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Abstract— Neural Radiance Fields (NeRFs) have proven to be
powerful 3D representations, capable of high quality novel view
synthesis of complex scenes. While NeRFs have been applied
to graphics, vision, and robotics, problems with slow rendering
speed and characteristic visual artifacts prevent adoption in
many use cases. In this work, we investigate combining an
autoencoder (AE) with a NeRF, in which latent features (instead
of colours) are rendered and then convolutionally decoded.
The resulting latent-space NeRF can produce novel views with
higher quality than standard colour-space NeRFs, as the AE
can correct certain visual artifacts, while rendering over three
times faster. Our work is orthogonal to other techniques for
improving NeRF efficiency. Further, we can control the tradeoff
between efficiency and image quality by shrinking the AE
architecture, achieving over 13 times faster rendering with
only a small drop in performance. We hope that our approach
can form the basis of an efficient, yet high-fidelity, 3D scene
representation for downstream tasks, especially when retaining
differentiability is useful, as in many robotics scenarios requir-
ing continual learning.

I. INTRODUCTION

Neural rendering techniques [1] continue to grow in im-
portance, particularly Neural Radiance Fields [2] (NeRFs),
which achieve state-of-the-art performance in novel view
synthesis and 3D-from-2D reconstruction. As a result, NeRFs
have been utilized for a variety of applications, not only in
content creation [3], [4], [5], [6], but also for many robotics
tasks, including 6-DoF tracking [7], pose estimation [8],
surface recognition [9] or reconstruction [10], motion plan-
ning [11], [12], [13], reinforcement learning [14], [15], tactile
sensing [16], and data-driven simulation [17], [18]. However,
slow rendering and the qualitative artifacts of NeRFs impede
further use cases in production.

To render a single pixel, one major bottleneck is the
need for multiple forward passes of a multilayer perceptron
(MLP). Replacing or augmenting the MLP with alterna-
tive representations (e.g., voxel grids [19] or feature hash-
tables [20]) has been used to improve both training and
inference speed. Baking NeRFs into other primitive repre-
sentations has also been a popular approach [21], [22], [23]
for faster rendering. To reduce artifacts (e.g., “floaters” [24]),
different sampling methods [25], [26], [27], [28], radiance
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Fig. 1. Illustration of the Reconstructive Latent-Space NeRF (ReLS-
NeRF) rendering pipeline (see §III). As shown in the upper-left inset, given
a trained feature field, f , and a camera, Π, we can render a latent feature
map at a low resolution, as shown in the right inset. The geometry of the
scene, encapsulated by the density field, which determines the 3D structure
of the feature render, is learned via an RGB component (as in a regular
NeRF). A decoder, D, can then map the low-resolution feature maps to a
high-resolution colour image (lower-left inset). We may view this process,
which maps camera parameters to images, as a form of neural rendering.

models [29], and scene contraction functions [30], [28] have
been proposed. Despite these advancements, NeRFs still
suffer from visual flaws and low rendering frame-rates.

Importantly, such issues hamper the use of NeRFs for
downstream tasks, If rendering is too slow, agents will be
unable to apply NeRFs as an internal 3D representation of the
scene. Further, the solutions considered (often aimed at appli-
cations in computer graphics, for instance) may not be com-
patible with the requirements of other tasks. For example,
meshification [22], [31] enables fast rendering, but makes
further online learning of the geometry significantly more
difficult, due to topological constraints [32] and additional
optimization complexity (e.g., to handle self-intersections
and other unnatural geometries) [33], [34]. We also do not
wish to sacrifice too much representational fidelity (e.g., not
including view-dependent effects [35]) for speed, as less
accurate visual output can limit downstream opportunities for
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scene analysis. We therefore require a model that is capable
of fast rendering and intra-task optimization (i.e., learning
during an ongoing task), without sacrificing visual quality.

In this paper, we propose an approach for solving these
challenges that is orthogonal to existing methods. By lever-
aging convolutional autoencoders (AEs), we can define a
“NeRF” operating in latent feature space (rather than colour
space), such that low-resolution latent renders can be de-
coded to high-resolution RGB renders (see Fig. 1). This
offloads expensive MLP-based rendering computations to
the low-cost AE, greatly improving efficiency. Thus, we
extend the standard NeRF architecture to return point-wise
latent vectors, in addition to densities and colours (the latter
used only in training). Since the decoder is simply another
differentiable neural network, the ability to optimize the
underlying 3D NeRF field is largely unchanged. As it is used
for scene reconstruction, we denote the resulting combined
field a Reconstructive Latent-Space NeRF (ReLS-NeRF).
Beyond improving rendering speed, the AE can also act as
an image prior, fixing some of the artifacts associated with
direct NeRF renders, and actually improving representational
fidelity. However, we also observe that the use of the AE in
ReLS-NeRF can introduce unique temporal artifacts, which
existing image and video do not capture; hence, we define a
novel metric that takes advantage of the geometric structure
of the NeRF to detect them.

