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Abstract Log-polar imaging is a kind of foveal, biologi-

cally inspired visual representation with advantageous

properties in practical applications in computer vision,

robotics, and other fields. While the cheapest, most flexible,

and most common approach to get log-polar images is to

use software-based mappers, this solution entails a cost

which prevents certain experiments or applications from

being feasible. This may be the case in some real-time

(robotic) applications and, in general, when the conversion

cost is not affordable for the task at hand. To overcome this

drawback and make log-polar imaging more generally

available, parallel solutions with affordable modern multi-

core architectures have been devised, implemented, and

tested in this work. Experimental results reveal that speed-

up factors as high as or higher than 10 or 20, depending on

the configuration, are possible to get log-polar images from

large gray-level or color cartesian images using commodity

graphics processors. Remarkable speedups are also reported

for current multi-core processors. This noteworthy perfor-

mance allows visual tasks that would otherwise be

unthinkable with sequential implementations to become

feasible. Additionally, since three different approaches have

been explored and compared in terms of several criteria,

different cost-effective choices are advisable depending on

different visual task requirements or hardware availability.

Keywords Log-polar mapping � Real-time computer

vision � Graphics processors � Multi-core CPUs � CUDA �
Shaders

1 Introduction

Unlike conventional uniformly sampled cartesian images,

foveal imaging techniques offer advantages in some

applications due to their particular geometric and sampling

properties. One popular and useful technique is the log-

polar model where, by mimicking the vision of mammals

including humans, a large field of view is represented in a

very compact way by a smart selective data reduction

strategy where visual acuity is preserved at the center of

fixation (the fovea), while resolution decreases exponen-

tially towards the periphery.

This elegant trade-off solution to the conflicting

requirements of having a large field of view, using limited

computational resources and having enough visual detail,
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has attracted scientists and engineers alike, and the log-

polar imaging has been proven useful in several fields such

as robotics, computer graphics, computer vision, image

processing, and pattern recognition.

A recent survey [44] provides an updated coverage of

the properties of the log-polar imaging model and its

applications to robotics in tasks such as visual attention,

target tracking, egomotion estimation, vergence control,

and depth-cues estimation. In practice, most of the exper-

imental work conducted on the log-polar model in robotics

use software-based mapping algorithms to get log-polar

images from cartesian images. After the mapping, pro-

cessing is usually limited to the log-polar domain, which

saves significant computational resources while benefiting

from the properties of this transformed domain. In com-

puter graphics, the log-polar mapping can be a very

effective solution for the tricky problem of providing a

good view of both fine and coarse details at the same time,

with potential benefits for interactive exploration of com-

plex visual data [13]. For image registration, the log-polar

transform brings the possibility of aligning images having

undergone large deformations [56]. Pattern recognition

benefits mainly from the edge invariance of the log-polar

transform [29, 50] as well as from its implicit mechanism

for including the visual context (peripheral information)

without emphasizing it too much [8], which is an implicit

focus-of-attention mechanism useful in other tasks such as

vergence control and visual tracking [9, 15, 45].

Obviously, a software-based solution is very conve-

nient because of the flexibility it offers. For instance,

different geometric arrangements can be tested cheaply,

easily and quickly, and their effects on the particular

visual or robotic task at hand can readily be explored.

While this setting is perfectly acceptable as a proof-of-

concept for a wide range of experiments, it may suffer

from serious computational problems in other interesting

conditions. For instance, to really enjoy from a wide field

of view and the high resolution at the fovea, the mapping

should be performed from large cartesian images.

Unfortunately, performing the mapping from large/huge

images by conventional software routines may be costly

enough to prevent fast real-time operations from being

feasible which, in turn, may jeopardize the feasibility of

some experimental work.

Therefore, to benefit from the flexibility of software and,

at the same time, avoid costly transformation routines, fast

implementations are called for. In order to reduce the

computational burden of the log-polar mapping, several

approaches have been explored in the past, including CCD

or CMOS sensors [31, 38, 41], special-purpose cards [21,

43], Digital Signal Processing (DSP) hardware [39], Field

Programmable Gate Arrays (FPGAs) [52, 53], or algo-

rithms using particular strategies, either exploiting the

symmetry of the transform [47] or using scan-line proce-

dures [12]. Nevertheless, despite these efforts, parallel

solutions have rarely been investigated. As far as we know,

a reported study, 15 years ago, consisted of three proces-

sors of a network of transputers which were devoted to the

log-polar transform, as a part of an active vision system

[14]. Recently, graphic processors are used, by using

mipmapping, to implement the log-polar transform in the

context of creating image mosaics [25].

While some of these solutions may alleviate or solve the

computational problem, some approaches are hard to

design or manufacture, or do not allow easy and flexible

customization of the mapping parameters, or are econom-

ically not affordable. In contrast, the aim of this work was

to explore how the problem can be tackled using modern

hardware architectures, namely, Graphics Processing Units

(GPUs) and multi-core processors, which have become

very popular during the past few years, and are widely

available in low-cost computers.

While the advantages of GPUs were initially explored in

computer graphics, GPUs are now being used in many

other application domains, including computer vision. and

it is now a trending topic since the emergence of the

General Purpose computations on GPUs (GPGPU) con-

cept in early 2000s. Recent application fields include bio-

medical image processing [34], hyper-spectral image

manipulation [40] or face recognition [33], to name but a

few. Tools and libraries have been developed to make the

implementation of computer vision algorithms on GPUs

easier [7]. The relationship between speed-up and pro-

gramming effort [28] is indeed an important factor to bear

in mind.

Recent special issues of the IEEE Signal Processing

Magazine [17, 18], as well as workshops in the top com-

puter vision conferences [6, 19] are good signs of the

vitality, relevance, and timeliness of the topic. On the other

hand, the log-polar domain is still a topic of current

research and application interest, as revealed by very recent

(last two years) publications in a range of domains such as

robotics [55], watermarking [32], biometrics [36], machine

condition monitoring [54], etc. Therefore, given that both

GPUs and log-polar imaging are of current interest, it is the

problem addressed in this paper.

