00 |0.0)|00]| 00 |BBO

32 00 |01)0.1 (05 |125|155|07 (23 0.0 0.0 |00 |0.0)|0.0 0.0 00| 0.0 |651

i6 (00 (00|01 |0.1|09 |40 |85 (B4 (09|01 |04 |0.2|00 (00|00 00 |74E

1.0|00 |00 |00 |00 |01 (|00 |00 |84 |2132(27 (10 (00|00 (01|01 |02 |73.2

03|00 (00|00)|00|01|00 (03 |07 (3.5|175|18.2| 0.6 |0.0 (0.1 |00 | 0.0 |58.6

04|00 00|00)|00|01|00 (00|02 (03|24 |10E|13.E|0.1 (0.4 |03 |04 |70.8

03|00 00|00 (00)|00|00)|00 |00 |00]|09 |13 |79 |292|3.5| 11|09 |551

0.2 |00 00|00 |00)|00| 00|00 |00)|01|00)|01)|06 107 (242 64 | 3.1 |547

08|00 | 00|00)|00|0O0)|00 (00 (00O (00|00)|02 |0.1|08 (7.6 |31.1(13.6|458

aa:a‘@mwmmbwm—

.7 |00 |00 |00 |00 |0OO0(f0O0D |00 (OO)|0O0(0OD|00 |0.0)00 (0100 (9022

Table 3.9: Motion relationship table for 20 channels with minimum standard deviation, shift
direction = horizontal, AGC = 12.2%

613| 75|16 |00 (0.7 (OO | 00|00 |0O0O |00 |00 |00 |(00)|0.0)|0.0|00| 00 290

534 (68 |62 (05|24 (09 |12 (00 |00 (00|01 |00 |00 (0.0 |00](00]|01 [285

523(26|22(12 |12 06|04 |01 |09 01|00 |02 |00|0.0)|00](00]|0.0 381

43203 |20|09 (55 (38|27 |07 |09 |00(03 |03 |0.1)|0.0 |00 (00|00 393

321(00|09 (40 |&9% 00|14 (53 14 (03|01 (00 |00|0.0)00]|00)]00 [47.9

34200 |03 (05|11 (22|13 (14 |06 (1.8 |06 (0.1 |0.0|0.0|05 (01|00 [553

346|00 |03 |12 (05 (00|31 |08 |00|21 |61 |10 (0.B |0.B |D0.0 |03 |01 484

257(52 |03 (10 |00 (02|05 |10 03 (07|07 (23 |07 (54|10 (00|00 [551

310(00|00 (06 |0.2 00|00 |00 |08 |00)|77 |11 |3.8 |03 |03 05|05 (535

186 00 |01 |09 (00 (0.0 (00 |04 (0.1 |0.7 |21 (09 (09|14 |57 | 17| 11 (653

93 00 00|00 (00|00 00|00 |06 |06|00)|00|1B8 |27 (11.2|13.0(5.6 |353

31|00 |00 (00|00 (00|01 (00 |00 |00)|00 (00 |0.2[1.2 |26 (18.7|16.2 48.0

a;:ammwmmhwm—

119|011 |00 |00 |00 (OO (00D |00 |00 |00|00 (00D (00|00 |0.0)| 16 |76.8(9.6

39

high value of the green cell in the last row, which corresponds to a full-pixel shift in the

latent space. Some possible reasons for deviation from (3.2) are as follows:

o Interpolation filters might not be very effective in the low-resolution latent-space fea-

ture channels, so fractional motion estimates might not be very reliable.

o Latent-space motion was estimated using HEVC motion estimation tools by minimiz-
ing the RDO cost of (3.1), and it is well-known that these motions do not necessarily

equal the accurate optical flow motions.

e Max-pooling operations may cause shifts in edge locations compared to conventional

downsampling.

o Analysis in [92] shows that input motion remains one possible solution to optical flow
after the convolution operation, as well as pointwise nonlinear activations. However,
these operations may also introduce other solutions to the optical flow, meaning that

motion may simply change when the input signal passes through such operations.

Table 3.10: AGC values for different subsets of feature channels in the latent space

Average of Green Cells (%)
Subset of Channels

Horizontal Shift Vertical Shift
Entire Channels 223 26.5
Max Horizontal Gradient 26.1 55.3
Min Horizontal Gradient 12.0 10.3
Max Vertical Gradient 35.6 42.4
Min Vertical Gradient 11.4 13.1
Max Std Channels 30.3 46.3
Min Std Channels 12.2 10.2

3.4 DNN-based temporal prediction in the latent space

In Section 3.3.3, we examined whether equation (3.2) is accurate enough to be used effec-
tively for predicting latent-space motion from input-space motion. It was experimentally
shown that, while (3.2) holds approximately for integer-pixel shifts in the latent space, and
in channels with high texture, it is not accurate enough for high-quality prediction of latent-
space motion from input motion. Also, in Section 3.3.2, we figured out that high-precision
interpolation filters are not very effective in the latent space.

According to our observations and the challenges stated in Section 3.1.2, a non-linear
approach could be more beneficial for ME in the latent space. Therefore, a DNN model can
be used to do the ME and MC task in the latent space of another machine vision DNN

40

model. As it is well-known, the DNN models are capable of handling a variety of tasks,
including optical flow estimation [88, 43, 91]. Hence, they are able to generate appropriate
motions exclusively for each feature channel in the latent space, even for the low-resolution

ones, if a proper architecture and training procedure are employed.

3.4.1 Experimental Setup

In this section, the base object detection model is YOLOv5 [48], like Chapter 2. However,
here, we chose the best and most complex model, YOLOv5x6. This model has been trained
on images of the COCO dataset [55] resized to the width (or height) of 1280 with preserved
aspect ratio. The cutting point is at layer 5 in this section, too (see Fig. 2.1.)

The effective stride (downsampling factor) up to layer 5 is 23. In other words, the size
of the input image to the model is reduced by a factor of 23 in both width and height up to
this split layer. Also, this latent space of YOLOvV5 consists of 320 channels. For encoding
the tensors, we have also used H.266/VVC [16], specifically, its VVenC [97] implementation
with the lowdelay-faster preset.

Since VVC encodes the residuals, it would be better to make the size of the channels
in the tiled tensor frames compatible with the size of the CTUs in VVC. The size of the
channels in the latent space will be 128 x 128 if we resize the input frames to 1024 x 1024.
The YOLOv5x6 model’s mAP@.5:.95 on the COCO validation set with inputs resized to
1024 %1024 is 52.9%. This mAP calculation is done with the built-in function in the YOLOv5
source code. Similar to the steps taken in the previous section for encoding the latent space,
the feature channels are quantized to 8 bits and tiled into a proper matrix to create a

gray-scale image.

