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Figure 1: We introduce SAL: Sign Agnostic Learning for learning shapes directly from raw data, such as triangle soups (left
in each gray pair; back-faces are in red). Right in each gray pair - the surface reconstruction by SAL of test raw scans; in
gold - SAL latent space interpolation between adjacent gray shapes. Raw scans are from the D-Faust dataset [8].

Abstract

Recently, neural networks have been used as im-
plicit representations for surface reconstruction, modelling,
learning, and generation. So far, training neural networks
to be implicit representations of surfaces required training
data sampled from a ground-truth signed implicit functions
such as signed distance or occupancy functions, which are
notoriously hard to compute.

In this paper we introduce Sign Agnostic Learning
(SAL), a deep learning approach for learning implicit shape
representations directly from raw, unsigned geometric data,
such as point clouds and triangle soups.

We have tested SAL on the challenging problem of sur-
face reconstruction from an un-oriented point cloud, as well
as end-to-end human shape space learning directly from
raw scans dataset, and achieved state of the art reconstruc-
tions compared to current approaches. We believe SAL
opens the door to many geometric deep learning applica-
tions with real-world data, alleviating the usual painstak-
ing, often manual pre-process.

1. Introduction

Recently, deep neural networks have been used to re-
construct, learn and generate 3D surfaces. There are two
main approaches: parametric [20, 5, 43, 16] and implicit
[13, 32, 30, 3, 15, 18]. In the parametric approach neu-
ral nets are used as parameterization mappings, while the

implicit approach represents surfaces as zero level-sets of
neural networks:

S =
{
x ∈ R3 | f(x;θ) = 0

}
, (1)

where f : R3 × Rm → R is a neural network, e.g., mul-
tilayer perceptron (MLP). The benefit in using neural net-
works as implicit representations to surfaces stems from
their flexibility and approximation power (e.g., Theorem 1
in [3]) as well as their efficient optimization and generaliza-
tion properties.

So far, neural implicit surface representations were
mostly learned using a regression-type loss, requiring data
samples from a ground-truth implicit representation of the
surface, such as a signed distance function [32] or an oc-
cupancy function [13, 30]. Unfortunately, for the common
raw form of acquired 3D data X ⊂ R3, i.e., a point cloud
or a triangle soup1, no such data is readily available and
computing an implicit ground-truth representation for the
underlying surface is a notoriously difficult task [6].

In this paper we advocate Sign Agnostic Learning (SAL),
defined by a family of loss functions that can be used di-
rectly with raw (unsigned) geometric data X and produce
signed implicit representations of surfaces. An important
application for SAL is in generative models such as vari-
ational auto-encoders [26], learning shape spaces directly
from the raw 3D data. Figure 1 depicts an example where
collectively learning a dataset of raw human scans using

1A triangle soup is a collection of triangles in space, not necessarily
consistently oriented or a manifold.
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SAL overcomes many imperfections and artifacts in the
data (left in every gray pair) and provides high quality sur-
face reconstructions (right in every gray pair) and shape
space (interpolations of latent representations are in gold).

We have experimented with SAL for surface recon-
struction from point clouds as well as learning a human
shape space from the raw scans of the D-Faust dataset
[8]. Comparing our results to current approaches and base-
lines we found SAL to be the method of choice for learn-
ing shapes from raw data, and believe SAL could facil-
itate many computer vision and computer graphics shape
learning applications, allowing the user to avoid the tedious
and unsolved problem of surface reconstruction in prepro-
cess. Our code is available at https://github.com/
matanatz/SAL.

2. Previous work

2.1. Surface learning with neural networks

Neural parameteric surfaces. One approach to represent
surfaces using neural networks is parametric, namely, as pa-
rameterization charts f : R2 → R3. Groueix et al. [20] sug-
gest to represent a surface using a collection of such param-
eterization charts (i.e., atlas); Williams et al. [43] optimize
an atlas with proper transition functions between charts and
concentrate on reconstructions of individual surfaces. Sinha
et al. [35, 36] use geometry images as global parameteri-
zations, while [29] use conformal global parameterizations
to reduce the number of degrees of freedom of the map.
Parametric representation are explicit but require handling
of coverage, overlap and distortion of charts.

Neural implicit surfaces. Another approach to represent
surfaces using neural networks, which is also the approach
taken in this paper, is using an implicit representation,
namely f : R3 → R and the surface is defined as its zero
level-set, equation 1. Some works encode f on a volumetric
grid such as voxel grid [44] or an octree [39]. More flexi-
bility and potentially more efficient use of the degrees of
freedom of the model are achieved when the implicit func-
tion f is represented as a neural network [13, 32, 30, 3, 18].
In these works the implicit is trained using a regression loss
of the signed distance function [32], an occupancy function
[13, 30] or via particle methods to directly control the neu-
ral level-sets [3]. Excluding the latter that requires sam-
pling the zero level-set, all regression-based methods re-
quire ground-truth inside/outside information to train the
implicit f . In this paper we present a sign agnostic train-
ing method, namely training method that can work directly
with the raw (unsigned) data.

Shape representation learning. Learning collections of
shapes is done using Generative Adversarial Networks
(GANs) [19], auto-encoders and variational auto-encoders
[26], and auto-decoders [9]. Wu et al. [44] use GAN on
a voxel grid encoding of the shape, while Ben-Hamu et
al. [5] apply GAN on a collection of conformal charts.
Dai et al. [14] use encoder-decoder architecture to learn a
signed distance function to a complete shape from a par-
tial input on a volumetric grid. Stutz et al. [37] use varia-
tional auto-encoder to learn an implicit surface representa-
tions of cars using a volumetric grid. Baqautdinov et al. [4]
use variational auto-encoder with a constant mesh to learn
parametrizations of faces shape space. Litany et al. [27] use
variational auto-encoder to learn body shape embeddings of
a template mesh. Park et al. [32] use auto-decoder to learn
implicit neural representations of shapes, namely directly
learns a latent vector for every shape in the dataset. In our
work we also make use of a variational auto-encoder but dif-
ferently from previous work, learning is done directly from
raw 3D data.