Overall, by fine-tuning a powerful pretrained AE, our
model is able to render views several times faster, while
empirically improving in multiple image and video quality
metrics. Further, we demonstrate a tradeoff between visual
quality and rendering efficiency: by reducing the AE size, we
obtain a 13-fold speed-up, with only a minor drop in quality.
In summary, we contribute (i) a novel approach to reconstruc-
tive 3D scene representation, via a latent-space NeRF that
both improves rendering efficiency and outperforms existing
work on standard image and video quality metrics; (ii) a new
evaluation metric, designed to detect temporal artifacts due
to view inconsistencies, which existing metrics do not appear
to capture; and (iii) the ability to trade-off image quality and
rendering speed via varying the AE architecture.

II. RELATED WORK

A. Improving NeRF efficiency

While NeRFs produce results of extraordinary quality, the
speed of fitting (training) and rendering (inference) remains
a bottleneck for adoption in a variety of applications (e.g.,
[28], [17], [36]). This has prompted a myriad of approaches
to increasing their efficiency. Feature grid architectures have
proven effective in expediting fitting convergence (e.g., [37],
[38], [39], [26], [40], [41], [19], [20]). Other approaches
include utilizing depth [42], better initializations [43], and
pretraining conditional fields (e.g., [44], [45], [46]). Such
improvements can be readily utilized in our own framework.
Similarly, a number of methods have been proposed to
enhance the efficiency of the volume rendering operation,
which relies on an expensive Monte Carlo integration in-
volving many independent neural network calls per pixel.

These include architectural modifications [47], [48], [49],
[50], [51], spatial acceleration structures [52], “baking” (pre-
computing and storing network outputs) [21], [23], improved
sampling strategies [53], [54], [55], [56], [57], or altering the
integration method itself [58], [59]. Finally, several works
eschew volume rendering itself. A number of representations
[60], [61], [62], [63], [64], [65] use only a single sample per
pixel, but struggle with geometric consistency and scalability.
Similarly, one can move to a mesh-based representation and
use rasterization instead [22], [66], [31]; however, this loses
certain properties, such as amenability to further optimization
or differentiable neural editing. Though our approach im-
proves rendering efficiency, it is orthogonal to these methods,
as it reduces the number of MLP calls per image by changing
the output space of the NeRF itself.

B. Feature-space NeRFs

Other models have utilized neural feature fields (NFFs),
as opposed to “radiance” fields, where rendering is altered to
output learned features instead. Some NFFs [67], [68] learn
to produce the outputs of pretrained 2D feature extractors;
similarly, several works have considered the use of language-
related features [69], [70], [71] and other segmentation
signals [72], [73], [74], [5] to embed semantics into the
NFF. More closely related to our work are generative mod-
elling NFFs that decode rendered features into images via
generative adversarial networks [75], [76], [77] or diffusion
models [78], [79], [80]. In contrast, this paper considers the
scene reconstruction problem, using a latent representation
potentially amenable to downstream tasks, and investigates
issues related to view consistency. In particular, the artifacts
of generative methods are similar to those detected by our
novel quality metric (namely, appearance inconsistencies
across close frames or camera viewpoints; e.g., see [76]).

III. METHODS

As in the standard NeRF scenario, we expect only a set
of multiview posed images, SI = {(Ii,Πi)}i. The goal is to
learn a 3D scene representation in an autoencoder (AE) latent
space, capable of novel view synthesis. Thus, our model
includes two neural modules (§III-A): (i) a modified NeRF,
f , which outputs a latent vector (in addition to its standard
outputs), and (ii) an AE, with encoder and decoder networks,
E and D. To fit the model, we apply a multi-stage process:
training the AE, fitting the NeRF, and then fine-tuning D
(see §III-B).