Besides GPUs, the interest in the acceleration of com-

puter vision applications using multi-core architectures

dramatically increased with the popularization of multi-

core processors in the past decade [16, 20, 27]. Recent

works aim at combining both technologies, reporting

comparative results and the benefits of each architecture for

specific problems [24].

To the best of our knowledge, no previous attempt

(besides the limited study in [25]) exists to accelerate the

log-polar mapping with these architectures and study the
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design, implementation, and performance issues involved.

However, the interest of such a study to find out how much

speed-up can be expected from which architectures is

evident. Many applications can potentially benefit from the

foreseeable increase in performance, mostly in the fields of

computer vision, robotics, and computer graphics. The

benefits from faster mappings are one or several of these:

the possibility to process image sequences at higher frame

rate, the ability to deal with larger cartesian and log-polar

images, making affordable more complex log-polar map-

ping models, etc.

GPUs and multi-core processors are parallel hardware

which are an inexpensive option in comparison with spe-

cific high-performance shared-memory multi-processors or

distributed-memory clusters. Besides this economic

advantage, studies in the recent trend in energy-aware

computing show that, in comparison with CPUs, power

savings are possible with GPUs, provided that the perfor-

mance increase is beyond some bound [35]. Since energy

consumption is of a particular concern for battery-supplied

devices, alleviating this problem in this case is especially

important. For instance, the use of GPUs for a face rec-

ognition application on mobile devices is interestingly

shown to provide a 4.259 speed-up in performance and

almost a fourfold energy saving with respect to the CPU

[48].

In this work, we provide a set of implementations for

the log-polar transform targeting different parallel archi-

tectures (namely modern graphics processors and multi-core

architectures). For the GPU versions of the transform, we

propose a comparison between a CUDA-based imple-

mentation and a Shaders-based one. While CUDA has

emerged as a new standard for the development of gen-

eral-purpose algorithms on the GPU, it is still limited to

Nvidia hardware. Thus, a Shaders-based implementation

is an option to obtain portable solutions and compare the

abilities of graphics processors from different manufac-

turers. In addition, such a comparison is useful to gain

insights regarding the efficiency of each type of pro-

gramming models for GPGPU algorithms. In this paper,

the advantage of portability of Shaders is not considered,

and only Nvidia GPUs have been used in this work so

that fair comparisons between the different programming

models are possible.

In the following, an overview of the log-polar mapping

is first provided (Sect. 2). Then, a sequential algorithm for

the log-polar transform and the proposed parallel imple-

mentations are described (Sect. 3). These implementations

are tested and compared in terms of running time, perfor-

mance speed-up and other criteria (Sect. 4). Based on these

results, some final remarks are then provided, including

ideas for further work (Sect. 5), and the main conclusions

are drawn (Sect. 6).

2 The log-polar mapping

Given a square M 9 M cartesian image, the log-polar

mapping results in a R 9 S log-polar image, with R and S

being the number of rings and sectors of the transform,

which define the radial and angular resolution. Usually,

R � S � M2; hence the computational saving of image

processing performed on the much smaller log-polar

image. For debugging or didactic purposes and/or as a

requirement of the application itself, it is often necessary to

reconstruct the cartesian image from the log-polar image

itself. This results in a cartesian image of the same size as

the original one, but with the corresponding spatially res-

olution effects of the log-polar transform: high resolution at

the center of the transform, and radially decreasing reso-

lution. Both forward and backward mappings are illustrated

in Fig. 1. This figure also provides an idea of how small the

log-polar image can be in comparison with the cartesian

image. Actual sizes will be discussed later in the experi-

ments section (Sect. 4).

Although there are several possible models to map

cartesian coordinates (x, y) to log-polar ones (n, g), the
following popular model is employed here:

n ¼ loga
q
q0

� �

g ¼ q � h

(
ð1Þ

where (q, h) are the corresponding polar coordinates, a is

the logarithmic base, q0 is the radius of a central area

which is left out of the mapping to avoid the singularity of

the logarithm, and q is the angular resolution for a given

size of the log-polar image. The blind central area can be

appreciated in the reconstructed cartesian image on the

right of Fig. 1. Since the coordinates n and g are real-

valued, the indices for the log-polar images are the integer

part of them and denoted as (u, v). Therefore, u = b n c,
1 B u B R and v = b gc, 1 B v B S. Similarly, we use

(i, j) to represent the integer values corresponding to real-

valued cartesian coordinates x and y.

Given an input cartesian image of side length M (i.e. a

M 9 M-sized image), the user input parameters of the

transform areR, S, and q0. From these parameters, the other

ones (a and q) required in (1) are computed as follows:

a ¼ exp ln
qmax

q0

� �
=R

� �
; q ¼ S

2p

where the maximum radius of the transform, qmax, is

usually set as qmax = M/2 to cover the most of the input

image.

Besides the geometric transformation, the actual log-

polar transform consists of performing some sampling

strategy to obtain an actual log-polar image from an input

cartesian image. Several sampling methods are possible,
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but in this work an averaging procedure is adopted: the

pixel values corresponding to the region of the input

cartesian image whose positions map to the same log-polar

pixel are averaged to get the value for the corresponding

log-polar pixel. Those patches in the cartesian image cor-

responding to a single log-polar pixel are referred to as

receptive fields (RFs) after the biological motivation of the

transform.

3 Implementation

The implementation of the log-polar transform followed

here proceeds, conceptually, in two steps: map building,

and actual transformation of an input cartesian image. First,

a look-up table (LUT) L as big as the size of the log-polar

image (i.e. R 9 S) is built so that each of its entries Lðu; vÞ
keeps the list of cartesian pixels fLðu; vÞk ¼ ðik; jkÞgKk¼1;

with K ¼ jLðu; vÞj being the length of the list of cartesian

pixels contributing to (u, v). This LUT is also referred to

the log-polar map, or just map, in this paper. For a given

geometry of the cartesian and log-polar images (namely,

givenM, R, S, q0 and qmax), the map L can be computed

only once and reused for every input cartesian image to be

transformed.