2.2. Surface reconstruction.

Signed surface reconstruction. Many surface recon-
struction methods require normal or inside/outside informa-
tion. Carr et al. [10] were among the first to suggest using
a parametric model to reconstruct a surface by computing
its implicit representation; they use radial basis functions
(RBFs) and regress at inside and outside points computed
using oriented normal information. Kazhdan et al. [23, 24]
solve a Poisson equation on a volumetric discretization to
extend points and normals information to an occupancy in-
dicator function. Walder et al. [41] use radial basis func-
tions and solve a variational hermite problem (i.e., fitting
gradients of the implicit to the normal data) to avoid triv-
ial solution. In general our method works with a non-linear
parameteric model (MLP) and therefore does not require
a-priori space discretization nor works with a fixed linear
basis such as RBFs.

Unsigned surface reconstruction. More related to this
paper are surface reconstruction methods that work with un-
signed data such as point clouds and triangle soups. Zhao et
al. [47] use the level-set method to fit an implicit surface to
an unoriented point cloud by minimizing a loss penalizing
distance of the surface to the point cloud achieving a sort
of minimal area surface interpolating the points. Walder et
al. [40] formulates a variational problem fitting an implicit
RBF to an unoriented point cloud data while minimizing
a regularization term and maximizing the norm of the gra-
dients; solving the variational problem is equivalent to an
eigenvector problem. Mullen et al. [31] suggests to sign
an unsigned distance function to a point cloud by a multi-
stage algorithm first dividing the problem to near and far

https://github.com/matanatz/SAL
https://github.com/matanatz/SAL


(a) (b)

(c) (d)

Figure 2: Experiment with sign agnostic learning in 2D: (a)
and (b) show the unsigned L0 and L2 (resp.) distances to a
2D point cloud (in gray); (c) and (d) visualize the different
level-sets of the neural networks optimized with the respec-
tive sign agnostic losses. Note how the zero level-sets (in
bold) gracefully connect the points to complete the shape.

field sign estimation, and propagating far field estimation
closer to the zero level-set; then optimize a convex energy
fitting a smooth sign function to the estimated sign function.
Takayama et al. [38] suggested to orient triangle soups by
minimizing the Dirichlet energy of the generalized wind-
ing number noting that correct orientation yields piecewise
constant winding number. Xu et al. [45] suggested to com-
pute robust signed distance function to triangle soups by us-
ing an offset surface defined by the unsigned distance func-
tion. Zhiyang et al. [22] fit an RBF implicit by optimiz-
ing a non-convex variational problem minimizing smooth-
ness term, interpolation term and unit gradient at data points
term. All these methods use some linear function space;
when the function space is global, e.g. when using RBFs,
model fitting and evaluation are costly and limit the size of
point clouds that can be handled efficiently, while local sup-
port basis functions usually suffer from inferior smoothness
properties [42]. In contrast we use a non-linear function ba-
sis (MLP) and advocate a novel and simple sign agnostic
loss to optimize it. Evaluating the non-linear neural net-
work model is efficient and scalable and the training pro-
cess can be performed on a large number of points, e.g.,
with stochastic optimization techniques.

3. Sign agnostic learning

Given a raw input geometric data, X ⊂ R3, e.g., a
point cloud or a triangle soup, we are looking to opti-
mize the weights θ ∈ Rm of a network f(x;θ), where
f : R3 × Rm → R, so that its zero level-set, equation 1,
is a surface approximating X .

We introduce the Sign Agnostic Learning (SAL) defined
by a loss of the form

loss(θ) = Ex∼DX τ
(
f(x;θ), hX (x)

)
, (2)

where DX is a probability distribution defined by the input
data X ; hX (x) is some unsigned distance measure to X ;
and τ : R×R+ → R is a differentiable unsigned similarity
function defined by the following properties:

(i) Sign agnostic: τ(−a, b) = τ(a, b), ∀a ∈ R, b ∈ R+.

(ii) Monotonic: ∂τ
∂a (a, b) = ρ(a− b), ∀a, b ∈ R+,

where ρ : R → R is a monotonically increasing function
with ρ(0) = 0. An example of an unsigned similarity is
τ(a, b) = ||a| − b|.

To understand the idea behind the definition of the
SAL loss, consider first a standard regression loss using
τ(a, b) = |a− b| in equation 2. This would encourage f
to resemble the unsigned distance hX as much as possible.
On the other hand, using the unsigned similarity τ in equa-
tion 2 introduces a new local minimum of loss where f is a
signed function such that |f | approximates hX . To get this
desirable local minimum we later design a network weights’
initialization θ0 that favors the signed local minima.

As an illustrative example, the inset
depicts the one dimensional case (d =
1) whereX = {x0}, hX (x) = |x−x0|,
and τ(a, b) = ||a| − b|, which satisfies
properties (i) and (ii), as discussed be-
low; the loss therefore strives to mini-
mize the area of the yellow set. When initializing the net-
work parameters θ = θ0 properly, the minimizer θ∗ of loss
defines an implicit f(x;θ∗) that realizes a signed version of
hX ; in this case f(x;θ∗) = x − x0. In the three dimen-
sional case the zero level-set S of f(x;θ∗) will represent a
surface approximating X .

To theoretically motivate the loss family in equation 2
we will prove that it possess a plane reproduction property.
That is, if the data X is contained in a plane, there is a criti-
cal weight θ∗ reconstructing this plane as the zero level-set
of f(x;θ∗). Plane reproduction is important for surface ap-
proximation since surfaces, by definition, have an approxi-
mate tangent plane almost everywhere [17].

We will explore instantiations of SAL based on different
choices of unsigned distance functions hX , as follows.