A. ReLS-NeRF Neural Architecture

We first extend the standard colour-density field of NeRF
to include a latent feature vector, z, via f(x, r) = (σ ∈
R+, c ∈ [0, 1]3, z ∈ Rn), where x and r represent the input
position and direction, and σ and c represent the output
density and colour. We refer to the σ and c fields as an
“RGB-NeRF”, to distinguish them from the latent component
of the ReLS-NeRF. Note that the RGB-NeRF is used only in
training, to learn the density field and produce renders to help
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Fig. 2. An overview of the ReLS-NeRF fitting and inference processes. Left: optimization approach. The radiance (colour) field is fit to RGB captures,
as in the standard NeRF [2]. Given camera parameters, Π, ReLS-NeRF renders feature maps in the latent Z-space defined by a convolutional autoencoder
(AE), D ◦ E, for which arbitrary views can be decoded into image space. The discrepancy between the decoded features and the corresponding images
(from an RGB-NeRF or real images) enables training the Z-space NeRF and the AE. Right: inference approach. After freezing the latent field and decoder,
one can render the scene from an arbitrary viewpoint, obtaining a latent feature map that can be decoded into a high-resolution image.

train the latent component (see §III-B). Volume rendering is
unchanged: for a single feature at a pixel position, p, we use

Z(p) =

∫ tmax

tmin

T (t)σ(t)z(t) dt, (1)

to obtain the feature value at p, where T (t) is the transmit-
tance [81], and z(t) = z(x(t), r(t)) is obtained by sampling
the ray defined by p. For camera parameters Π, we denote the
latent image rendering function as R(Π|f) = IZ(Π), where
IZ [p] = Z(p). Replacing z(t) with c(t), for instance, would
render colour in the standard manner, giving a colour image,
IC(Π) (that does not use z). To obtain a colour image from
IZ , we simply pass it to the decoder, D; i.e., view synthesis
is ÎC(Π) = D(IZ(Π)), which can be viewed as a form of
neural rendering (e.g., [76], [82], [83]). The benefit of using
ÎC is that significantly fewer pixels need to be rendered,
compared to IC(Π); it also enables placing a prior on ÎC by
choosing D appropriately.

We considered two choices of AE: (i) the pretrained VAE
from Stable Diffusion [84], which we denote SD-VAE, and
(ii) a smaller residual block-based AE [85], [86] (R32, when
using a 32D latent space) that is randomly initialized. Both
encoders provide an 8× downsampling of the image.

B. Fitting Process

A ReLS-NeRF is optimized in three stages: (A) AE
training, (B) joint NeRF fitting, and (C) decoder fine-tuning.
AE training (A). The first phase simply trains (or fine-tunes)
the AE to reconstruct the training images of the scenes, using

the mean-squared error.
Joint NeRF fitting (B). In the second phase, we train the
RGB and Latent components of the NeRF in conjunction
with the decoder, D. Our total loss function,

LB = Lr + λdLd + λgrLgr + Lp, (2)

consists of the standard RGB loss on random rays, Lr, the
DS-NeRF [42] depth loss, Ld, the geometry regularizing
distortion loss [28], Lgr, and a patch-based loss for training
the latent component, Lp. Given a posed image, (I,Π), the
latter loss is simply the error between a sample patch, P ∼ I ,
and the corresponding rendered then decoded patch,

Lp = EP∼I,(I,Π)∼SI
MSE(P, D(IZ(Π))). (3)

Decoder fine-tuning (C). Finally, we fine-tune D, utilizing
a combination of the multiview posed images, SI , and
renders from the RGB component of the ReLS-NeRF. First,
we sample random renders, S̃I = {(IC(Πs),Πs) |Πs ∼
Γ(SΠ)}s, where Γ(SΠ) is the uniform distribution over
camera extrinsics, obtained by interpolating between any
triplet in SΠ. Optimizing

LC = γδ(SI) + (1− γ)δ(S̃I), (4)

where δ(S) = E(I,Π)∼SMSE(I, ÎC(Π)) and γ ∈ [0, 1] is
a weighting hyper-parameter, distills information from the
RGB-NeRF into latent renderer. See Fig. 2. Note that the
real training images, SI , are used; hence, the RGB-NeRF is
not strictly a ceiling on performance (further, the presence
of D implies different generalization properties).
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C. Implementation Details

We utilize the neural graphics primitives [20] architec-
ture, via the tiny-cuda-nn library [87]. All phases use
Adam [88] for optimization. We remark that the loss gradient
from the latent component of the NeRF (i.e., from Lp) is
not back-propagated to the colour, c, and density, σ, fields.
Further, we use separate features for the latent feature vector,
z, and c, but render with the same σ. In other words, RGB-
NeRF training is unaffected by z. For additional details, we
refer the reader to our appendix.