3.4.2 Proposed Methods

The core of our proposed methods is a ME and MC engine based on DNNs. This engine
is designed in a way to predict the bottleneck tensors generated from the YOLOv5 model
at layer 5. The inputs to our DNN inter-predictor models are the two previous frames of
the latent tensors (fn_l and 7T, n), and the output is a prediction for the current frame of
the tensors (Tn+1). The predicted tensors are subtracted from the original tensors, and the
obtained residuals will be clipped, scaled to the range of [0,255], and coded using VVC-
Intra without making a further temporal prediction (see Fig. 3.7.) The coded bitstream on
the cloud is decoded, scaled back to the original range, added to the predictions, fed to
the decoder part of the autoencoder, and passed to the YOLOv5 back-end to obtain the
inference results.

Since the final residuals will be coded by VVC, the resolution of the tiled tensors in the
latent space is an important factor in compression efficiency. So, dimensionality reduction

in the latent space could be advantageous. To this end, we insert an autoencoder at the split

point in order to reduce the number of channels. Note that the spatial dimensions remain

41

Tn-{-l
Framen+1 —> YOLOVS front-end D

?ﬂ.-— 1 =
Reference » DNN g e
s »| predictor 5
{Tenfors) T g Residuall
Object Detection n
Predictions Clip &
= Scale
Tn+ 1
F i, Tat1 8,
L ;

Figure 3.7: The block diagram of the proposed video coding pipeline in deployment

unchanged to preserve the spatial precision of subsequent object detection. The encoder

and decoder parts of the autoencoder are specified by green trapezoids in Fig. 3.7.

Autoencoder

As shown in Fig. 3.8, the autoencoder is placed at the split point, and it can be trained
on an image dataset with object detection annotations like COCO [55] independent of the
DNN predictor and with the native object detection loss. This is an important point because
the amount of object-annotated image data is much larger than that of object-annotated
video data. Afterward, the DNN predictor could be built upon this shrunk latent space and
trained with typical loss functions like MAE or MSE between the predicted and original
tensors (see Fig. 3.9).

Training the predictor on the object-annotated video data using object-detection loss
would likely lead to better results, but the amount of such annotated video data is very
limited. In fact, to the best of our knowledge, SFU-HW-Objects-v1 [22] is one of the rare
video datasets with object detection annotations that is publicly available and will be kept

for test purposes, and not training.

145 Detection
image —{ YOLOVS front-end |—— 17 CI—-_—»

Autoencoder

L. = detection loss

Figure 3.8: The overall block diagram of YOLOv5 with the autoencoder in the training
stage

42

= =
[’P — MAE(T?H.‘[rTn.+1)

o
Frame n—1 —] YOLOV5 frontend | —[1 "7 pyy

predictor L
Framen — YOLOV5 front-end jf/'

Framen+1 — YOLOVS5 front-end > j MAE

=)

Tn+1

Figure 3.9: The overall block diagram of the DNN predictor in the training stage

The autoencoder’s architecture is relatively simple. Both the encoder and decoder parts
consist of two 3 x 3 convolution layers followed by SiLU activations (see Fig. 3.10). The
number of channels is 320, 192, and 64 in the encoder’s layers. These numbers are in the
reverse order in the decoder. So, the 64 channels in the encoder’s last layer constitute the
pipeline’s bottleneck, which will be encoded. Reducing the number of channels in the latent
space has pros and cons. The main advantage is that it reduces the data volume in the
bottleneck, which should lead to better compression efficiency. However, this redundancy
reduction could make the back-end of the model more vulnerable to quantization errors in
the bottleneck.

. Conv3x3 + SiLU Conv3x3 + SiLU
input > 320 192 > 64 > output

Figure 3.10: The encoder portion of the autoencoder

For tuning the pipeline depicted in Fig. 3.8, we trained the model in two stages. In both
stages, the weights of the YOLO model were initialized to the original pre-trained weights
of the YOLOv5x6 model. In the first stage, the entire YOLOv5 model was frozen, and
only the autoencoder was trained for 140 epochs. In the second stage, the autoencoder and
the YOLOvV5 front-end were frozen, and only the YOLOvV5 back-end was tuned to adapt
to the new latent space generated by the autoencoder. We trained the pipeline in both
stages on the COCO dataset using Stochastic Gradient Descent (SGD) optimizer with the
main YOLOvVS object detection loss. We also utilized a cosine learning rate decay scheduler
(the default scheduler in YOLOV5) for training. The initial learning rates were 10~2 and
2 x 1073 for the first and second stages, respectively. The best mAP that the whole model
reached in the first stage was 52.65%. In the second stage, the model converged quickly,
and the best mAP was 52.81% (only 0.1% below the benchmark mAP achieved without the

autoencoder).

43

Deformable Convolution

The basis of the proposed inter-prediction models is Deformable Convolution Blocks [26,
109]. Although deformable convolutions are primarily designed to improve computer vision
tasks, they are also getting popular in image/video compression. Deformable convolutions
generally encourage the receptive field of the whole network to adapt to the shape of the
objects by tuning their offset fields. The offset fields in deformable convolutional networks
could play the role of motion vectors in the inter-prediction models. As shown in Fig. 3.11,
for each pixel in the output, there is an exclusive offset map with a size equal to the size
of the kernels. These offset values determine the sampling point of the input where the
convolution kernel should be applied. The main advantage of the offset maps is that they

are trainable parameters themselves and can adapt to the input.

input feature map output feature map

Figure 3.11: Hllustration of a 3 x 3 deformable convolution [26]

As explained in [26], regular convolution layers are applied to the input by sampling
using a rectangular grid R and summation of sampled values weighted by w. The grid R

defines the receptive field size and dilation. For example,

R ={(-1,-1),(~1,0),...,(0,1),(1,1)}

is a simple 3 x 3 kernel with dilation 1.

For each location pg on the output feature map y, we have

y(Po) = D w(pn)-x(Po+ Pn), (3.3)
PrER

where p,, enumerates the locations in R.
In deformable convolution, the regular grid R is augmented with offsets {Ap,|n =
1,...,N}, where N = |R|. Then, 3.3 becomes

44

Y(p(]) = Z W(pn) : X(pO + Pn + Apn)- (3'4)
PrnER

Now, the sampling is on the irregular and offset locations p,, + Ap,. As the offset Ap,,
is typically fractional, a bilinear interpolation is performed on the 4 closest nearby pixels
to obtain the desired value for the fractional positions.