Unsigned distance functions. We consider two p-
distance functions: For p = 2 we have the standard L2

(Euclidean) distance

h2(z) = min
x∈X
‖z − x‖2 , (3)

and for p = 0 the L0 distance

h0(z) =

{
0 z ∈ X
1 z /∈ X

. (4)

Unsigned similarity function. Although many choices
exist for the unsigned similarity function, in this paper we
take

τ`(a, b) = ||a| − b|` , (5)

where ` ≥ 1. The function τ` is indeed an unsigned sim-
ilarity: it satisfies (i) due to the symmetry of |·|; and since
∂τ
∂a = ` ||a| − b|`−1

sign(a − b sign(a)) it satisfies (ii) as-
well.

Distribution DX . The choice of DX is depending on the
particular choice of hX . For L2 distance, it is enough to
make the simple choice of splatting an isotropic Gaussian,
N (x, σ2I), at every point (uniformly randomized) x ∈ X ;
we denote this probabilityNσ(X ); note that σ can be taken
to be a function of x ∈ X to reflect local density in X . In
this case, the loss takes the form

loss(θ) = Ez∼Nσ(X )

∣∣|f(z;θ)| − h2(z)
∣∣`. (6)

For the L0 distance however, hX (x) 6= 1 only for x ∈ X
and therefore a non-continuous density should be used; we
opt for N (x, σ2I) + δx, where δx is the delta distribution
measure concentrated at x. The loss takes the form

loss(θ) = Ez∼Nσ(X )

∣∣|f(z;θ)| − 1
∣∣` + Ex∼X

∣∣f(x;θ)
∣∣`.
(7)

Remarkably, the latter loss requires only randomizing
points z near the data samples without any further compu-
tations involving X . This allows processing of large and/or
complex geometric data.

Neural architecture. Although SAL can work with dif-
ferent parametric models, in this paper we consider a mul-
tilayer perceptron (MLP) defined by

f(x;θ) = ϕ
(
wT f` ◦ f`−1 ◦ · · · ◦ f1(x) + b

)
, (8)

and

fi(y) = ν(Wiy + bi),W ∈ Rd
out
i ×d

in
i , bi ∈ Rd

out
i , (9)

where ν(a) = (a)+ is the ReLU activation, and θ =
(w, b,W`, b`, . . . ,W1, b1); ϕ is a strong non-linearity, as
defined next:

(a) (b) (c)

Figure 3: Geometric initialization of neural networks: An
MLP with our weight initialization (see Theorem 1) is ap-
proximating the signed distance function to an r-radius
sphere, f(x;θ0) ≈ ϕ(‖x‖ − r), where the approximation
improves with the width of the hidden layers: (a) depicts an
MLP with 100-neuron hidden layers; (b) with 200; and (c)
with 2000.

Definition 1. The function ϕ : R → R is called a strong
non-linearity if it is differentiable (almost everywhere), anti-
symmetric, ϕ(−a) = −ϕ(a), and there exists β ∈ R+ so
that β−1 ≥ ϕ′(a) ≥ β > 0, for all a ∈ R where it is
defined.

In this paper we use ϕ(a) = a or ϕ(a) = tanh(a) + γa,
where γ ≥ 0 is a parameter. Furthermore, similarly to pre-
vious work [32, 13] we have incorporated a skip connec-
tion layer s, concatenating the input x to the middle hidden
layer, that is s(y) = (y,x), where here y is a hidden vari-
able in f .

2D example. The two examples in Figure 2 show case
the SAL for a 2D point cloud, X = {xi}8i=1 ⊂ R2, (shown
in gray) as input. These examples were computed by
optimizing equation 6 (right column) and equation 7 (left
column) with ` = 1 using the L2 and L0 distances (resp.).
The architecture used is an 8-layer MLP; all hidden layers
are 100 neurons wide, with a skip connection to the middle
layer.

Notice that both hX (x) and its signed version are local
minima of the loss in equation 2. These local minima are
stable in the sense that there is an energy barrier when
moving from one to the other. For example, to get to a
solution as in Figure 2(b) from the solution in Figure 2(d)
one needs to flip the sign in the interior or exterior of
the region defined by the black line. Changing the sign
continuously will result in a considerable increase to the
SAL loss value.

We elaborate on our initialization method, θ = θ0, that
in practice favors the signed version of hX in the next sec-
tion.



4. Geometric network initialization
A key aspect of our method is a proper, geometrically

motivated initialization of the network’s parameters. For
MLPs, equations 8-9, we develop an initialization of its pa-
rameters, θ = θ0, so that f(x;θ0) ≈ ϕ(‖x‖ − r), where
‖x‖−r is the signed distance function to an r-radius sphere.
The following theorem specify how to pick θ0 to achieve
this:

Theorem 1. Let f be an MLP (see equations 8-9). Set, for
1 ≤ i ≤ `, bi = 0 and Wi i.i.d. from a normal distribution
N (0,

√
2√
douti

); further set w =
√
π√
dout`

1, c = −r. Then,

f(x) ≈ ϕ(‖x‖ − r).

Figure 3 depicts level-sets (zero level-sets in bold) using
the initialization of Theorem 1 with the same 8-layer MLP
(using ϕ(a) = a) and increasing width of 100, 200, and
2000 neurons in the hidden layers. Note how the approxi-
mation f(x;θ0) ≈ ‖x‖ − r improves as the layers’ width
increase, while the sphere-like (in this case circle-like) zero
level-set remains topologically correct at all approximation
levels.