In the following, the sequential algorithm (Sect. 3.1),

the GPU-based solutions (Sect. 3.2), as well as the port of

the log-polar transform to multi-core architectures

(Sect. 3.3) are described.

3.1 The sequential algorithm

Once the map L has been built, the transformation can be

computed by a simple sequential procedure (Algorithm 1),

which, essentially, averages gray-level values from all

cartesian pixels falling into a receptive field. A detail that is

missing from this algorithm for the sake of clarity is that of

oversampling. Oversampling happens when, at the center

of the mapping, at the fovea area, the RFs are smaller than

a single cartesian pixel. In this case, the averaging proce-

dure does not make sense as it does when many cartesian

pixels fall into the area of a single RF. Therefore, the value

of the corresponding log-polar pixel is simply obtained by

copying the value of the corresponding cartesian pixel.

3.2 Graphics processors

Graphics processors have become a realistic alternative for

general-purpose high-performance computing implemen-

tations. Even though general-purpose algorithms can be

developed using the classical graphics-oriented nature of

the GPUs, the introduction of the Compute Unified Device

Architecture (CUDA) and software infrastructure has dra-

matically increased the interest on these type of processors

for certain non-graphical tasks.

Therefore, GPU programming can be approached in two

basic different ways: as a general-purpose processor or as a

graphics processing unit. In the first case, when pro-

grammed as a general-purpose processor, the GPU is

considered as an array of scalar processors (Streaming

Processors, SPs) grouped in clusters (or Streaming Multi-

processors, SMs). The GPU supports a highly multi-

threaded execution model, with threads executing a

common program (or kernel) in a Single Instruction Mul-

tiple Data (SIMD) fashion. Threads are grouped into

blocks of threads, and communication among them is

performed through different memory spaces: global off-chip

MxM cartesian image MxM reconstructed cartesian image

RxS log-polar image

Log-polar
mapping

Inverse log-polar
mapping

Fig. 1 The log-polar (direct,

forward) and inverse (or

backward) log-polar mappings

(see text for details)
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memory for the communication of all the executing threads,

and small on-chip shared memories per SM for the com-

munication of threads within the same block of threads.

Alternatively, when programmed as a purely graphics

processing unit, the GPU is viewed as a sequence of spe-

cialized functional units in which each of the stages of the

graphics pipeline is executed. Parallelism is extracted

internally within each stage of the execution pipeline,

exploiting the parallel capabilities of the architecture

mentioned above.

Graphics Processors have evolved from being configu-

rable to being programmable. Within this programmable

rendering pipeline, it is possible to use a set of software

instructions that is utilized to perform rendering effects on

graphics hardware with a considerable flexibility. This set

of instructions is usually known as a shader, and the lan-

guage specification of the possible instructions to be

included in a shader is named the shader language. Most-

known shader languages are GLSL [23] and HLSL [11],

which were created and developed for their use with

OpenGL and Direct3D API, respectively. Thus, each of the

programmable processors contained in the processing

pipeline can be programmed using a shader. In particular,

current processors for the OpenGL processing pipeline are

the vertex, tessellation control, tessellation evaluation,

geometry, and fragment processors [23]. Functionalities

offered by the different processors are beyond the aim of

this work. However, we underline vertex and fragment

processor as the programmable units we will use to per-

form the log-polar transform.

On the one hand, vertex processors perform operations

on input vertices and their associated data. Operations are

executed once per vertex and the resulting vertex is input to

the next stage in the graphics pipeline. On the other hand,

fragment processors are the last programmable units in the

pipeline and they directly operate on the color of the

generated pixels, which are used to update the frame buffer

or texture memory, depending on the render target.

One goal of this work is to compare both interpretations of

the architecture (general-purpose and graphics processing)

in the context of the log-polar transform. This comparison is

possible from different perspectives: performance, accuracy

of the results, and ease of development. The following sub-

sections describe the developed GPU implementations using

CUDA (Sect. 3.2.1) and Shaders (3.2.2).

3.2.1 CUDA-based implementation

The implementation of the log-polar transform with CUDA

does not use the look-up table L to know the mapping

between cartesian and log-polar pixels, but rather, the

conversion between cartesian and log-polar coordinates is

carried out on-the-fly while an input cartesian image is

processed to get the log-polar one. This decision is made to

favor time spent on computation over that spent on mem-

ory accesses, since recomputation instead of redundant

memory access is one of the main strategies adopted in

CUDA to hide memory latency and to take benefit from the

huge data processing power of modern GPU [30]. Despite

this general rule-of-thumb, we tested an alternative

implementation using the LUT to check whether this

general guideline really holds in the context of our problem

(Sect. 4.2).

This implementation requires to allocate three areas into

the global memory of the GPU: one area is devoted to the

cartesian image (I) that has to be transformed; another

memory area is for the resulting log-polar image (L), and

the third one is used to compute and keep the pixel count

(K). For each log-polar pixel, K stores, at each step of the

algorithm, the number of cartesian pixels that have been

mapped into it. The transformation is based on the fol-

lowing procedure (Algorithm 2): the cartesian image is

scanned and, for each cartesian pixel position (i, j), the

corresponding log-polar pixel (u, v) on which (i, j) con-

tributes is computed. Then, the value of L(u, v) is updated

according to the value of the cartesian pixel, and its pixel

counter K(u, v) is increased (line 6). Therefore, the

updating rule corresponds to a running average (line 5).