Inspired by [42], we also employed deformable convolutions in our DNN predictor net-

work to improve the motion estimation efficiency.

DNN Inter-Prediction Models

Three different models are examined as the DNN predictors, which will be described in
this section. All of these models have an architecture resembling U-Net [77]. The ME and
MC are performed in multiple resolutions of the feature channels. We chose the Vimeo-90k
triplet dataset [102] to train the DNN predictor model as depicted in Fig. 3.9.

e Model-1:

The architecture of this model is given in Fig. 3.12. “|” operator means concatenation
on the right side of the network. The left part of the network contains some deformable
convolution layers, while the right side consists of regular convolution blocks. Thus,
the first three layers are supposed to do the ME and MC, and the last two layers

upsample the tensors to the original resolution.

See Fig. 3.13 for the detailed illustration of the Model-1 blocks. In deformable convo-
lution layers, there is a parameter called Groups (G). G specifies the number of groups
into which the input channels to the layer should be divided. Each group shares a sim-
ilar offset field. The larger values of G make the channels in the latent space be treated
more exclusively. Therefore, a high value of G would result in generating different and
probably more efficient offset fields for different channels, as well as increasing the
model parameters and complexity. In Model-1, the value of G equals the number of
channels in the bottleneck of the autoencoder, which is 64. So, each channel has its

own individual offset map.

We trained Model-1 for 60 epochs using the SGD optimizer with MAE loss between
the predicted and the ground-truth feature channels in the bottleneck. The learning
rate scheduler was the same as that for training the autoencoder, a cosine learning
rate decay, with 1072 initial learning rate. The best values of MAE and MSE on the
test set of the Vimeo-90k for this model were 0.1574 and 0.05739, respectively.

e Model-2:

One of the critical problems with Model-1 is the lack of a reliable motion estimation

module. According to the architecture of Model-1 shown in Fig. 3.12, the model is

45

Ref1, Ref2

Predicted frame

’—> Deformable_blk > Conv_blk —l

Deformable_blk Conv_blk

A4

Deformable_blk

Figure 3.12: The architecture of Model-1

input

3 2 3 3

(7 (7] o @

. e i + +
input 3 3 output Deform_Conv3x3 2 2 output

) @

z z z H

3 S S

o o 3 o

(a) ()

Figure 3.13: The architecture of the blocks existing in Model-1 (a) Conv_blk (b) De-
formable blk

intended to perform multi-scale motion compensation. However, layers 2 and 3 cannot
obtain motion data directly from the two reference inputs because the input to layers
2 and 3 are the output features of their previous layers. From the literature on end-
to-end trainable video codecs, we notice a common trend in the motion estimation
and compensation part of the networks, which is having a separate network for motion
estimation fed by the reference inputs directly, and an independent network for motion

compensation fed by the motion information obtained from the motion estimator.

So the architecture of Model-2 is designed in a way to have decoupled parts for motion
estimation and compensation. The new model’s architecture is shown in Fig. 3.14. The
new model still has a U-Net-like architecture and benefits the deformable convolutions
but more reasonably. The motion estimation part processes the reference tensors and
generates the motion fields for the deformable convolution layers in two different
depths of the motion compensation networks. We also added some Residual Blocks to
the network to help the gradients flow better. The Refinement module at the end of
the network is supposed to combine the motion-compensated versions of the reference
frames obtained from the two branches and improve the quality of the final predicted
tensors. The parameters on the arrows determine the number of feature channels at
that layer (c is the number of channels of each reference tensor, which is 64). Another

difference with the previous model is the number of groups (G) in the deformable

46

7 Motion Compensation 1 S

3 : | = : 3 3
5) & R 5|1} F @
1 .5 L ? | 2c.§. e L pw gl - 5 .“é.i.. J%‘_ = }.4: g o E

“axzxd s 2xGu2x8 _ _ _.//
Cony Comv %
i - 7 3 =
i HIE S 5 5 % Motion c = Bl e« | T
o8l % Y & 'g 2" @[3 % a7 . Estimation Refinament. . s &1 |af ey
5 § ! 8
Conv Canv
1 2c
GYIXE, 3 FXGRIRY, =
/ £l E)] 3 \
£ 5 i E 3 2| g
['3 R ST 2 \
Mg N % R ieﬁ
H 8 | [§ 3 3
\ /
\~. Motion Compensation 2 '_/f

Figure 3.14: The architecture of Model-2

convolution layers. The number of groups has been decreased to reduce the complexity
of the model, and it is proportional to the number of channels in the corresponding
layer (G for the first depth and 2G for the second depth). In this model, G is 8.

We trained Model-2 with the identical setup described for Model-1 for 40 epochs. The
best MAE and MSE on the Vimeo-90k test set for this model were 0.1247 and 0.03764,
respectively, which is significantly lower than those for Model-1. This could be a sign

of better motion compensation in the final predicted feature channels.

Model-3:

The structure of Model-3 resembles Model-2. The key difference is the places where
deformable convolution blocks have been used. In Model-2, these layers existed on
the left side of the network (depths 1 and 2), implying a fine-to-coarse motion com-
pensation. However, a more reasonable way is to perform motion compensation in a
coarse-to-fine manner, as in the conventional and even DNN-based video coding meth-
ods like [57]. Hence, we shifted the location of the deformable convolution layers to the
right side of the network. According to some state-of-the-art DNN-based optical flow
methods in the literature, like [91], it would also be better to have a pre-processing
network on the input references to make them ready for better motion estimation.
This is another component added to the new model. As a result, the number of layers
is slightly higher than in Model-2. The number of groups in the deformable convo-
lution layers is 4G, 3G, and 2G from the lowest resolution to the highest resolution,
respectively (¢ =64, G = 8).

47

Motion Compensation 1

Pre-processing = | | Refinement
2 3 3

e . ol i i L o . 1,
i e 8 IR & ST AT MR T (a8 =
i § i ! §

[

Motion Compensation 2

Figure 3.15: The architecture of Model-3

We followed the same procedure as Model-2 and trained the model for 20 epochs. The
best MAE and MSE on the Vimeo-90k test set for Model-3 are 0.1564 and 0.04186,
respectively, which is slightly worse than Model-2 but still better than Model-1.