The proof to Theorem 1 is provided in the supplementary
material; it is a corollary of the following theorem, showing
how to chose the initial weights for a single hidden layer
network:

Theorem 2. Let f : Rd → R be an MLP with ReLU ac-
tivation, ν, and a single hidden layer. That is, f(x) =

wT ν(Wx + b) + c, where W ∈ Rdout×d, b ∈ Rdout ,
w ∈ Rdout , c ∈ R are the learnable parameters. If b = 0,
w =

√
2π

σdout1, c = −r, r > 0, and all entries of W are
i.i.d. normal N (0, σ2) then f(x) ≈ ‖x‖ − r. That is, f is
approximately the signed distance function to a d−1 sphere
of radius r in Rd, centered at the origin.

5. Properties
5.1. Plane reproduction

Plane reproduction is a key property to surface approxi-
mation methods since, in essence, surfaces are locally pla-
nar, i.e., have an approximating tangent plane almost every-
where [17]. In this section we provide a theoretical justi-
fication to SAL by proving a plane reproduction property.
We first show this property for a linear model (i.e., a sin-
gle layer MLP) and then show how this implies local plane
reproduction for general MLPs.

The setup is as follows: Assume the input data
X ⊂ Rd lies on a hyperplane X ⊂ P , where P ={
x ∈ Rd | nTx+ c = 0

}
, n ∈ Rd, ‖n‖ = 1, is the nor-

mal to the plane, and consider a linear model f(x;w, b) =
ϕ(wTx + b). Furthermore, we make the assumption that
the distribution DX and the distance hX are invariant to

Figure 4: Advanced epochs of the neural level-sets from
Figure 2. The limit in the L0 case (two right images) is
an inside/outside indicator function, while for the L2 case
(two left images) it is a signed version of the unsigned L2

distance.

rigid transformations, which is common and holds in all
cases considered in this paper. We prove existence of criti-
cal weights (w∗, b∗) of the loss in equation 2, and for which
the zero level-set of f , f(x;w∗, b∗) = 0, reproduces P:

Theorem 3. Consider a linear model f(x;θ) = ϕ(wTx+
b), θ = (w, b), with a strong non-linearity ϕ : R → R.
Assume the data X lies on a plane P =

{
x|nTx+ c = 0

}
,

i.e., X ⊂ P . Then, there exists α ∈ R+ so that (w∗, b∗) =
(αn, αc) is a critical point of the loss in equation 2.

This theorem can be applied locally when optimizing a
general MLP (equation 8) with SAL to prove local plane
reproduction. See supplementary for more details.

5.2. Convergence to the limit signed function

The SAL loss pushes the neural implicit function f to-
wards a signed version of the unsigned distance function
hX . In the L0 case it is the inside/outside indicator func-
tion of the surface, while for L2 it is a signed version of the
Euclidean distance to the data X . Figure 4 shows advanced
epochs of the 2D experiment in Figure 2; note that the f
in these advanced epochs is indeed closer to the signed ver-
sion of the respective hX . Since the indicator function and
the signed Euclidean distance are discontinuous across the
surface, they potentially impose quantization errors when
using standard contouring algorithms, such as Marching
Cubes [28], to extract their zero level-set. In practice, this
phenomenon is avoided with a standard choice of stopping
criteria (learning rate and number of iterations). Another
potential solution is to add a regularization term to the SAL
loss; we mark this as future work.

6. Experiments
6.1. Surface reconstruction

The most basic experiment for SAL is reconstructing a
surface from a single input raw point cloud (without using
any normal information). Figure 5 shows surface recon-
structions based on four raw point clouds provided in [22]
with three methods: ball-pivoting [7], variation-implicit re-
construction [22], and SAL based on the L0 distance, i.e.,



Figure 5: Surface reconstruction from (un-oriented) point
cloud. From left to right: input point cloud; ball-pivoting
reconstruction [7]; variational-implicit reconstruction [22];
SAL reconstruction (ours).

optimizing the loss described in equation 7 with ` = 1. The
only parameter in this loss is σ which we set for every point
in x ∈ X to be the distance to the 50-th nearest point in the
point cloudX . We used an 8-layer MLP, f : R3×Rm → R,
with 512 wide hidden layers and a single skip connection to
the middle layer (see supplementary material for more im-
plementation details). As can be visually inspected from the
figure, SAL provides high fidelity surfaces, approximating
the input point cloud even for challenging cases of sparse
and irregular input point clouds.

6.2. Learning shape space from raw scans

In the main experiment of this paper we trained on the
D-Faust scan dataset [8], consisting of approximately 41k
raw scans of 10 humans in multiple poses2. Each scan is
a triangle soup, Xi, where common defects include holes,
ghost geometry, and noise, see Figure 1 for examples.

Architecture. To learn the shape representations we used
a modified variational encoder-decoder [26], where the en-
coder (µ,η) = g(X;θ1) is taken to be PointNet [34]
(specific architecture detailed in supplementary material),
X ∈ Rn×3 is an input point cloud (we used n = 1282),
µ ∈ R256 is the latent vector, and η ∈ R256 represents a
diagonal covariance matrix by Σ = diag expη. That is, the
encoder takes in a point cloud X and outputs a probability

2Due to the dense temporal sampling in this dataset we experimented
with a 1:5 sample.

measure N (µ,Σ). The point cloud is drawn uniformly at
random from the scans, i.e., X ∼ Xi. The decoder is the
implicit representation f(x;w,θ2) with the addition of a
latent vectorw ∈ R256. The architecture of f is taken to be
the 8-layer MLP, as in Subsection 6.1.

Loss. We use SAL loss with L2 distance, i.e., h2(z) =
minx∈Xi ‖z − x‖2 the unsigned distance to the triangle
soup Xi, and combine it with a variational auto-encoder
type loss [26]:

Loss(θ) =
∑
i

EX∼Xi
[
lossR(θ) + λ ‖µ‖1 + ‖η + 1‖1

]
lossR(θ) = Ez∼Nσ(Xi),w∼N (µ,Σ)

∣∣|f(z;w,θ2)| − h2(z)
∣∣,

where θ = (θ1,θ2), ‖·‖1 is the 1-norm, ‖µ‖1 encour-
ages the latent prediction µ to be close to the origin,
while ‖η + 1‖1 encourages the variances Σ to be constant
exp (−1); together, these enforce a regularization on the la-
tent space. λ is a balancing weight chosen to be 10−3.