The parallelization of this procedure is obtained by dele-

gating the computation of a column of the cartesian image

to each thread. The index of the column i that is computed

by a thread is determined by the thread and block indices, t

and b, as i ¼ t þ b � n; where n is the number of threads per

block. The number of blocks is therefore B ¼ M
n

� �
:

Better performances of the algorithm are obtained when

n facilitates coalesced reading of the global memory

access. Coalescing, a popular term in CUDA programming,

refers to combining individual memory accesses performed

by consecutive threads into single wide memory transac-

tions under certain restrictions [30]. Among the several

values that allow coalescing, n = 64 was chosen

empirically.
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The direct updating of the values of L and K is per-

formed directly using the global memory. Some improve-

ments to the performance could be achieved using the

shared memory. However, this approach would have two

drawbacks. First, the size of the shared memory is usually

not big enough to contain the log-polar image; thus we

would need to know beforehand which portion of the log-

polar image is modified by a block. Second, we would need

to synchronize the threads before copying.

Once this main procedure is completed, the effect of

oversampling is dealt with by assigning the gray-level of

the corresponding cartesian pixel to the log-polar pixel for

which the corresponding pixel count (K) is zero. This

procedure (Algorithm 3) is parallelized by delegating the

computation of a column (a ring) of the log-polar image to

each thread. In this case, the number of blocks B was

computed as B ¼ R
n

� �
:

3.2.2 Shaders-based implementation

In general, the adaptation of a sequential and iterative

algorithm to the graphics pipeline is not a straightforward

task. The Shaders-based implementation of the log-polar

mapping follows the workflow outlined in Fig. 2, which is

made up of two fundamental tasks, preprocessing and

rendering, which are described subsequently.

At the preprocessing step, the graphics pipeline is pre-

pared to perform the log-polar transform. On the one hand,

it is necessary to allocate space into the graphics memory

for the source image to be transformed I, and for the

resulting log-polar image L. In Fig. 2, they are represented

as the Cartesian Image and Log-polar Image, respectively.

On the other hand, a Geometry map must be constructed

and uploaded to the graphics memory as well. Since loops

are not suitable for the graphics pipeline, this map is a data

structure derived from the look-up table L; and adapted to

start the log-polar transformation in the vertex processors.

These processors are the first programmable units in the

pipeline, and they are essential in this algorithm. Compu-

tations into the graphics pipeline are directly related to the

number of vertices to be processed. In this case, a vertex is

created for each contribution of the cartesian image into the

log-polar image. Therefore, the Geometry map contains a

list of vertices, where each vertex is a 2D pair (u, v) with its

associated data (i, j). In this way, every contribution of the

cartesian image is computed as a vertex into the graphics

pipeline. Therefore, if an entry in the look-table Lðu; vÞ has
K cartesian pixels contributing to (u, v), there will exist K

vertices into the Geometry map.

Before rendering, it is also fundamental to establish a

viewport of R 9 S pixels so that every vertex in the

Geometry map gets mapped to exactly one pixel into the

final image L. In computer graphics, the usual output of the

graphics pipeline is the screen. However, we are interested

in obtaining a log-polar image. To that end, the rendering

target is changed to be a texture instead of the screen, and

the log-polar image is indeed a texture. Thus, just a single

pass is required to create the final image, which can be

reused as a texture source with no more rendering passes

being required.

At rendering time, transforming operations are per-

formed in the vertex and pixel shaders units. First, ren-

dering starts by issuing an OpenGL command that sends all

the vertices from the Geometry map to the vertex shader

units. Vertex shaders process every vertex by simply

passing down the information to the pixel shader units

where transforming operations take place. Thus, for each

Fig. 2 Workflow in the

Shaders-based log-polar

transform
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existing contribution of the cartesian image into the log-

polar image a pixel shader is executed. The pixel shader

receives the information sent by the vertex shader, that is,

the 2D pair (u, v) and its (i, j) data. This second pair is used

by the pixel shader to read from the Cartesian image, I, the

contributing color, which is linearly interpolated to the

existing color in the pixel at (u, v). Once the rendering

stage is completed, a texture, actually corresponding to the

log-polar image L, is obtained.

3.3 Implementation based on multi-core processors

If we consider the sequential log-polar transformation

illustrated in Algorithm 1, as the transformation advances,

each one of the R rings of the output image is obtained.

Thus, the calculation of a ring does not start until the

previous ring has been completely obtained, in a sequential

fashion. However, the computation of a given ring in the

log-polar image is completely independent from the com-

putation for the subsequent rings. Therefore, the compu-

tation of each one can effectively proceed in parallel. As a

result, we propose a parallelization of the log-polar trans-

form targeting multi-core processors in which the iterations

of the outer loop in Algorithm 1 (from the first to the R-th

ring) are divided and assigned to subsequent threads at

runtime. Proceeding in this manner, in a certain point of the

execution, as many rings as threads will have been created

and will be processed in parallel.

Alternatively, the described strategy could be applied to

process sectors of the log-polar image in parallel instead of

the rings. The success or failure of each alternative will

depend on the amount of rings and sectors (parameters R

and S) in the log-polar image with respect to the total

number of threads performing the transformation. The

more rings or sectors are available, the more concurrency is

exposed, and thus, more effective is the parallelization

process. Since R[ S is the most common practical situa-

tion [46], assigning threads to rings is therefore the most

sensible choice in our problem to avoid falling in a waste of

resources as a result of having threads idle during the

computation. However, our tests showed that performance

was similar in both strategies, and only in extreme cases

these different strategies make a difference.

OpenMP has been used for the parallelization of the

transformation on multi-cores. This infrastructure offers

several scheduling policies to assign loop iterations to

threads. The log-polar transformation, as implemented in

Algorithm 1, presents different workloads depending on

the size of the RFs at different eccentricities u. In the

algorithm, this amount of work is dictated by the length of

the set Lðu; vÞ: For this reason, the usage of a dynamic

scheduling policy of iterations to threads has attained the

best performance results in our tests for both ring-based

and sector-based parallelization. This type of policy can

hide the inherent irregularities in the amount of work

assigned to each thread, at the expense of some extra

overhead in terms of computation time.

All the experimental results shown in Sect. 4 correspond

to a parallelization at ring-level, using exclusively a

dynamic scheduling policy. This has been the combination

of the parallelization strategy and the scheduling policy

that has attained better results in our experimental process.