3.4.3 Experimental Results

At first, we subjectively compare the performance of the three models in detecting motion
by visualizing the offset fields of deformable convolution layers. As depicted in Fig. 3.11,
9 different motion vectors exist for each pixel in the output features. Here, we only show
the motion vectors corresponding to the center point among those 9. So, there would be
G different channels of motion vectors (G is the number of groups) for each deformable
convolution layer, with a resolution equal to the output channel resolution. The visualized
results are based on a test sequence shown in Fig. 3.16 using a Hue - Magnitude color map.
In this test sequence, the car is moving on the track.

As seen in Fig. 3.17, there are 64 different groups for each layer of Model-1 with de-
formable convolutions. In layer 1, the object’s boundary is visible, and it captures the motion

to some extent. On the contrary, in layers 2 and 3, the offset fields are flat and have very

Figure 3.16: A test image

48

small values. Therefore, it can be concluded that layers 2 and 3 are not doing much for mo-
tion compensation. This phenomenon could be due to the fact that the motion estimator
part of the deformable convolutions in layers 2 and 3 is not fed by the inputs directly.

On the other hand, both layers of deformable convolutions are able to capture the
motion in Model-2 (Fig. 3.18). This is the advantage of having a separate module for motion
estimation. This figure shows only the offset map of Ref2 (the bottom branch of Fig. 3.14).
Note that the first and second layers have 8 (G) and 16 (2G) groups, respectively, for the
deformable convolutions.

In Model-3, all three convolution layers also do motion compensation, and the offset
fields look reasonable, as shown in Fig. 3.19. According to these offset maps, it can be
inferred that the last layer is more responsible for capturing the moving object’s motion.
The number of deformable convolution groups for Model-3 is 32, 24, and 16 for layers 1, 2,
and 3, respectively. These figures are also for Ref2’s motion fields only.

To compare the quality of the predicted tensors generated by the three models, a single
channel of the latent space is shown in Fig. 3.20. As can be seen, the channel predicted
by Model-1 is the most blurred channel among the three models, and the Model-3 predic-
tion seems to produce the sharpest channel. Also, looking at the channels in sequence, we
can infer that the channel generated by Model-3 is the most accurate in terms of motion
compensation. To better demonstrate the performance of motion compensation, we run the
decoder of the autoencoder and the YOLOv5 back-end on the predicted bottlenecks to see
the locations of bounding boxes.

As seen in Fig. 3.21, the closest car bounding box to the ground-truth among the models
is for Model-3, indicating an accurate location for the car in the predicted tensors. Also,
the confidence score of the car in Model-3 output is exactly the same (0.82) as the ground
truth, while it is lower (0.76 and 0.80) for the other models. The sharpness of the predicted

feature channels in Model-3 could be a possible reason for that.

(a) Layer-1 (b) Layer-2 (c) Layer-3

Figure 3.17: Offset field visualization for Model-1

49

g f

(a) Layer-1 (b) Layer-2

Figure 3.18: Offset field visualization for Model-2

Figure 3.19: Offset field visualization for Model-3

50

(a) Model-1 (b) Model-2 (¢) Model-3

(d) ground truth

Figure 3.20: Visualization of a channel in the latent space and its predicted versions gener-
ated by the DNN models

pepersorcar 0.80

peperson, Q.8176

pepersocar 0.82

(a) Model-1 (¢) Model-3

(d) ground truth

Figure 3.21: Object detection annotations on the predicted and ground truth tensors

o1

Input Video YOLOVS front-end =

Input Vid Object Detection
£ i Predictions Object Detection
Predictions

(a) Anchor - original (b) Anchor - w/ autoencoder

YOLOVS front-end YOLOVS5 front-end

Input Video Input Video

Object Detection
Predictions

Object Detection
Predictions

(c) VVC - latent space (d) VVC - bottleneck

Figure 3.22: The benchmark pipelines

PeopleOnStreet

—=&— Anchor - original

—&— Anchor - w/ autoencoder

—&— Model-1

—— Model-2

—o— Model-3

mAP @.5 (%)

—@— VVC - bottleneck

—@8— VVC - latent space

- = — griginal

resized
o 5000 10000 15000 20000 25000 30000

Rate (kb/s) — = —w/ autoencoder

Figure 3.23: rate-accuracy curve for PeopleOnStreet

In the end, we should examine the performance of the models in a closed-loop man-
ner and compare them with some benchmarks. These benchmarks include four pipelines
depicted in Fig. 3.22. In all of these pipelines, the input video has been resized to the res-
olution of 1024 x 1024. Accordingly, the resolution of the channels in the latent space (or
the bottleneck) would be 128 x 128. The proposed models are also examined in the pipeline
shown in Fig. 3.7, and each residual frame is encoded by VVC as an I-frame.

The rate-accuracy curves for several test sequences are given in Fig. 3.23 to Fig. 3.27.
In these figures, three horizontal dashed lines correspond to the cases without compression.
“Original” is the mAP of the original YOLOv5x6 model on the native resolution of the input
videos, “resized” is the mAP of the original YOLOv5x6 model on the resized resolution of the
input videos to 1024 x 1024, and “w/ autoencoder” is the mAP of the retrained YOLOv5x6
(back-end) with the autoencoder inserted into the model on the input videos resized to
1024 x 1024.

52

Trrafic
—&— Anchor - original

88
86 @— Anchor - w/ oder
84 —8— Model-1
_ & —e— Model-2
3
w 80 —&— Model-3
@’ odel-.
& 78
E —&— VVC - bottleneck
76
—&— VVC - latent space
74
72 = = = original
70 - = =resized
1] 1000 2000 3000 4000 5000 6000
Rate (kb/s) — — —w/ autoencoder
Figure 3.24: rate-accuracy curve for Traffic
BasketballDrive G
63
—8— Anchor - w/ autoencoder
58
53 —&— Model-1
48 —a— Model-2
£
n 43 —8— Model-3
g
& s
£ —8— VVC - bottleneck
33
—@— VVC - latent space
28
23 — = — original
18 — — resized
0 2000 4000 6000 8000 10000 12000
Rate (kb/s) — — = w/ autoencoder

Figure 3.25: rate-accuracy curve for BasketballDrive

53

mAP @.5 (%)

mAP @.5 (%)

65

g

w
o

w
(=]

s
n

F
o

30

25

20

80

o
w

@
(=]

55

50

a5

0

BQTerrace

5000 10000 15000

Rate (kb/s)

25000

—&— Anchor - original

—a&— Anchor - w/ autoencoder

—&— Model-1

—a— Model-2

—&— Model-3

—&— \VWC - bottleneck

—@— VC - latent space

= = = original

— = resized

= = = w/ autoencoder

Figure 3.26: rate-accuracy curve for BQTerrace

ParkScene

1000 2000 3000 4000

Rate (kb/s)