IV. EXPERIMENTS

A. Evaluation Metrics

1) Pixelwise and perceptual distances: We measure per-
formance with novel view synthesis on held-out test views.
In addition to the standard pixelwise peak signal-to-noise
ratio (PSNR), we use perceptual losses to measure similarity,
including LPIPS [89] and DreamSim [90]. LPIPS provides
more human-like responses to low-level distortions (e.g.,
noise, small colour/spatial shifts), whereas DreamSim is
designed to be “mid-level” metric, better capturing large-
scale and semantic differences than LPIPS (without being as
high-level as, e.g., CLIP-based metrics [91], [92], [93]).

2) Local consistency: When examining generative models
of NeRFs that use decoders, we can qualitatively see a
“shimmering” effect in time (e.g., [76], [75]), which is
also reminiscent of generative video model artifacts (e.g.,
[94], [95]). This jittering appears related to local appearance
inconsistencies: since each latent pixel corresponds to an
RGB patch. As Π changes, interpolating in z-space does
not perfectly approximate the correct appearance changes.
This behaviour is distinct from the artifacts observed in
standard NeRFs and we devise a simple metric to detect
it: the Reprojective Colour Consistency (RCC) metric. The
RCC measures sudden changes in appearance as Π changes,
relying on the NeRF geometry to obtain correspondences.
Specifically, we reproject one render, Ii, into the reference
frame of another, Ii+1, using the NeRF depth, Di, so

RCC = PSNR
(
Ei[MSE(Ii+1,ReprojDi,Πi+1

Ii)]
)
, (5)

where Ii and Ii+1 are adjacent video frames. Notice that
occlusions and view-dependent lighting effects will confound
the RCC; however, these effects will (i) be relatively minimal
across adjacent frames and (ii) be shared for the same scene,
enabling it to be a fair comparative metric.

3) Video quality: As noted above, adding a temporal
dimension can make certain artifacts more perceptually de-
tectable. We therefore applied a recent video quality metric,
DOVER [96], to NeRF-rendered videos. DOVER has two
components: DOVER-aesthetic (DoA), which focuses on
high-level semantics, and DOVER-technical (DoT), which
detects low-level distortions (e.g., blur and noise). DOVER
and the RCC are applied to 120-frame “spiral video” renders
from the NeRF (as in LLFF [97]).

Reference-based Reference-free
NeRF PSNR↑ LPIPS↓ DS↓ DoA↑ DoT↑ RCC↑
RGB 23.52 0.37 1.18 80.2 72.9 25.6

Ours-SD 23.81 0.35 1.44 81.5 77.3 25.5
Ours-R32 23.37 0.40 1.71 76.4 74.3 25.3

Tab. 1. Test-view evaluation on eight LLFF scenes [97]. Reference-based
metrics include PSNR, LPIPS [89], and DreamSim (DS; ×10) [90]. For
reference-free metrics, we use DOVER-technical (DoT), DOVER-aesthetic
(DoA), and our reprojective colour consistency (RCC) measure, computed
on rendered videos. Rows correspond to the standard RGB NeRF, the
SDVAE-based ReLS-NeRF, and the R32-based ReLS-NeRF. ReLS-NeRF-
SDVAE outperforms the RGB-space NeRF on the lower-level reference-
based (PSNR and LPIPS) and reference-free (DoT) metrics, but has mixed
performance on the more semantic metrics (DS and DoA). Our RCC metric,
designed to detect the “shimmer” present in decoded (neural rendered)
videos, detects slightly more inconsistency with ReLS-NeRF. Using R32
reduces accuracy, but enables much faster rendering time (see Table 2).

NeRF Rendering Time Fitting Time
(A) (B) (C)

RGB 132.1s [1×] – 1h –
Ours-SD 43.1s [3×] 10m 2h 2.5h
Ours-R32 10.2s [13×] 40m 1.5h 1.5h

Tab. 2. Timings for inference (rendering 120 frames) and fitting. Changing
the decoder architecture, D, trades off between efficiency and image quality.
We measure the RGB-NeRF rendering time without the latent component.