4 Experimental results

For the hardware resources used in the evaluation of our

parallel implementations of the log-polar transform we

have chosen the multi-core CPU and GPU architectures

representative of hardware of a similar generation. A

detailed description of this hardware is included in Table 1.

Both the multi-core CPU and the GPU selected for our

evaluation are high-performance representatives of current

desktop systems. In particular, the Intel Xeon architecture

is a dual-socket, quad-core processor running at 2.27 GHz.

The Nvidia GPU is equipped with 480 cores running at

1.4 GHz (while the rest of the GPU runs at 700 MHz). The

interconnection between the GPU and the rest of the sys-

tem is performed via a PCIExpress 2.0 bus. Besides the

main experiments with this set-up, an additional experi-

ment has been developed (Sect. 4.2) to find out how

cheaper GPUs behave in this problem.

On the software side, the parallelization on the multi-

core processor has been carried out using the OpenMP [5,

42] implementation included in the GNU compiler infra-

structure, version 4.1.2. For the CUDA [2] implementation,

we used version 3.2 of the toolkit and version 260.19.21 of

the graphics driver provided by Nvidia. For the Shaders-

based implementation, OpenGL Shading Language

(GLSL) was used as the shader programming language [23]

Table 1 Summary of features of the hardware used in the

experiments

CPU GPU

Processor model Xeon E5520 Geforce GTX480

Processor codename Intel Nehalem Nvidia Fermi

Clock frequency 2.26 GHz 1.4 GHz

Max. performance 145 GFlops 1.35 TFlops

Interconnection bus PCIExpress 2.0

Memory frequency 2 9 400 MHz 1.85 GHz

Memory bus width 64 bit 384 bit

Memory peak bandwidth 12.8 Gb/s 177.4 Gb/s

Memory size and type 24 GBytes DDR2 1.5 Gbytes GDDR5
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and OpenGL [4] as the supporting graphics library. We

have used the CImg library [1] for basic image manage-

ment (I/O operations and pixel access).

4.1 Computational performance

In order to know the relative merits of each architecture

(namely, sequential algorithm, GPU with CUDA, GPU

with Shaders, and multi-core with 8 cores) under different

practical conditions, a series of log-polar transformations

were carried out under each case for a number of different

geometric parameters. In a first experiment, the size of the

log-polar image was set to a fixed value, and the size

M 9 M of the square cartesian image was varied as M 2
f256; 512; 1024; 2048; 4096g: Conversely, in a second

experiment, the size of the cartesian image was kept and

that of the log-polar image was varied as R 2
f32; 64; 128; 256g: The other parameters defining the

geometry of the log-polar transform were set as S ¼ 2 � R;
q0 = 5 and qmax ¼ M

2
; which are reasonable practical

choices. Additionally, the tests were done both on gray-

level and color images.

In all these cases, the transformation was repeated

k = 100 times, and the average and standard deviation of

the times were computed. However, the variance was

observed to be very low and it is therefore not reported

here. In the following, we refer to ‘‘CPU‘‘ to mean the

implementation of the sequential algorithm. To make the

comparison with the CPU as fair as possible, the times for

the CPU case actually refer to the implementation on the

multi-core with a single core, so that time differences are

not due, for instance, to either biased software implemen-

tations, or hardware being from different generations, or of

significantly different performances.

The resulting execution times (in milliseconds) are

shown in Figs. 3 and 4 for the configurations explained

above. While the absolute times are good figures to know,

the speed-up factors provide interesting insight into the

relative gain, in particular when the differences in absolute

times are hard to notice in the plots (e.g. as it happens in

Fig. 3 for M B 512). Thus, these figures are complemented

with the corresponding speed-up factors shown in Figs. 5

and 6. Notice that the horizontal axis in all these figures is

not representing values varying linearly; the image side

length M doubles and, therefore, image size quadruples.

It can be readily observed (Figs. 3, 4) that significant

time is saved with any of the proposed parallelization with

respect to the sequential algorithm, and this advantage

becomes more and more evident with the increase of the

size of the images. When comparing the plots in Fig. 3

with those in Fig. 4, it can be seen that the increase in the

size of the cartesian image (M) affects every implementa-

tion more than the increase in the size of the log-polar

image (R), and higher speed-up factors are generally

achieved when this happens. This is an interesting result

since this is one of the motivations behind this work:

whether parallel software-based implementations of log-

polar transform can make it to be affordable for stringent

real-world conditions and/or for significant large input

cartesian images. As another practical consequence, these

speed-ups would also make possible processing images at a

much higher frame rates.

When comparing the plots on the left with those on the

right in all these figures, it can be appreciated that per-

forming the log-polar transform on color images (3 chan-

nels) is more costly than on gray-level images (single

channel) in all cases, except for the Shaders case, which

does not benefit from single-channel gray-level images

since these are actually treated as color images. It is

important to notice that for the Shaders case we treated

gray-level images as color ones because it does not actually

affect the results. In fact, we read only a channel from the

gray images when processing them. Certainly, storing only

a channel for gray images is more efficient in terms of GPU

memory requirements, but it has not an impact on time

perfomance.

In general, the best times are obtained with the CUDA

implementation especially for large images. As an excep-

tion, the Shaders-based implementation is an appealing

solution for small and medium-sized color images com-

pared with the CUDA-based implementation (see, Fig. 6,

top-right). Many factors can benefit this remarkable

behavior. First, the Shaders-based implementation, as

designed, is especially efficient in the management of color

images. Second, the CUDA model delegates a bunch of

implementation decisions to the programmer’s hands

(namely register usage, data coalescing parameters, num-

ber of blocks and threads per block,…). This type of low-

level decisions is usually hidden in the Shaders model, and

execution parameters are usually decided and optimized at

run time by the software infrastructure, depending on the

specific details of the input data or the renderization pro-

cess to be performed. In this sense, although the parameters

chosen for the CUDA implementation are appropriate for

large images (as demonstrated, e.g., in the plots at the

bottom of Fig. 6), the implicit execution configuration in

the Shaders model seem optimal for small- or medium-

sized images.