7000

—&— Anchor - original

—8— Anchor - wf autoencoder

—&— Model-1

—&— Model-2

—&— Model-3

—&— VVC - bottleneck

—@— \/VC - latent space

- — —original

~ — = resized

= = =w/ autoencoder

Figure 3.27: rate-accuracy curve for ParkScene

Table 3.11: The average BD-rate and BD-mAP over five test sequences for the available
methods with respect to “Anchor - original”

Method based on mAP@.5 (%) based on mAP@.5:.95 (%)
BD-Rate BD-mAP BD-Rate BD-mAP
Anchor - original 0.0% 0.0 0.0% 0.0
Anchor - w/ autoencoder 21.7% -1.0 20.0% -0.5
Model-1 690.6% -8.2 576.2% -4.1
Model-2 495.0% 5.7 310.7% -3.7
Model-3 431.8% -4.2 306.6% -2.0
VVC - bottleneck 64.6% -0.1 20.0% 0.3
VVC - latent space 1607.8% -12.6 875.7% -6.6

The average BD-rate and BD-mAP between the presented curves for the proposed meth-
ods and the benchmarks are provided in Table 3.11. According to the figures and this table,
using the autoencoder in the latent space and decreasing the number of channels in the
bottleneck significantly reduces the bitrate needed for coding the feature channels. Note
that “VVC-latent space,” which codes the entire latent space (without the autoencoder)
by VVC low-delay, has by far the worst performance. As mentioned before, excessively
shrinking the latent space could increase the vulnerability of the object detection model to
the compression artifacts in the decoded channels. As expected, Model-3 is the best among
the proposed DNN models. However, its performance is still worse than the benchmark
pipelines. “VVC-bottleneck” is the best model for compressing the feature channels but
still worse than “Anchor-original.” The main advantage of the “VVC-bottleneck” over the
DNN-based models is the use of motion information (motion vectors) associated with the
current frame. The performance of the DNN-based inter-prediction methods can be im-
proved by incorporating the to-bo-coded motion information, which would then also need

to be coded in addition to prediction residuals.

3.5 Conclusion

This chapter introduced several DNN-based models for inter-prediction in the latent space of
the YOLOV5 object detection model. The last model (Model-3) was quite accurate in motion
compensation. However, the rate-accuracy results showed that VVC is still a better codec,
even in latent-space video coding. Part of it is due to the way that motion is handled. Our
DNN-based predictors avoid coding motion but need to predict it, which may lead to lower
prediction accuracy and higher residual to be coded. The other reason is that the prediction
residuals are still coded using VVC-Intra, which is likely sub-optimal for coding latent-
space information. Therefore, a better pipeline could be an end-to-end video codec with
an object detection loss function that employs trainable motion estimation/compensation

corresponding to the current frame as well.

95

Chapter 4

Conclusions and Future Work

In this thesis, we studied feature coding for machines in a Collaborative Intelligence frame-
work. Our focus was on visual data and the existing challenges in coding for Deep Neural
Network-based computer vision models. Some of these challenges addressed in the thesis
include privacy and temporal prediction in the latent space.

In particular, an image coding scheme for an object detection model was presented
in Chapter 2 that protects the transmitted data from model inversion attacks. In other
words, the encoded bitstream was generated in a way to serve an object detection model
on the cloud and prevent any adversary from recovering the input precisely. This was done
through an adversarial training technique to modify the bottleneck feature channels such
that private information would be removed. The results of our proposed method showed
that the overall system is able to outperform anchors, like input compression, in terms of
compression efficiency, as well as disrupt the adversary’s job, which is running a model
inversion attack.

In our experiments, the quality degradation of the recovered input image from the
bottleneck data was considered a metric for privacy. However, privacy could be defined in a
more effective way, as it is essentially related to concepts like anonymity. Therefore, devising
a new metric for measuring privacy and applying it to privacy-preserving coding methods
could be a possible direction for future research. For example, the privacy of a system could
be measured by the accuracy of a face recognition model on the reconstructed images.

In our proposed method, we used a loss term encouraging the auxiliary model (RecNet)
to reconstruct the input image with an emphasis on the edges, which consequently imposes
more distortion on the edges of the recovered input. That was done because we believed
private information is closely interwoven with the edges. Nevertheless, all the edges are not
equally important. Thus, more effective loss functions targeting privacy directly could be
studied in future works.

Temporal prediction in the latent space is another important challenge in visual coding
for machines. Learning-based video coding is a hot research topic these days. Despite the

great advances of end-to-end video codecs, they are still not successful in competition with

o6

the state-of-the-art conventional video coding standard, H.266/VVC. Since inter-prediction
is the most contributing factor in video compression efficiency, trainable motion estimation
and compensation models have the potential to become more optimal.

Studying the motion relationship between the input and latent space of an object detec-
tion model in Chapter 3, we realized that the expected motion is not mostly captured by
traditional video codecs. Then, we proposed several trainable temporal prediction models
based on deformable convolutional layers. The visual results demonstrated that at least one
of these models is satisfying in motion compensation in spite of the quantitative results.
Our model’s compression efficiency was not good enough to outperform the corresponding
anchors utilizing VVC as a video encoder.

One potential problem could be the inputs to our proposed models. The only inputs
are two previous tensor frames based on which the current tensors should be predicted. In
that case, no information from the current frame is used for making predictions. However,
both conventional and most emerging differentiable video codecs employ such information
as motion vectors that also must be coded. Accordingly, considering additional inputs to
the model could be helpful and might improve the overall performance of the models in the
future.

In both projects studied in this thesis, we employed an autoencoder mainly to reduce the
volume of the bottleneck data. We avoided training the autoencoder together with the main
object detection model for lower complexity. However, joint end-to-end training might be
able to improve the overall performance of the proposed methods and their corresponding
computer vision models.

Studying more efficient ways of coding the bottleneck feature channels could be an-
other future direction of this research. In this thesis, we coded the bottleneck features by
tiling their channels into a gray-scale image on which an H.266/VVC encoder was executed.
Putting the feature channels into the tiled tensor image in a systematic order can help
better compression. Also, adopting strategies other than tiling can reduce the compression
non-optimality, especially near the channels’ boundary. One of these strategies is Multi-
view video/image coding [95], which treats each channel as an individual view of the same
sequence. In this method, inter-view prediction alongside the intra and inter-prediction is
utilized to remove the redundancies existing between different views (or channels) as well.