B. Reconstruction Quality and Timing

We display our evaluation in Table 1, as well as timing
measurements in Table 2, using eight LLFF scenes [97] (see
also Fig. 3 for qualitative examples)*, at 1008×756 reso-
lution. We see that ReLS-NeRF (i.e., decoding a rendered
latent feature map) with the SDVAE actually has superior
novel view image quality, while having superior inference
speed (three times faster). In particular, the low-level metrics,
including PSNR, LPIPS, and DoT, all prefer ReLS-NeRF-SD
over the standard colour NeRF. This is likely due to the fine-
tuned decoder fixing artifacts incurred by the colour NeRF,
as can be seen in Fig. 3. The higher-level, more semantic
metrics are more mixed: DreamSim prefers the RGB-NeRF,
while DoA slightly favours ReLS-NeRF-SD.

Among reference-based metrics, the semantically-oriented
DreamSim is the only one by which the RGB-NeRF outper-
forms ReLS-NeRF-SD. Since DreamSim is a single-image
metric, it is insensitive to temporal artifacts; however, Dream-
Sim is known to be more sensitive to foreground objects
[90]. Interestingly, we qualitatively observe that ReLS-NeRF
tends to improve image quality the most in scene areas
far from the camera, where geometry is generally poorer
quality – i.e., in the background (see Fig. 3). Thus, one might
speculate that such improvements are simply going unnoticed
for DreamSim, which tends to focus on foreground objects
of greater semantic importance.

In addition, we find that the RCC prefers the RGB-NeRF
over ReLS-NeRF. Though it is hard to see in still images,
ReLS-NeRF has slight temporal “jittering” artifacts, which
the RCC is designed to detect. We remark that other algo-
rithms show similar view-inconsistencies across close frames
(e.g., 3D generative models [76] or video generators [94]),

*Images in Figs. 1-4 available in LLFF [97] under a CC BY 3.0 License.
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RGB NeRF Ours-SDOurs-R32

Fig. 3. Qualitative comparison of NeRF renders. In the zoomed insets, we show how ReLS-NeRF-SD fixes some of the artifacts of the RGB-NeRF,
despite being trained in part on its renders (see §III-B, phase C) One can also see the slight blur incurred by using the faster R32 AE (middle column).
Notice that improvement in visual quality can actually have significant semantic effects, in a manner that could impact downstream tasks (e.g., navigation):
in the third row, for instance, one can actually read the “exit” sign in ReLS-NeRF-SD, but not in the other two cases.

and could potentially benefit from RCC estimates. We illus-
trate this phenomenon with some examples in Fig. 4. Due
to the learned decoder, unexpected appearance changes can
occur across viewpoints. However, per-frame metrics, such
as the traditionally applied LPIPS and PSNR, do not capture
such inconsistencies; hence, ReLS-NeRF outperforms the
RGB-NeRF on them (Table 1). Interestingly, even the video
metrics (DoT and DoA) prefer ReLS-NeRF, suggesting such
algorithms are more sensitive to the cloudiness and noise
artifacts of the standard NeRF, compared to the small jitters
incurred by the neural rendering process. In other words, by
most metrics of quality (including the primary standard ones,
PSNR and LPIPS), ReLS-NeRF is superior.

Finally, we show that the trade-off between rendering
efficiency and image quality can be controlled by changing
the AE architecture. Using R32 reduces inference time by
∼92%, while decreasing test-view PSNR by only 0.15,
compared to the RGB-NeRF rendering process. In contrast
to ReLS-NeRF-SD, while ReLS-NeRF-R32 does sacrifice

some image quality (e.g., ∼0.4 PSNR loss), it also reduces
inference time by ∼76%. One can imagine choosing an
architecture with the right level of trade-off for a given task.

C. Ablations

We find that removing phase C is devastating to ReLS-
NeRF, causing PSNR to drop to 22.85 (SD) and 20.87 (R32).
Since the SDVAE is pretrained, ablating phase A has little
effect on ReLS-NeRF-SD; however, doing so for ReLS-
NeRF-R32 reduces PSNR by 0.1. Note that the latter case
trains the decoder, D, alongside the NeRF and then alone,
in phases B and C.