The general benefits and strengths of using the GPU as

the execution platform, independently from the chosen

programming model, are revealed as the size of the data

sets to be processed increases. As an example, consider the

high performance attained by the multi-core implementa-

tion for medium-sized images in Fig. 6 (top-left). While

the multi-core implementation is highly competitive for

this specific configuration, its benefits are lost as the size of
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Fig. 3 Conversion times for gray-level (left) and color images (right), by varying the size of the cartesian image for a fixed size of the log-polar
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the cartesian image grows, for both color and gray-level

images. Thus, the adaptation of a given architecture to this

particular problem does not only depend on the specific

algorithm used, but also on the particular characteristics of

the input data to be processed, mainly its size.

These results are not easily comparable to related pub-

lished works, because not much work exists on this topic,

not extensive experimental work is done or reported, and

the test conditions are quite different. As an example, an

FPGA-based implementation of the log-polar transform

[53] is reported to achieve an speed-up factor of around

1.59, which is smaller than most of the speed-up factors

we get in most geometric configurations tested, even when

the reference time in [53] is taken from the execution of a

Matlab-based implementation and, as it is well known,

implementations based on Matlab are generally of very low

performance and therefore, not a fair reference for the

performance of a sequential algorithm.

4.2 Influence of using a precomputed map in CUDA

In the case of the CUDA-based implementation, we wanted

to test whether (and how) the performance would change

using a precomputed transform map L with respect to

computing the map implicitly ‘‘on-the-fly‘‘. In other words,

the values (u, v) are obtained directly by the LUT L (i, j)

instead of being computed. This implies testing whether the

cost of GPU memory access pays off. To that end, an

alternative CUDA-based implementation was developed

which precomputes the map L off-line (on the CPU) and

uses it during the transformation of actual images. Addi-

tionally, besides the 480-core GPU used in the rest of the

experiments, a cheaper and more modest 16-core GPU was

included in the test. Resulting speed-up factors are com-

pared in Fig. 7.

Even though the general guidelines [30] suggest to limit

memory accesses even at the cost of performing more

computations, these results indicate otherwise: using the

LUT L is beneficial since higher speed-ups are obtained.

This is due to the high computational cost required by the

arithmetics operations used in the algorithm (such as the

logarithm or the square root). However, the algorithm that

was tested was not optimized to minimize the computational

cost and slight improvements in the implementation not

using the LUT can enhance the performance to obtain results

close to those offered by the implementation using the LUT.

On the other hand, it can be seen that the speed-up factor

obtained with the 16-core GPU is similar to those offered

by the better 480-core GPU up to M& 1024. For cartesian

images bigger than that, the speed-up factor stops growing

for the 16-core GPU. This illustrates that interesting

computational gains are possible even with modest GPUs;

for instance, about a 59 improvement is achieved when

obtaining color log-polar images from cartesian images of

1024 9 1024 and bigger. Intermediate results can be

expected for GPUs of in between performances.

Regarding the use of the LUT for the 16-core GPU, it

was observed, although not shown in the plots, that it was

also advantageous. In this case, memory bandwidth

demands are less strict, as there is a lower number of cores

accessing it. It is thus a logical result that the use of a LUT

is more advantageous in this scenario. Therefore, although

the effect of the LUT cannot be generally predicted

beforehand and it should be assessed empirically, the

logical result derive.

4.3 Scaling with the number of cores in multi-core

For the multi-core implementation, it was interesting to

find out how the speed-up relates to the number of cores
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used. Thus, log-polar transformations were repeated for

c [ {2, 4, 8} cores. Results for 16 cores were also con-

ducted due to the Hyperthreading capabilities of the Intel

processor, with no extra performance benefit. Speed-up

results are shown in Fig. 8. The log-polar transform, as

implemented, is a memory-bound algorithm. The ratio

between floating-point operations (flops), and memory

accesses (memops) is low, so the performance is mainly

limited by the pace at which memory can provide data to

computing units. This effect becomes worse as the number

of processing units demanding data increases. Taking as an

example the transform of gray-level images, speed-up

factors vary between 1.59 using 2 cores, 2.59 using 4

cores and 3.59 using 8 cores. These factors give an idea of

the degree of penalty introduced by memory accesses for

this specific platform as the number of cores accessing it

simultaneously is increased. Therefore, on systems with a

reduced number of cores (2–4), as in current desktop

computers, the scalability of the implementation is of wide

appeal, but can suffer from bottlenecks on architectures

with more cores. Additional experiments revealed better

scalability results (near to optimal speedups) for higher

values of R and S, i.e. R = 1024 and S = 2R; however,

given that those setups do not usually appear in real

problems, we have chosen not to consider that behavior as

the standard behavior of the multi-core implementation.

4.4 Time breakdown

The times considered above are due to the actual log-polar

mapping. Nevertheless, there are some other ‘‘overhead‘‘

times deserving attention. Both GPU-based solutions need

to transfer the input cartesian image from main memory to

GPU memory and the output log-polar image from the

GPU to the main memory. This is not the case for the

multi-core architecture, since both images reside in main

memory and no transfer is required.

Another datum to be transferred is the map defining the

coordinates mapping, if it is used. Finally, the computation

of the map itself may be considered. However, in most

applications, this map need only be computed and trans-

ferred once (off-line) for a given set of geometric param-

eters (M, R 9 S, q0, qmax). After that, at on-line time, all

incoming images can therefore be processed by using the

same precomputed map, with no extra cost. Therefore,

times involved in map computation or transfer are not

considered here.

There is a general reasonable concern that the speed-up

gained by the GPU performance may be lost with the

required data transfer between main and GPU memories

[22]. This is particularly concerning when using toolkits

where the programmer has little control to minimize such

transfers [37]. To test whether this is the case also for the

problem considered here, the times to transfer the cartesian

image from the main memory to the GPU memory and to

transfer the log-polar image from the GPU memory to main

memory are considered for three representative sizes of the

cartesian image: M = 256 (‘‘small’’), M = 1024 (‘‘med-

ium-size‘‘) and M = 4096 (‘‘large’’).