Also, applying the proposed methodologies on an end-to-end trainable pipeline could
be another promising direction for future research, since the end-to-end neural networks
are remarkably flexible and can be optimized for different purposes, such as compression

efficiency or privacy.

57

Bibliography

1]

[11]

Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang,
and George Toderici. Scale-space flow for end-to-end optimized video compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2020.

Sangsoo Ahn, Bumshik Lee, and Munchurl Kim. A novel fast cu encoding scheme
based on spatiotemporal encoding parameters for hevc inter coding. IEFEE Transac-
tions on Circuits and Systems for Video Technology, 25(3):422-435, 2015.

Md Mushfiqul Alam, Tuan D. Nguyen, Martin T. Hagan, and Damon M. Chandler. A
perceptual quantization strategy for HEVC based on a convolutional neural network
trained on natural images. In Andrew G. Tescher, editor, Applications of Digital
Image Processing XXX VIII, volume 9599, pages 395 — 408. International Society for
Optics and Photonics, SPIE, 2015.

Saeed Ranjbar Alvar and Ivan V. Baji¢. Multi-task learning with compressible features
for collaborative intelligence. In Proc. IEEE ICIP, pages 1705-1709, 2019.

Saeed Ranjbar Alvar and Ivan V. Bajié. Scalable privacy in multi-task image com-
pression. In Proc. IEEE VCIP, pages 1-5, 2021.

Bardia Azizian and Ivan V. Baji¢. Privacy-preserving feature coding for machines.
arXiw:2210.00727, 2022.

Ivan V. Baji¢, Weisi Lin, and Yonghong Tian. Collaborative intelligence: Challenges
and opportunities. In Proc. IEEE ICASSP, pages 8493-8497, 2021.

Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image
compression. arXiw:1611.01704, 2016.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston.
Variational image compression with a scale hyperprior. In Proc. ICLR, 2018.

Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and Yong
Zhang. Auto-split: A general framework of collaborative edge-cloud ai. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
KDD 21, page 2543-2553, New York, NY, USA, 2021. Association for Computing
Machinery.

Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang.
Memec-net: Motion estimation and motion compensation driven neural network for

o8

[12]

[13]

[14]

[15]

[16]

video interpolation and enhancement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(3):933-948, 2021.

Raz Birman, Yoram Segal, and Ofer Hadar. Overview of research in the field of video
compression using deep neural networks. Multimedia Tools and Applications, pages
1-24, 2020.

Gisle Bjgntegaard. Calculation of average psnr differences between rd-curves. In
VCEG Meeting (ITU-T SG16 Q.6), 2001. VCEG-M33.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. arXiv:2004.1093/4, 2020.

Benjamin Bross, Jianle Chen, Jens-Rainer Ohm, Gary J. Sullivan, and Ye-Kui
Wang. Developments in international video coding standardization after avc, with
an overview of versatile video coding (vvc). Proceedings of the IEEE, pages 1-31,
2021.

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J. Sullivan,
and Jens-Rainer Ohm. Overview of the versatile video coding (vvc) standard and
its applications. IEEFE Transactions on Clircuits and Systems for Video Technology,
31(10):3736-3764, 2021.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image
compression with discretized gaussian mixture likelihoods and attention modules. In
Proc. IEEE/CVF CVPR, June 2020.

Hyomin Choi and Ivan V. Baji¢. Deep feature compression for collaborative object
detection. In 2018 25th IEEE International Conference on Image Processing (ICIP),
pages 3743-3747, 2018.

Hyomin Choi and Ivan V. Baji¢. Deep frame prediction for video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 30(7):1843-1855, 2020.

Hyomin Choi and Ivan V. Baji¢. Affine transformation-based deep frame prediction.
IEEFE Transactions on Image Processing, 30:3321-3334, 2021.

Hyomin Choi and Ivan V. Baji¢. Scalable image coding for humans and machines.
IEEE Transactions on Image Processing, 31:2739-2754, 2022.

Hyomin Choi, Elahe Hosseini, Saeed Ranjbar Alvar, Robert Cohen, and Ivan
Bajié¢. Sfu-hw-objects-v1: Object labelled dataset on raw video sequences.
10.25314/7d8efc0a-3943-4738-b7a5-72badb04d 765, 2020.

Cisco. Cisco annual Internet report (2018-2023), Mar. 2020.

Robert A. Cohen, Hyomin Choi, and Ivan V. Baji¢. Lightweight compression of
intermediate neural network features for collaborative intelligence. IEEE Open J.
Circuits Syst., 2:350-362, 2021.

T. M. Cover and J. A. Thomas. FElements of Information Theory. Wiley, 2nd edition,
2006.

59

[26]

[27]

[28]

32]

[37]

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. Deformable convolutional networks. In Proceedings of the IEEFE International
Conference on Computer Vision (ICCV), Oct 2017.

Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-Meyer, and Christopher
Schroers. Neural inter-frame compression for video coding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal,
Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications of
Models of Computation, pages 1-19, Berlin, Heidelberg, 2008. Springer Berlin Heidel-
berg.

Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram.
Jointdnn: An efficient training and inference engine for intelligent mobile cloud com-
puting services. IEEE Transactions on Mobile Computing, 20(2):565-576, 2021.

Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. Bottlenet: A
deep learning architecture for intelligent mobile cloud computing services. In Proc.
IEEE/ACM ISLPED, pages 1-6, 2019.

Amir Erfan Eshratifar and Massoud Pedram. Energy and performance efficient com-
putation offloading for deep neural networks in a mobile cloud computing environment.
In Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI '18, page
111-116, New York, NY, USA, 2018. Association for Computing Machinery.

Omobayode Fagbohungbe, Sheikh Rufsan Reza, Xishuang Dong, and Lijun Qian.
Efficient privacy preserving edge intelligent computing framework for image classifi-
cation in iot. IEEE Transactions on Emerging Topics in Computational Intelligence,
6(4):941-956, 2022.

Wen Gao, Shan Liu, Xiaozhong Xu, Manouchehr Rafie, Yuan Zhang, and Igor
Curcio. Recent standard development activities on video coding for machines.
arXiv:2105.12653, 2021.

Xuan Gong, Liangchen Song, Rishi Vedula, Abhishek Sharma, Meng Zheng, Benjamin
Planche, Arun Innanje, Terrence Chen, Junsong Yuan, David Doermann, and Ziyan
Wu. Federated learning with privacy-preserving ensemble attention distillation. IEFEFE
Transactions on Medical Imaging, pages 1-1, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Proc. NeurIPS, 2014.