Baseline. We compared versus three baseline methods.
First, AtlasNet [20], one of the only existing algorithms
for learning a shape collection from raw point clouds. At-
lasNet uses a parametric representation of surfaces, which
is straight-forward to sample. On the down side, it uses a
collection of patches that tend to not overlap perfectly, and
their loss requires computation of closest points between the
generated and input point clouds which poses a challenge
for learning large point clouds. Second, we approximate a
signed distance function, h̄2, to the data Xi in two differ-
ent ways, and regress them using an MLP as in DeepSDF
[32]; we call these methods SignReg. Note that Occupancy
Networks [30] and [13] regress a different signed distance
function and perform similarly.

To approximate the signed distance function, h̄2, we first
tried using a state of the art surface reconstruction algo-
rithm [24] to produce watertight manifold surfaces. How-
ever, only 28684 shapes were successfully reconstructed
(69% of the dataset), making this option infeasible to com-
pute h̄2. We have opted to approximate the signed distance
function similar to [21] with h̄2(z) = nT∗ (z − x∗), where
x∗ = arg minx∈Xi ‖z − x‖2 is the closest point to z in Xi
and n∗ is the normal at x∗ ∈ Xi. To approximate the nor-
mal n∗ we tested two options: (i) taking n∗ directly from
the original scan Xi with its original orientation; and (ii)
using local normal estimation using Jets [11] followed by
consistent orientation procedure based on minimal spanning
tree using the CGAL library [1].

Table 1 and Figure 6 show the result on a random 75%-
25% train-test split on the D-Faust raw scans. We report
the 5%, 50% (median), and 95% percentiles of the Cham-
fer distances between the surface reconstructions and the



Figure 6: Reconstruction of the test set from D-Faust scans. Left to right in each column: input test scan, SAL (our)
reconstruction, AtlasNet [20] reconstruction, and SignReg - signed regression with approximate Jet normals.

Registrations Scans
Method 5% Median 95% 5% Median 95%

Train

AtlasNet[20] 0.09 0.15 0.27 0.05 0.09 0.18
Scan normals 2.53 43.99 292.59 2.63 44.86 257.37
Jet normals 1.72 30.46 513.34 1.65 31.11 453.43
SAL (ours) 0.05 0.09 0.2 0.05 0.06 0.09

Test

AtlasNet[20] 0.1 0.17 0.37 0.05 0.1 0.22
Scan normals 3.45 45.03 294.15 3.21 277.36 45.03
Jet normals 1.88 31.05 489.35 1.76 30.89 462.85
SAL (ours) 0.07 0.12 0.35 0.05 0.08 0.16

Table 1: Reconstruction of the test set from D-Faust scans.
We log the Chamfer distances of the reconstructed surfaces
to the raw scans (one-sided), and ground-truth registrations;
we report the 5-th, 50-th, and 95-th percentile. Numbers are
reported ∗103.

raw scans (one-sided Chamfer from reconstruction to scan),
and ground truth registrations. The SAL and SignReg re-
constructions were generated by a forward pass (µ,η) =
g(X;θ1) of a point cloud X ⊂ Xi sampled from the raw
unseen scans, yielding an implicit function f(x;µ,θ2). We
used the Marching Cubes algorithm [28] to mesh the zero
level-set of this implicit function. Then, we sampled uni-
formly 30K points from it and compute the Chamfer Dis-
tance.

Generalization to unseen data. In this experiment we
test our method on two different scenarios: (i) generating

shapes of unseen humans; and (ii) generating shapes of un-
seen poses. For the unseen humans experiment we trained
on 8 humans (4 females and 4 males), leaving out 2 humans
for test (one female and one male). For the unseen poses ex-
periment, we randomly chose two poses of each human as a
test set. To further improve test-time shape representations,
we also further optimized the latent µ to better approximate
the input test scan Xi. That is, for each test scan Xi, af-
ter the forward pass (µ,η) = g(X;θ2) with X ⊂ Xi, we
further optimized lossR as a function of µ for 800 further
iterations. We refer to this method as latent optimization.

Table 2 demonstrates that the latent optimization method
further improves predictions quality, compared to a single
forward pass. In 7 and 8, we demonstrate few representa-
tives examples, where we plot left to right in each column:
input test scan, SAL reconstruction with forward pass alone,
and SAL reconstruction with latent optimization. Failure
cases are shown in the bottom-right. Despite the little vari-
ability of humans in the training dataset (only 8 humans), 7
shows that SAL can usually fit a pretty good human shape
to the unseen human scan using a single forward pass re-
construction; using latent optimization further improves the
approximation as can be inspected in the different examples
in this figure.

Figure 8 shows how a single forward reconstruction is
able to predict the pose correctly, where latent optimization
improves the prediction in terms of shape and pose.



Figure 7: Reconstruction of unseen humans scans. Each
column from left to right: unseen human scan, SAL re-
construction with a single forward pass, SAL reconstruction
with latent optimization. Bottom-right shows failure.

Figure 8: Reconstruction of unseen pose scans. Each col-
umn from left to right: unseen pose scan, SAL reconstruc-
tion with a single forward pass, SAL reconstruction with
latent optimization. Bottom-right shows failure.

Limitations. SAL’s limitation is mainly in capturing thin
structures. Figure 9 shows reconstructions (obtained simi-
larly to 6.1) of a chair and a plane from the ShapeNet [12]
dataset; note that some parts in the chair back and the plane
wheel structure are missing.