It can be seen (Fig. 9) that most of the time is spent on

the actual transformation, and only a (very) small fraction

of the elapsed time is spent on data transfers. On the other

hand, the situation is somehow different for different

architectures/strategies depending on the size of the ima-

ges. Therefore, paying attention to the size of the expected

images is important to select, if possible, the most suitable

architecture.

In the case of gray levels, for small images, the multi-

core CPU is the best choice. For medium images, all

architectures offer similar performance, but the overhead
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cost for image transfers may still suggest not to use the

GPU. For large images, this overhead is made up for the

significant speed-up achieved in the actual transformation,

and the GPU with CUDA is clearly preferred. In general,

the latency introduced by the PCIExpress bus makes the

GPU implementation only suitable for relatively large

images, provided that the cartesian image resides on main

memory prior to the transform. For large images, the high

bandwidth of the bus is responsible of the negligible

amount of time devoted to data transfers.
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For the color case, results for small images with Shaders

and CUDA are more similar between them than in the

cartesian case and still worse than those with multi-core

CPU. For medium images, the Shader-based implementa-

tion is preferred, and for large images, the CUDA choice is

better, although not as clearly as in the gray-level case.

Notice that transfer times in the Shaders and CUDA case

are different because, even though the GPU is the same in

both cases, experiments were carried out on different

computers. This means that besides the GPU itself, the

performance of the rest of the setup may also have some

impact, mainly because of the specific CPU, chipset and

PCIExpress bus configuration used in each measurement.

4.5 Qualitative and quantitative visual assessment

For a complete study, besides the time performance, it is

important to know the quality of the images obtained.

Figure 10 shows the log-polar images obtained with the

sequential algorithm as well as those obtained with the

parallel hardware and algorithms considered here. To

facilitate the qualitative visual assessment, the recon-

structed cartesian images are also shown. Therefore, a

visual inspection of these images reveal they are correct.

Note that the reconstructed images are computed with a

sequential algorithm in all cases (no parallel implementa-

tion of the inverse log-polar transform is used).

In order to quantify the quality of the log-polar image Lm
computed with a given parallel method m, the log-polar

image obtained with a CPU with the sequential algorithm,

L, is taken as a reference, and a similarity measure between

Lm and L can be used. Here we adopt the Normalized Cross

Correlation (NCC), which is defined as

1
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where L and Lm are the compared gray-level images and �L

and �Lm are their average values. By definition, the value of

NCC lies in [0,1], and the higher its value the more similar

the compared images are. Note that here NCC is computed

between the actual log-polar images, and not between their

reconstruction into the cartesian domain and the original

cartesian image.

Figure 11 shows the NCC for the images obtained with

the three parallelization techniques considered in this paper

for the case R = 64, S = 128 and varying M. The multi-

core algorithm yields the images resembling the most the

ones computed with the CPU. The Shaders-based solution

provides the images significantly less accurate, and the

CUDA-based solution has an intermediate accuracy. In all

cases, the NCC is quite stable for different sizes of the

cartesian image. Notice that the lower value of NCC for the

Shaders-based case can in fact be linked to the different

Fig. 10 Example of log-polar images (middle row) obtained from an

input cartesian image (top row) with the different architectures for

(M = 512, R = 64, S = 128, q0 = 5). All reconstructed images

(bottom row) are computed with a sequential implementation of the

backward transformation
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general brightness noticeable in the images in Fig. 10. The

reason behind this lower value of NCC in comparison with

the CUDA-based and multi-core solutions is a numerical

problem: the limit of precision in the frame buffer. In

general, the frame buffer has a default precision of 8 bits

per channel which is accurate enough for screen visuali-

zation. However, in the context of this problem, more

precision is necessary since many contributions of the

cartesian image onto a given log-polar pixel can occur (for

big RFs). The reason why the multi-core solution offers the

highest similarity to the images computed with a sequential

algorithm has probably to do with the fact that the imple-

mentation follows more closely the original sequential

code. Note that the single-core CPU used to get the images

computed with the sequential algorithm is different to the

multi-core CPU used for the tests reported in this paper.

Regarding the lower value of NCC in the Shader case,

two remarks are in order. First, although the actual pixel

values are not exactly the same as those resulting from the

sequential algorithm, the structure of the visual scene is

correctly captured and this is what is important in many or

most practical applications. Second, if higher brightness

accuracy is desired for some application, a two-pass

algorithm may be devised to cope with the numerical

problem mentioned above. This two-pass algorithm would

accumulate all image values corresponding to a receptive

field in a first pass and perform the division (to compute the

average) in a second pass, instead of accumulating the

weighted values in a single pass, as performed in the cur-

rent implementation. Since this alternative procedure

would, however, involve some extra computation, the

current implementation represents an adequate perfor-

mance-precision trade-off.

4.6 Conceptual and implementation complexity

The design and implementation complexity of the three

considered parallelizations are as follows: The implemen-

tation based on multi-cores relies heavily on the existing

sequential algorithm and code, and only a reduced number

of OpenMP directives (pragmas) have had to be added to

the sequential code in order to extract parallelism. More

specifically, the loop-level parallelism is attained using the

pragma omp parallel for construct, with additional

clauses to denote the visibility of some variables and

scheduling policies. The OpenMP runtime provided by the

GNU compiler is in charge of orchestrating the parallel

execution of the code.

The Shaders-based implementation is somehow more

elaborate than that based on multi-cores, but it benefits

from the simplicity of high-level programming model

offered by GLSL. What is interesting in the Shaders

solution is that it is portable to any GPU, unlike the CUDA

solution which assumes Nvidia GPUs. Finally, the CUDA-

based solution requires more effort in its design and

implementation, and additional low-level design consider-

ations have had to be made. The benefits of the three

solutions in terms of time speed-ups correlate well with

their implementation efforts. Therefore, the studied solu-

tions are, in this sense, interestingly cost-effective.

