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Fig. 1. ClipFace learns a self-supervised generative model for jointly synthesizing geometry and texture leveraging 3D morphable face models, that can be
guided by text prompts. For a given 3D mesh with fixed topology, we can generate arbitrary face textures as UV maps (top). The textured mesh can then be
manipulated with text guidance to generate diverse set of textures and geometric expressions in 3D by altering (a) only the UV texture maps for Texture
Manipulation and (b) both UV maps and mesh geometry for Expression Manipulation.

We propose ClipFace, a novel self-supervised approach for text-guided edit-
ing of textured 3D morphable model of faces. Specifically, we employ user-
friendly language prompts to enable control of the expressions as well as
appearance of 3D faces. We leverage the geometric expressiveness of 3D
morphable models, which inherently possess limited controllability and tex-
ture expressivity, and develop a self-supervised generative model to jointly
synthesize expressive, textured, and articulated faces in 3D. We enable high-
quality texture generation for 3D faces by adversarial self-supervised train-
ing, guided by differentiable rendering against collections of real RGB images.
Controllable editing and manipulation are given by language prompts to
adapt texture and expression of the 3Dmorphable model. To this end, we pro-
pose a neural network that predicts both texture and expression latent codes
of the morphable model. Our model is trained in a self-supervised fashion by
exploiting differentiable rendering and losses based on a pre-trained CLIP
model. Once trained, our model jointly predicts face textures in UV-space,
along with expression parameters to capture both geometry and texture
changes in facial expressions in a single forward pass. We further show the
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applicability of our method to generate temporally changing textures for a
given animation sequence.
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1 INTRODUCTION
Modeling 3D content is central to many applications in our mod-
ern digital age, including asset creation for video games and films,
as well as mixed reality. In particular, modeling 3D human face
avatars is a fundamental element towards digital expression. How-
ever, current content creation processes require extensive time from
highly-skilled artists in creating compelling 3D face models.

In contrast to implicit representations for human faces [Chan et al.
2021] that do not follow fixed mesh topology, 3D morphable models
present a promising approach for modeling animatable avatars, with
popular blendshape models used for human faces (e.g., FLAME [Li
et al. 2017]) or bodies (e.g., SMPL [Loper et al. 2015]). In particu-
lar, they offer a compact, parametric representation to model an
object, while maintaining a mesh representation that fits the clas-
sical graphics pipelines for editing and animation. Additionally,
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the shared topology of the representation enables deformation and
texture transfer capabilities.
Despite such morphable models’ expressive capability in geo-

metric modeling and potential practical applicability towards artist
creation pipelines, they remain insufficient for augmenting artist
workflows. This is due to limited controllability, as they rely on PCA
models, and lack of texture expressiveness, since the models have
been built from very limited quantities of 3D-captured textures;
both of these aspects are crucial for content creation and visual
consumption. We thus address the challenging task of creating a
generative model to enable synthesis of expressive, textured, and
articulated human faces in 3D.

We propose ClipFace, to enable controllable generation and edit-
ing of 3D faces. We leverage the geometric expressiveness of 3D
morphablemodels, and introduce a self-supervised generativemodel
to jointly synthesize textures and adapt expression parameters of
the morphable model. To facilitate controllable editing and manip-
ulation, we exploit the power of vision-language models [Radford
et al. 2021] to enable user-friendly generation of diverse textures
and expressions in 3D faces. This allows us to specify facial ex-
pressions as well as the appearance of the human via text while
maintaining a clean 3D mesh representation that can be consumed
by standard graphics applications. Such text-based editing enables
intuitive control over the content creation process.

Our generative model is trained in a self-supervised fashion, lever-
aging the availability of large-scale face image datasets with differ-
entiable rendering to produce a powerful texture generator that can
be controlled along with the morphable model geometry by text
prompts. Based on our texture generator, we learn a neural network
that can edit the texture latent code as well as the expression pa-
rameters of the 3D morphable model with text prompt supervision
and losses based on CLIP. Our approach further enables generating
temporally varying textures for a given driving expression sequence.

The main focus of our work lies in enabling text-guided editing
and control of 3D morphable face models. As recent 3D face mod-
els [Gerig et al. 2017; Li et al. 2017] are limited in their texture
space, we propose a generative model to synthesize UV textures
with a realistic appearance; this texture space is a pre-requisite for
our text-guided editing. To summarize, we present the following
contributions:

• We propose a novel approach to controllable editing of tex-
tured, parametric 3Dmorphablemodels through user-friendly
text prompts, by exploiting CLIP-based supervision to jointly
synthesize texture and expressions of a 3D face model.

• The controllable 3D face model is supported by our texture
generator, trained in a self-supervised fashion on 2D images
only.

• Our approach additionally enables generating temporally
varying textures of an animated 3D face model from a driving
video sequence.

2 RELATED WORK
Texture Generation: There is a large corpus of research works in
the field of generative models for UV textures [Gecer et al. 2021a;
Gecer et al. 2020; Gecer et al. 2019, 2021b; Lattas et al. 2020, 2021;

Lee et al. 2020; Li et al. 2020; Luo et al. 2021; Wang et al. 2022b].
These methods achieve impressive results; however, the majority is
fully supervised in nature, requiring ground truth textures, which in
turn necessitate collection in a controlled capture setting. Learning
self-supervised texture generation is much more challenging, and
only a handful of methods exist. For instance, Marriott et al. [2021]
were among the first to leverage Progressive GANs [Karras et al.
2018] and 3DMorphable Models [Blanz and Vetter 1999] to generate
textures for facial recognition; however, the textures generated
remain relatively low resolution and are not suitable to perform
language-driven texture and expression manipulations.
Textures generated by Slossberg et al. [2022] made a significant

improvement in quality by using pretrained StyleGAN [Karras et al.
2020b] and StyleRig [Tewari et al. 2020a]. The closest inspiration
to our texture generator is StyleUV [Lee et al. 2020] which also
operates on a mesh. Both methods achieve stunning results, but do
not take the head and ears into account, which limits their practical
applicability to directly use them as assets in games and movies. In
our work, we propose a generative model to synthesize UV textures
for the full-head topology to enable text-guided editing and control
of 3D morphable face models.