Registrations Scans
Method 5% Median 95% 5% Median 95%

Train
SAL (Pose) 0.08 0.12 0.25 0.05 0.07 0.1

SAL (Human) 0.06 0.09 0.18 0.04 0.06 0.09

Test

SAL (Pose) 0.11 0.37 2.26 0.07 0.18 0.93
SAL + latent opt. (Pose) 0.08 0.16 1.12 0.05 0.09 0.19

SAL (Human) 0.26 0.75 4.99 0.14 0.34 1.53
SAL + latent opt. (Human) 0.12 0.3 3.05 0.07 0.14 0.49

Table 2: Reconstruction of the unseen human and pose from
D-Faust scans. We log the Chamfer distances of the recon-
structed surfaces to the raw scans (one-sided), and ground-
truth registrations; we report the 5-th, 50-th, and 95-th per-
centile. Numbers are reported ∗103.

Figure 9: Failure in capturing thin structures. In each pair:
ground truth model (left), and SAL reconstruction (right).

7. Conclusions

We introduced SAL: Sign Agnostic Learning, a deep
learning approach for processing raw data without any
preprocess or need for ground truth normal data or in-
side/outside labeling. We have developed a geometric ini-
tialization formula for MLPs to approximate the signed dis-
tance function to a sphere, and a theoretical justification
proving planar reproduction for SAL. Lastly, we demon-
strated the ability of SAL to reconstruct high fidelity sur-
faces from raw point clouds, and that SAL easily integrates
into standard generative models to learn shape spaces from
raw geometric data. One limitation of SAL was mentioned
in Section 5, namely the stopping criteria for the optimiza-
tion.

Using SAL in other generative models such as generative
adversarial networks could be an interesting follow-up. An-
other future direction is global reconstruction from partial
data. Combining SAL with image data also has potentially
interesting applications. We think SAL has many exciting
future work directions, progressing geometric deep learning
to work with unorganized, raw data.
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8. Appendix
8.1. Implementation details

8.1.1 Surface reconstruction

Data Preparation. For each point cloud X ⊂ R3 we cre-
ated training data by sampling two Gaussian variables cen-
tered at each x ∈ X . We set the standard deviation of the
first Gaussian to be the distance to the 50-th closest point in
X , whereas the second Gaussian standard deviation is set to
be the distance to the furthest point in X .

Network Architecture. We use an MLP as detailed in
equation 8 and equation 9 with ` = 7, i.e., 8 layers, where
douti , dini = 512 for interior layers and din1 = 3. We also
add a skip connection at the 4-th layer concatenating the in-
put point x ∈ R3 with the hidden variable y ∈ R509, i.e.,
[x,y] ∈ R512, where accordingly dout3 = 509.

Training Details. We train the network in the surface re-
construction experiment with ADAM optimizer [25], learn-
ing rate 0.0001 for 5000 epochs. Training was done on an
Nvidia V-100 GPU, using PYTORCH deep learning frame-
work [33].

8.1.2 Learning shape space

Data Preparation. To speed up training on the D-Faust
dataset, we preprocessed the original scans X ⊂ R3 and



sampled 500K points from each scan. The size of the sam-
ple is similar to [32]. First, we sampled 250K points uni-
formly (w.r.t. area) from the triangle soupX and then placed
two Gaussian random variables centered at each sample
point x ∈ X . We set the standard deviation of the first
Gaussian to be the distance to the 50-th closest point in X ,
whereas the second Gaussian standard deviation is set to
be 0.2. For each sample point we calculated its unsigned
distance to the closest triangle in the triangle soup. The dis-
tance computation was done using [1].

Network Architecture. Our network architecture is
Encoder-Decoder based, where for the encoder we have
used PointNet [34] and DeepSets [46] layers. Each layer
is composed of

PFC(din, dout) : X 7→ ν
(
XW + 1bT

)
PL(din, 2din) : Y 7→ [Y ,max (Y )1]

where [·, ·] is the concat operation. Our Architecture is

PFC(3, 128)→ PFC(128, 128)→ PL(128, 256)→
PFC(256, 128)→ PL(128, 256)→ PFC(256, 128)→
PL(128, 256)→ PFC(256, 128)→ PL(128, 256)→
PFC(256, 256)→ MaxPool→ FC(256, 256),

similarly to [30] SimplePointNet architecture. For the de-
coder, our network architecture is the same as in the Surface
reconstruction experiment except for din1 = 256 + 3, as the
decoder receives as input [z, x] ∈ R259. Where [z, x] is a
concatenation of the latent encoding z ∈ R256 and a point
x ∈ R3 in space.

Training Details. Training our networks for learning the
shape space of the D-Faust dataset was done with the fol-
lowing choices. We have used the ADAM optimizer [25],
initialized with learning rate 0.0005 and batch size of 64.
We scheduled the learning rate to decrease every 500 epochs
by a factor of 0.5. We stopped the training process after
2000 epochs. Training was done on 4 Nvidia V-100 GPUs,
using PYTORCH deep learning framework [33].

8.2. Additional Experiments

Single reconstruction versus VAE reconstruction. One
of the key advantages of SAL is that it can be used for
reconstructing a surface from a single input scan or incor-
porated into a VAE architecture for learning a shape space
from an entire scans dataset. This raises an interesting ques-
tion, whether learning a shape space has also an impact on
the quality of the reconstructions. To answer this question,
we ran SAL surface reconstruction on each of the scans

used for training the main experiment of the paper (See ta-
ble 2 for more details). When comparing our SAL VAE
training results on the registrations (ground truth) versus
SAL single reconstruction we see differences in favor of
our VAE learner, whereas the results on the original scans
are comparable. That is, SAL single reconstruction results
are 0.10, 0.17, 0.22; 0.07, 0.08, 0.10 on the registrations and
scans for the 5%, 50%, 95% percentiles respectively.

Number of epochs used for training SAL VAE. Figure
10 shows reconstructions of test scans for different stages
of training on the D-Faust dataset. Given the main pa-
per discussion on SAL limit signed function, we addition-
ally add reconstructions from relatively advanced epoch as
3500, showing that no error in contouring occur.