Similarly, in economic terms, multi-core processors are

generally the least expensive hardware, which also make

the studied solutions cost-effective.

5 Discussion

Given the practical interest of fast implementations of the

log-polar transform, this work has focused on proposing,

evaluating and comparing three different parallel imple-

mentations based on GPU and multi-core processors. It has

been shown that significant speed-ups with respect to a

sequential implementation can be obtained, which makes

these solutions appealing for a number of applications

requiring log-polar images.

As a practical example, real-time (30 frames/s) log-polar

transforms are possible, including the time for the image

transfers between the GPU and the host CPU, for gray-

level images as big as 4096 9 4096 pixels, or for

1024 9 1024 color images. Certainly, for most tasks, fur-

ther processing must be performed on the log-polar images

after they are obtained, and this cost must be included to

estimate the frame rate. However, since efficient algo-

rithms have been developed for many of these tasks, this

processing cost can be easily assumed since the log-polar

transform is generally the main bottleneck. For instance, a

projection-based motion estimation algorithm [45] runs
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Fig. 11 Similarity of the log-polar images computed with the parallel
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quite fast (20 ms per frame on a modest CPU). Further-

more, some algorithms, such as this motion estimator, lend

themselves to be parallelized, which would turn real-time

processing even more feasible, and would make the most of

having the images already in the GPU. These are inter-

esting future directions to explore.

Another possibility is to devise a pipeline-like procedure

so that a sequence of images such as those coming from a

video stream might be processed in O(1) temporal cost

since computations performed on individual frames would

dilute in the pipeline strategy.

The good performance improvements obtained can be

explained by the fact that the log-polar transform would lie

in ‘‘data processing dominated‘‘ application type [10],

without decisions nor order dependencies. Not withstand-

ing this, for some particular applications it may be con-

venient to force the transform to proceed in some particular

order for the benefit of the overall performance. Further

work might explore the design and performance issues

involved in these scenarios.

In general, a trade-off between visual quality and speed

may be desired. In the Shader case, if a given application

does not require a perfect visual quality, less precision can

be chosen, with the corresponding possible speed-up.

Precision can be increased either with modern GPUs or by

performing a two-pass algorithm on older GPUs. The

higher precision with newer GPUs would not affect the

speed-up. However, the visual quality would improve with

two-pass algorithm at the expense of a lower speed-up.

Therefore, it is the requirements of the final application that

would determine the appropriate precision-speed trade-off.

In our case, high visual quality was not an issue and we

were particularly interested in exploring the speed-up with

faster implementations on available (older) GPUs.

While the parallelization of the forward log-polar

transform is probably the one more directly useful in most

applications, two other parallelization tasks may be stud-

ied. On the one hand, the acceleration of the backward

transform would be useful in those contexts where the

reconstructed cartesian images are important per se, typi-

cally because they are meant to be visualized by some

human user. This situations tend to arise in problems where

transmission delays are to be minimized. In fact, the high

data compression rates achievable with log-polar imaging

was explored in the past for applications such as videote-

lephony [51] or teleoperation [49]. On the other hand, the

map defining the log-polar transformation is usually the

same if the conversion parameters remain constant. This is

often the case in many applications and, in this sense, the

cost of off-line computing this map is of no concern.

However, if the parameters of the best transform are task-

dependent and have to be decided on-line [46], quick

recomputation of this map would be called for and parallel

implementations of the map building itself would be

appreciated.

Further considerations regarding variants of the log-

polar transform itself (such as sub-pixel accuracy [26],

Gaussian weighting for the RFs, overlapping RFs [12],

etc.), and their correct adaptation to different architectures

are also in the roadmap. Future work include the exploi-

tation of the new capabilities of modern GPUs for this

specific operation, and the selection of the Open Comput-

ing Language (OpenCL) infrastructure [3] to attain

implementations that combine high-performance and por-

tability to a wide range of graphics processors models (and

even other type of accelerators).

6 Conclusions

In this work, implementations of the log-polar transform

targeting a number of different parallel architectures

(namely CUDA-capable GPUs, non-CUDA-capable GPUs

and multi-cores) have been designed and thoroughly

evaluated.

Several benefits can be drawn from the proposed parallel

implementation. First, the quest of high performance was

the main goal of this work and is the main contribution of

the paper. Compared with a sequential implementation, our

parallel implementations attain speed-up factors between

139 and 229 for large gray-level and color images,

respectively, on the GPU, using CUDA as the implemen-

tation framework. Performance results for other GPU

implementations and for multi-core processors have also

shown to be cost-effective. These remarkable performance

results offer the possibility of performing transformations

of large images that otherwise would imply non-affordable

execution times using a sequential implementation and thus

open the door to new practical applications while enjoying

the ease of parameter customization provided by software-

based log-polar mappers.

Second, the acquisition cost of the utilized hardware

allows fast log-polar transforms without the necessity of

resorting to dedicated (and commonly expensive) high-

performance hardware. Third, we have explored solutions

targeting high- and low-level Nvidia GPUs (by using the

CUDA infrastructure), GPUs from other manufacturers (by

using Shaders-based implementations) or multi-cores (by

using the widely utilized OpenMP standard), which offers

flexibility.

This variety of implementations drives to a number of

important insights regarding the most suitable architecture

for a given scenario. Important factors as image size,

transform parameters, impact of data transfers between

memory spaces, etc. are of great relevance for the actual
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performance brought by each specific implementation. Our

experiments and analysis provide a detailed overview of

the strengths and weaknesses of each platform and imple-

mentation under different conditions.

Finally, several interesting research avenues have also

been identified along different dimensions, such as testing

alternative programming languages and parallel architec-

tures, designing and implementing variants of the log-polar

transform, parallelizing related procedures, or exploring

and improving the performance for particular, related

application domains.
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