V. DISCUSSION

We have shown that ReLS-NeRF can improve image qual-
ity, while being several times faster to render. In particular,
the SD-based ReLS-NERF is superior on the main metrics
commonly used to evaluate NeRFs on test views (i.e., PSNR
and LPIPS), as well as on a state-of-the-art reference-free
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Fig. 4. Examples of adjacent video frames from ReLS-NeRF-SD (top row) and the RGB NeRF (bottom row). Each pair of images are temporally adjacent
renders from a video. Notice, as in Fig. 3, that ReLS-NeRF-SD has better per-frame image quality, as measured in the quantitative results of Table 1. For
example, see the upper half of the leftward zoomed insets, where the RGB NeRF is more “cloudy”. However, there are temporal artifacts that cannot be
detected in a single frame (i.e., small cross-view appearance inconsistencies). For instance, as can be seem in the highlighted areas of the zoomed insets,
small spots can suddenly appear (left), or the shape of highlights can change (right). This does not occur in the RGB NeRF, as volume rendering colours
directly encourages view consistency, whereas the learned decoder in ReLS-NERF can introduce inconsistent appearances. This showcases the utility and
need for our new reprojective colour consistency (RCC) metric (see §IV-A.2), which can capture these temporal aspects more directly.

video quality estimator. Empirically, we observed that current
image and video evaluation metrics do not obviously capture
temporal artifacts that are characteristic of ReLS-NeRF,
caused by view-inconsistent appearance changes (due to the
learned component within the rendering process). Hence, we
introduced a simple metric for detecting such anomalies.
Further, we have demonstrated a tradeoff between efficiency
and quality, which can be controlled by the architecture of the
AE. Importantly, to obtain its speedup, ReLS-NeRF does not
“bake” the scene or transform to a mesh; hence, e.g., it could
still be continually trained online in the standard fashion.
In other words, it retains a number of useful properties
of standard NeRFs (e.g., differentiability and access to an
implicit 3D shape field), while gaining additional efficiency
and image quality.

For many robotics tasks, fast differentiable rendering is a
key component for online learning of 3D scene representa-
tions. This includes simultaneous localization and mapping,
navigation, and modelling the dynamics of the environment
(i.e., ensuring the internal representation is up-to-date, given
perceptual inputs). We feel that ReLS-NeRF is well-suited
for such situations, as it retains differentiability, while im-
proving rendering efficiency and even image quality as well.
Other promising future directions include utilizing different
AEs to provide task-specific biases (e.g., for 3D scene
editing, faster speed, or higher image quality), improving
the AE architecture to suit this scenario (e.g., devising a
geometry-aware decoder), and better customizing the volume
rendering process to latent space rendering (e.g., using a
learned mapping instead of volume integration).

APPENDIX

A. Additional Implementation Details

When training, we used λd = 0.1, γ = 0.7, and λgr =
10−3/2. The NeRF architecture was the same as previous
works based on Instant-NGP (see [5]). The LLFF scenes

used were fern, horns, orchids, flower, leaves,
room_tv, trex, and fortress.

B. Fitting Hyper-Parameters

Phase A. The SDVAE/R32 NeRFs were optimized for
500/3000 iterations, using learning rates of 10−4/4 × 10−4.
The learning rates were halved at 150, 300, and 450 iterations
(SDVAE) and every 500 iterations for R32. Patches of size
5122 were used, with batch sizes of 3/5.

Phase B. The joint optimization was run for 20K itera-
tions. We used 4096 rays for the colour and DS-NeRF losses,
each. The latent loss, Lp, is computed via 322 latent-space
patches. The learning rate (excluding the VAE) starts from
10−2 and is decayed according to 10−2 × (10−1)t/τ , where
t is the step iteration and τ = 104. The VAE is optimized
with a fixed learning rate of 10−4.

Phase C. Decoder fine-tuning proceeds for 3000/10000
iterations for the SDVAE/R32 architecture. A batch size of
three was used (one from SI and two from S̃I ). Note that we
render 512 images from the RGB-NeRF to act as supervision
(i.e., |S̃I | = 512). The process starts from a learning rate of
10−4, and is decayed by 0.5 every 1000/2500 iterations.

C. R32 Architecture

The encoder, E, has the following structure: C5, RBIN,
HD, RBIN, HD, RBIN, HD, RBIN, C1. The components are
as follows: C5 is a conv-5×5-norm-elu block; RBIN is two
residual blocks [85], each using conv-3×3 and norm; HD is
a bilinear halving downscaler; and C1 is just a conv-1×1.
The encoder has layer sizes of (32,128,128,256,256).

The decoder, D, has the following structure: C1,
RBIN, HU, RBIN, HU, RBIN, HU, RBIN, C1, sigmoid.
Components are the same, except that HU is a bilin-
ear doubling upscaler. The decoder has layer sizes of
(256,256,128,128,32).

Both networks use the ELU non-linearity [98] and instance
normalization [99] as norm.
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