8.3. Proofs

8.3.1 Proof of Theorem 3

Theorem 3. Consider a linear model f(x;θ) = ϕ(wTx+
b), θ = (w, b), with a strong non-linearity ϕ : R → R.
Assume the data X lies on a plane P =

{
x|nTx+ c = 0

}
,

i.e., X ⊂ P . Then, there exists α ∈ R+ so that (w∗, b∗) =
(αn, αc) is a critical point of the loss in equation 2.

Proof. For simplicity, we restrict our attention to absolutely
continuous measures DX , that is defined by a continuous
density function µ(x). Generalizing to measures with a dis-
crete part (such as the one we use for the L0 distance, for
example) can be proven similarly.

Denoting θ = (w, b), the loss in equation 2 can be writ-
ten as

loss(w, b) =

∫
Rd
τ(f(x;θ), hX (x))µ(x)dx.

Denote by r : Rd → Rd the linear reflection w.r.t. P ,
i.e., r(x) = x − 2nnT (x − x0) = (I − 2nnT )x − 2cn,
where x0 ∈ P is an arbitrary point. hX and µ are invariant
to r, that is hX (r(x)) = hX (x), µ(r(x)) = µ(x).

The gradient of the loss is∇w,bloss(w, b) =∫
Rd

∂τ

∂a
(f(x;θ), hX (x))∇w,bf(x;θ)µ(x)dx, (10)

where∇w,bf(x;θ) = ϕ′(wTx+ b)[x, 1].
Let w = αn and b = αc, where α ∈ R+ is currently

arbitrary. We decompose Rd to the two sides of P , Ω+ ={
x|nTx+ c ≥ 0

}
, and Ω− = Rd \ Ω+. Now consider the

integral in equation 10 restricted to Ω− and perform change
of variables x = r(y); note that r consists of an orthogonal
linear part and therefore dy =

∣∣∣det ∂y∂x

∣∣∣ dx = dx. Further-

more, property (i) implies that ∂τ∂a (a, b) = −∂τ∂a (−a, b), and



Figure 10: Effect of the number of training epochs on reconstruction quality of test scans. Left to right in each row: epoch
500, 1500, 2500 and 3500.



since ϕ is anti-symmetric andwTr(x) + b = −(wTy+ b)
we get

∂τ

∂a
(f(r(y);θ), hX (r(y))) = −∂τ

∂a
(f(y;θ), hX (y)).

As ϕ is anti-symmetric, ϕ′ is symmetric, i.e., ϕ′(a) =
ϕ′(−a) and therefore

ϕ′(wTr(y) + b) = ϕ′(wTy + b).

Plugging these in the integral after the change of variables
we reach

−
∫

Ω+

∂τ

∂a
(f(y;θ), hX (y))ϕ′(wTy + b)[r(y), 1]µ(y)dy.

An immediate consequence is that ∇bloss(w, b) = 0. As
for∇wloss(w, b) we have:∫

Ω+

∂τ

∂a
(f(x;θ), hX (x))ϕ′(wTx+ b)(x−r(x))µ(x)dx.

Since x− r(x) = 2nnT (x−x0) we get∇wloss(w, b) =

2n

∫
Ω+

∂τ

∂a
(f(x;θ), hX (x))ϕ′(wTx+b)nT (x−x0)µ(x)dx.

The last integral is scalar and we denote its integrand by
gα(x) (remember that (w, b) = α(n, c)), i.e.,

∇wloss(w, b) = 2n

∫
Ω+

gα(x)dx = 2nG(α),

where G(α) =
∫

Ω+
gα(x)dx. The proof will be done if we

show there exists α ∈ R+ so that G(α) = 0. We will use
the intermediate value theorem for continuous functions to
prove this, that is, we will show existence of α−, α+ ∈ R+

so that G(α−) < 0 < G(α+).
Let us show the existence of α+. Let x ∈ Ω+ such that

γ = nTx+ c > 0 and µ(x) > 0. Then,

gα(x) =
∂τ

∂a
(ϕ(αγ), hX (x))ϕ′(αγ)γµ(x).

Furthermore, since β−1 ≥ ϕ′(a) ≥ β > 0 we have that

gα(x) ≥ ∂τ

∂a
(ϕ(αγ), hX (x))γµ(x)

{
β ∂τ

∂a ≥ 0

β−1 ∂τ
∂a < 0

= g̃α(x).

Note that g̃α(x) is monotonically increasing and for
sufficiently large α ∈ R+ we have that g̃α(x) >
0. Since

∫
Ω+

g̃α(x)dx > −∞ for all α ∈ R+

the integral monotone convergence theorem implies that
limα→∞

∫
Ω+

g̃α(x)dx > 0. Lastly, since∫
Ω+

gα(x)dx ≥
∫

Ω+

g̃α(x)dx,

the existence of α+ is established. The case of α− is proven
similarly.

8.3.2 Local plane reproduction with MLP

Theorem 4. Consider an MLP as defined in equation 8.
Assume that locally in some domain Ω ⊂ Rd the dataX ∩Ω
lies on a plane P =

{
x|nTx+ c = 0

}
, i.e., X ∩ Ω ⊂ P .

Then, there exists a critical point θ∗ of the loss in equation 2
that reconstructs P locally in Ω.

By ”reconstructs P locally” we mean that θ∗ is critical
for the loss if DX is sufficiently concentrated around any
point in P ∩ Ω.

Proof. We next consider a general MLP model f(x;θ) as
in equation 8. We denote by supp(µ) the support set of µ,
i.e., {x|µ(x) > 0}. Let us write the layers of the network
f(x;θ) using only matrix multiplication, that is

fi(y) = diag
(
H(Wiy + bi)

)(
Wiy + bi

)
, (11)

where H(a) =
{

1 a ≥ 0

0 a < 0
is the Heaviside function.