Onur G. Guleryuz, Philip A. Chou, Hugues Hoppe, Danhang Tang, Ruofei Du, Philip
Davidson, and Sean Fanello. Sandwiched image compression: Wrapping neural net-
works around a standard codec. In 2021 IEEE International Conference on Image
Processing (ICIP), pages 3757-3761, 2021.

Onur G. Guleryuz, Philip A. Chou, Hugues Hoppe, Danhang Tang, Ruofei Du, Philip
Davidson, and Sean Fanello. Sandwiched image compression: Increasing the resolution

60

[38]

and dynamic range of standard codecs. In 2022 Picture Coding Symposium (PCS),
2022.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of
tricks for image classification with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion attacks against collab-
orative inference. In Proc. 35th Annual Computer Security Applications Conference,
page 148-162, 2019.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Attacking and protecting data pri-
vacy in edge—cloud collaborative inference systems. IEEFE Internet of Things Journal,
8(12):9706-9716, 2021.

C Hollmann, S Liu, W Gao, and X Xu. [VCM] on VCM reporting template. ISO/IEC
JTC 1/SC 29/WG2 M56185, Jan. 2021.

Zhihao Hu, Guo Lu, and Dong Xu. Fvc: A new framework towards deep video com-
pression in feature space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1502-1511, June 2021.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

ISO/IEC JTC 1/SC29/WGI1. Final call for proposals for JPEG AI, Jan. 2022.
N100095.

Ismat Jarin and Birhanu Eshete. Pricure: Privacy-preserving collaborative inference
in a multi-party setting. In Proceedings of the 2021 ACM Workshop on Security and
Privacy Analytics, IWSPA 21, page 25-35, New York, NY, USA, 2021. Association
for Computing Machinery.

HEVC reference software. http://hevc.hhi.fraunhofer.de/svn/svn_
HEVCSoftware.

HEVC reference software (HM 16.20). http://hevc.hhi.fraunhofer.de/svn/svn_
HEVCSoftware/tags/HM-16.20+SCM-8.8. Accessed: 2019-12-12.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye
Kwon, TaoXie, Jiacong Fang, imyhxy, Kalen Michael, Lorna, Abhiram V, Diego
Montes, Jebastin Nadar, Laughing, tkianai, yxNONG, Piotr Skalski, Zhigiang Wang,
Adam Hogan, Cristi Fati, Lorenzo Mammana, AlexWangl900, Deep Patel, Ding
Yiwei, Felix You, Jan Hajek, Laurentiu Diaconu, and Mai Thanh Minh. ultralyt-
ics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and In-
ference, February 2022.

61

[49]

[50]

[60]

[61]

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge. SIGARCH Comput. Archit. News, 45(1):615-629, apr 2017.

Jaehwan Kim, Jungyoup Yang, Kwanghyun Won, and Byeungwoo Jeon. Early de-
termination of mode decision for hevc. In 2012 Picture Coding Symposium, pages
449-452 2012.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual
information. Phys. Rev. F, 69, Jun 2004.

Nam Le, Honglei Zhang, Francesco Cricri, Ramin Ghaznavi-Youvalari, and Esa Rahtu.
Image coding for machines: an end-to-end learned approach. In Proc. IEEE ICASSP,
pages 1590-1594, 2021.

Jie Leng, Lei Sun, Takeshi Ikenaga, and Shinichi Sakaida. Content based hierarchical
fast coding unit decision algorithm for hevc. In 2011 International Conference on
Multimedia and Signal Processing, volume 1, pages 56-59, 2011.

Jiahao Li, Bin Li, Jizheng Xu, Ruiqin Xiong, and Wen Gao. Fully connected network-
based intra prediction for image coding. IEEE Transactions on Image Processing,
27(7):3236-3247, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO: Common objects
in context. In Furopean Conf. on Computer Vision (ECCYV), Sept. 2014.

Weisi Lin and C.-C. Jay Kuo. Perceptual visual quality metrics: A survey. J. Visual
Commun. Image Represent., 22(4):297-312, 2011.

Haojie Liu, Ming Lu, Zhan Ma, Fan Wang, Zhihuang Xie, Xun Cao, and Yao Wang.
Neural video coding using multiscale motion compensation and spatiotemporal con-

text model. [FEE Transactions on Circuits and Systems for Video Technology,
31(8):3182-3196, 2021.

Ximeng Liu, Lehui Xie, Yaopeng Wang, Jian Zou, Jinbo Xiong, Zuobin Ying, and
Athanasios V. Vasilakos. Privacy and security issues in deep learning: A survey.
IEEE Access, 9:4566-4593, 2021.

Zhijian Liu, Zhanghao Wu, Chuang Gan, Ligeng Zhu, and Song Han. Datamix:
Efficient privacy-preserving edge-cloud inference. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision — ECCV 2020, pages
578-595, Cham, 2020. Springer International Publishing.

Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao.
Dve: An end-to-end deep video compression framework. In Proceedings of the
IEEE/CVFE Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

Guo Lu, Xiaoyun Zhang, Wanli Ouyang, Li Chen, Zhiyong Gao, and Dong Xu. An
end-to-end learning framework for video compression. IEEE transactions on pattern
analysis and machine intelligence, 43(10):3292—3308, October 2021.

62

[62]

Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and Shanshe
Wang. Image and video compression with neural networks: A review. IEEFE Trans-
actions on Circuits and Systems for Video Technology, 30(6):1683-1698, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 1273-1282. PMLR, 20-22 Apr 2017.

David Minnen, Johannes Ballé¢, and George D Toderici. Joint autoregressive and
hierarchical priors for learned image compression. In NeurlPS, 2018.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Ab-
hishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh. Privacy in deep learning: A
survey. arXiv:2004.12254, 2020.

MPEG-CDVA. Compact descriptors for video analysis, 2019. ISO/IEC JTC 1 15938-
15.

MPEG-CDVS. Compact descriptors for visual search, 2015. ISO/IEC JTC 1 15938-13.

Luis Munoz-Gonzéalez, Bjarne Pfitzner, Matteo Russo, Javier Carnerero-Cano, and
Emil C. Lupu. Poisoning attacks with generative adversarial nets. arXiv:1906.07773,
2019.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive
convolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive sepa-
rable convolution. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

Zhaoqing Pan, Sam Kwong, Ming-Ting Sun, and Jianjun Lei. Early merge mode
decision based on motion estimation and hierarchical depth correlation for heve. IEEE
Transactions on Broadcasting, 60(2):405-412, 2014.