Let µ be so that supp(µ) ⊂ Ω, and fix an arbitrary x0 ∈
supp(µ) ∩ P . Next, let θ ∈ Rm be such that: (a) there
exists a domain Υ, so that supp(µ) ⊂ Υ and for which all
the diagonal matrices in equation 11 are constants, i.e., Υ
is a domain over which f(x;θ) (excluding the final non-
linearity ϕ) is linear as a function of x. Therefore, for x ∈
Υ we have the layers of f satisfy

fi(y) = Di

(
Wiy + bi

)
,

and Di are constant diagonal matrices. Over this domain
we have

f(x;θ) = ϕ
(
w(θ)Tx+ b(θ)

)
,

and therefore

∇θf(x;θ) = A∇w,bf(x;θ), (12)

where ∇w,bf(x;θ) = ϕ′(w(θ)Tx+ b(θ))[x, 1], and A ∈
Rm×(d+1) is a matrix holding the partial derivatives of
w(θ) and b(θ). (b) over Υ there exists w(θ) = n and
b(θ) = c. The existence of such θ is guaranteed for exam-
ple from Theorem 2.1 in [2].

Similarly to the proof of Theorem 3 there exists α ∈ R+

so that ∇w,bloss(αw(θ), αb(θ)) = 0. Scaling the w, b
components of θ by α and denoting the new parameter
vector by θ∗, we get that ∇w,bloss(w(θ∗), b(θ∗)) = 0
(see equation 10) and therefore equation 12 implies that
∇θloss(θ∗) = 0, as required.

8.3.3 Proof of Theorem 1

Theorem 1. Let f be an MLP (see equations 8-9). Set, for
1 ≤ i ≤ `, bi = 0 and Wi i.i.d. from a normal distribution
N (0,

√
2√
douti

); further set w =
√
π√
dout`

1, c = −r. Then,

f(x) ≈ ϕ(‖x‖ − r).



Proof. To prove this theorem reduce the problem to a sin-
gle hidden layer network, see Theorem 2. Denote g(x) =
f`−1◦· · ·◦f1. If we prove that ‖g(x)‖ ≈ ‖x‖ then Theorem
2 implies the current theorem.

It is enough to consider a single layer: h(x) = ν(Wx+
b). For brevity let k = dout. Now,

‖h(x)‖2 =
k∑
i=1

ν(Wi,: · x)2 =
1

k

k∑
i=1

ν(
√
kWi,: · x)2.

Note that the entries of
√
kWi,: are distributed

i.i.d. N (0,
√

2). Hence by the law of large numbers
the last term converge to

‖x‖2
∫
Rk
ν

(
y · x
‖x‖

)2

µ(y)dy

= ‖x‖2
∫
Rk
ν(y1)2 1

(2πσ2)k/2
e−
‖y‖
2σ2 dy

= ‖x‖2
∫
R
ν(y1)2 1√

2πσ2
e−

y21
2σ2 dy

=
‖x‖2

2

∫
R
y2

1

1√
2πσ2

e−
y21
2σ2 dy

= ‖x‖2 ,

where in the second equality, similarly to the proof of
Theorem 2, we changed variables, y = Ry′, where
we chose R ∈ Rk×k orthogonal so that RT x

‖x‖ =

(1, 0, . . . , 0)T .

Skip connections. Adapting the geometric initialization
to skip connections is easy: consider skip connection layers
of the form s(y) = 1√

2
(y,x), where x ∈ Rd is the input to

the network and y ∈ Rdouti is some interior hidden variable.
Then ‖s(y)‖2 = 1

2 ‖x‖
2

+ 1
2 ‖y‖

2. According to Theorem
1 we have ‖y‖ ≈ ‖x‖ and hence ‖s(y)‖2 ≈ ‖x‖2.

8.3.4 Proof of Theorem 2

Theorem 2. Let f : Rd → R be an MLP with ReLU ac-
tivation, ν, and a single hidden layer. That is, f(x) =

wT ν(Wx + b) + c, where W ∈ Rdout×d, b ∈ Rdout ,
w ∈ Rdout , c ∈ R are the learnable parameters. If b = 0,
w =

√
2π

σdout1, c = −r, r > 0, and all entries of W are
i.i.d. normal N (0, σ2) then f(x) ≈ ‖x‖ − r. That is, f is
approximately the signed distance function to a d−1 sphere
of radius r in Rd, centered at the origin.

Proof. For brevity we denote k = dout. Note that plugging
w, b, c in f we get f(x) =

√
2π
σk

∑k
i=1 ν(wi ·x)− r, where

wi is the ith row of W . Let µ denote the density of mul-
tivariate normal distribution N = (0, σ2Ik). By the law of

large numbers, the first term converges to
√

2π

σ

∫
Rk
ν

(
u · x
‖x‖
‖x‖

)
µ(u)du

=

√
2π ‖x‖
σ

∫
Rk
ν

(
u · x
‖x‖

)
µ(u)du

=

√
2π ‖x‖
σ

∫
Rk
ν(v1)µ(v)dv

=

√
2π ‖x‖
σ

∫
Rk
ν(v1)

1

(2πσ2)k/2
e−
‖v‖2

2σ2 dv

=

√
2π ‖x‖
σ

∫
R
ν(v1)

1√
2πσ2

e−
v21
2σ2 dv1

=

√
2π ‖x‖
2σ

∫
R
|v1|

1√
2πσ2

e−
v21
2σ2 dv1

= ‖x‖ ,

where in the second equality we changed variables, u =
Rv, where we chose R ∈ Rk×k orthogonal so that
RT x

‖x‖ = (1, 0, . . . , 0)T , and used the rotation invariance
of µ, namely µ(Rv) = µ(v). In the last equality we used
the mean of the folded normal distribution. Therefore we
get f(x) ≈ ‖x‖ − r.