Pallab Kanti Podder, Manoranjan Paul, Manzur Murshed, and Subrata Chakraborty.
Fast intermode selection for hevc video coding using phase correlation. In 201/ In-

ternational Conference on Digital Image Computing: Techniques and Applications
(DICTA), pages 1-8, 2014.

Anurag Ranjan and Michael J. Black. Optical flow estimation using a spatial pyramid
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv:1804.02767, 2018.

Chae Eun Rhee, Kyujoong Lee, Tae Sung Kim, and Hyuk-Jae Lee. A survey of fast
mode decision algorithms for inter-prediction and their applications to high efficiency
video coding. IEEE Transactions on Consumer Electronics, 58(4):1375-1383, 2012.

63

[76]

[77]

78]

[79]

[80]

Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G. Anderson, and
Lubomir Bourdev. Learned video compression. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M.
Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2015, pages 234—241, Cham, 2015. Springer Interna-
tional Publishing.

Jihyeon Ryu, Yifeng Zheng, Yansong Gao, Sharif Abuadbba, Junyaup Kim, Dongho
Won, Surya Nepal, Hyoungshick Kim, and Cong Wang. Can differential privacy
practically protect collaborative deep learning inference for the internet of things?
arXiv:2104.03813, 2021.

Amir Said, Manish K. Singh, and Reza Pourreza. Differentiable bit-rate estimation for
neural-based video codec enhancement. In 2022 Picture Coding Symposium (PCS),
2022.

Felipe Sampaio, Sergio Bampi, Mateus Grellert, Luciano Agostini, and Julio Mat-
tos. Motion vectors merging: Low complexity prediction unit decision heuristic for
the inter-prediction of hevc encoders. In 2012 IEEE International Conference on
Multimedia and Ezpo, pages 657-662, 2012.

Liquan Shen, Zhi Liu, Xinpeng Zhang, Wenqiang Zhao, and Zhaoyang Zhang. An
effective cu size decision method for hevec encoders. IEEE Transactions on Multimedia,
15(2):465-470, 2013.

Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun Chen. Video frame inter-
polation via generalized deformable convolution. IEEE Transactions on Multimedia,
24:426-439, 2022.

Kyung-Ah Shim. A survey of public-key cryptographic primitives in wireless sensor
networks. IEEE Communications Surveys & Tutorials, 18(1):577-601, 2016.

Nir Shlezinger and Ivan V. Bajic. Collaborative inference for ai-empowered iot devices.
arXiv:2207.11664, 2022.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 15, page 1310-1321, New York, NY, USA, 2015. Association for Computing
Machinery.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3-18, 2017.

Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview
of the high efficiency video coding (hevc) standard. IEEE Transactions on Circuits
and Systems for Video Technology, 22(12):1649-1668, 2012.

64

[38]

[89]

[90]

[91]

[97]

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume. arXiv:1709.02371, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Tan Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv:1312.6199, 2013.

Hui Li Tan, Fengjiao Liu, Yih Han Tan, and Chuohao Yeo. On fast coding tree block
and mode decision for high-efficiency video coding (hevc). In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 825-828,
2012.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Computer Vision — ECCV 2020, pages 402-419, Cham, 2020. Springer International
Publishing.

Mateen Ulhaq and Ivan V. Baji¢. Latent space motion analysis for collaborative
intelligence. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8498-8502, 2021.

Unknown. darknet. [Online|: https://github.com/AlexeyAB/darknet.

Jarno Vanne, Marko Viitanen, and Timo D. Hémélainen. Efficient mode decision
schemes for hevc inter prediction. IEEE Transactions on Circuits and Systems for
Video Technology, 24(9):1579-1593, 2014.

Anthony Vetro, Thomas Wiegand, and Gary J. Sullivan. Overview of the stereo and
multiview video coding extensions of the h.264/mpeg-4 avc standard. Proceedings of
the IEEE, 99(4):626—642, 2011.

Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, and Philip S. Yu.
Not just privacy: Improving performance of private deep learning in mobile cloud.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery amp; Data Mining, KDD 18, page 24072416, New York, NY, USA,
2018. Association for Computing Machinery.

Adam Wieckowski, Jens Brandenburg, Tobias Hinz, Christian Bartnik, Valeri George,
Gabriel Hege, Christian Helmrich, Anastasia Henkel, Christian Lehmann, Christian
Stoffers, Ivan Zupancic, Benjamin Bross, and Detlev Marpe. VVenC: an open and
optimized VVC encoder implementation. In Proc. IEEE ICME Workshops, pages 1-2,
2021.

T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standard. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 13(7):560-576, 2003.

Mathias Wien. High efficiency video coding. Coding Tools and specification, 24, 2015.

Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. Video compression through
image interpolation. In Proceedings of the Furopean Conference on Computer Vision

(ECCYV), September 2018.

65

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Jian Xiong, Hongliang Li, Fanman Meng, Qingbo Wu, and King Ngi Ngan. Fast hevc
inter cu decision based on latent sad estimation. IFEFE Transactions on Multimedia,
17(12):2147-2159, 2015.

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. Video
enhancement with task-oriented flow. International Journal of Computer Vision,
127(8):1106-1125, 2019.

Ning Yan, Dong Liu, Houqiang Li, Bin Li, Li Li, and Feng Wu. Convolutional neural
network-based fractional-pixel motion compensation. IEEE Transactions on Circuits
and Systems for Video Technology, 29(3):840-853, 2019.

Zhongzheng Yuan, Samyak Rawlekar, Siddharth Garg, Elza FErkip, and Yao
Wang. Feature compression for rate constrained object detection on the edge.
arXiw:2204.07314, 2022.

Jinlei Zhang, Bin Li, and Hougiang Li. An efficient fast mode decision method for inter
prediction in heve. IEEE Transactions on Circuits and Systems for Video Technology,
26(8):1502-1515, 2016.

Hang Zhao, Orazio Gallo, Turi Frosio, and Jan Kautz. Loss functions for image restora-
tion with neural networks. IEEE Transactions on Computational Imaging, 3(1):47-57,
2017.

Lei Zhao, Shiqi Wang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao.
Enhanced ctu-level inter prediction with deep frame rate up-conversion for high effi-

ciency video coding. In 2018 25th IEEFE International Conference on Image Processing
(ICIP), pages 206-210, 2018.

Lei Zhao, Shiqi Wang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao.
Enhanced motion-compensated video coding with deep virtual reference frame gener-
ation. IEEE Transactions on Image Processing, 28(10):4832-4844, 2019.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More
deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

66