Semantic Manipulation of Facial Attributes: Facial manip-
ulation has also seen significant studies following the success of
StyleGAN2 [Karras et al. 2020b] image generation. In particular,
its disentangled latent space facilitates texture editing as well as
enables a level of control over pose and expressions of generated
images. Several methods [Abdal et al. 2021b; Deng et al. 2020; Ghosh
et al. 2020; Kowalski et al. 2020; Liu et al. 2022; Tewari et al. 2020a,b]
have made significant progress to induce controllability to images
by embedding 3D priors via conditioning StyleGAN on known fa-
cial attributes extracted from synthetic face renderings. However,
these methods operate on 2D images, and although they achieve
high-quality results on a per-frame basis, consistent and coherent
rendering from varying poses and expressions remains challenging.
Motivated by such impressive 2D generators, we propose to lift them
to 3D and directly operate in UV space of a 3D mesh, producing
temporally-consistent results when rendering animation sequences.

Text-Guided Image Manipulation: Recent progress in 2D lan-
guage models has opened up significant opportunities for text-
guided image manipulation [Abdal et al. 2021a; Avrahami et al.
2022; Bau et al. 2021; Crowson 2021; Dayma et al. 2021; Ramesh
et al. 2022, 2021; Ruiz et al. 2022]. For instance, contrastive language-
image pre-training (CLIP) [Radford et al. 2021] model has been used
for text-guided editing for a variety of 2D/3D applications [Can-
fes et al. 2022; Gal et al. 2021; Hong et al. 2022; Khalid et al. 2022;
Kocasari et al. 2022; Michel et al. 2022; Patashnik et al. 2021; Petro-
vich et al. 2022; Wang et al. 2022a; Wei et al. 2022; Youwang et al.
2022]. StyleClip [Patashnik et al. 2021] presented seminal advances
in stylizing human face images by leveraging the expressive power
of CLIP in combination with the generative power of StyleGAN
to produce unique manipulations for faces. This was followed by
StyleGAN-Nada [Gal et al. 2021], which enables adapting image
generation to a remarkable diversity of styles from various domains,
without requiring image examples from those domains. However,
these manipulations are designed for the image space, and are not
3D consistent.
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Fig. 2. Texture Generation:We learn self-supervised texture generation from collections of 2D images. An RGB image is encoded by pretrained encoder
DECA [Feng et al. 2021] to extract shape ®𝜷 , pose ®𝜽 and expression ®𝝍 coefficents in FLAME’s latent space, which are decoded by FLAME [Li et al. 2017] to
deformed mesh vertices. The background and mouth interior are then masked out, generating the ‘Real Image’ for our adversarial formulation. In parallel,
latent code 𝑧 ∈ R512 is sampled from a gaussian distribution N(0, 𝐼 ) and input to mapping network𝑀 to generate intermediate latent w ∈ R512×18, which
is used by synthesis network𝐺 to generate the UV texture image. The predicted texture is differentiably rendered on a randomly deformed FLAME mesh to
generate the ‘Fake Image.’ Two discriminators interpret the generated and masked real image, at full resolution and at patch size 64 × 64. Frozen models are
denoted in blue, and learnable networks in green.

Text-Guided 3D Manipulation: Following the success of text-
guided image manipulation, recent works have adopted powerful
vision-language models to enable text guidance for 3D object manip-
ulation. Text2Mesh [Michel et al. 2022] was one of the first pioneer-
ing methods to leverage a pre-trained 2D CLIP model as guidance to
generate language-conditioned 3D mesh textures and geometric off-
sets. Here, edits are realized as part of a test-time optimization that
aims to solve for the texture and mesh offsets in a neural field rep-
resentation, such that their re-renderings minimizes a 2D CLIP loss
from different viewpoints. Similar to Text2Mesh, CLIP-Mesh [Khalid
et al. 2022] produces textured meshes by jointly estimating texture
and deformation of a template mesh, based on text inputs using CLIP.
Recently, Canfes et al. [2022] adapt TB-GAN [Gecer et al. 2020], an
expression-conditioned generative model to produce UV-texture
maps, with a CLIP loss to produce facial expressions in 3D, although
the quality of textures and expressions is limited, due to reliance
on 3D scan data for TB-GAN training. Our method is inspired by
these lines of research; however, our focus lies on leveraging the
parametric representations of 3D morphable face models with our
StyleGAN-based texture generator, which can enable content cre-
ation for direct use in many applications such as games or movies.

3 METHOD
ClipFace targets text-guided synthesis of textured 3D face mod-
els. It consists of two fundamental components: (i) an expressive
generative texture space for facial appearances (Sec 3.1), and (ii)
a text-guided prediction of the latent codes for the texture gener-
ator and the expression parameters of the underlying statistical
morphable model (Sec 3.2). In the following, we will detail these
contributions and further demonstrate how they enable produc-
ing temporally changing textures for a given animation sequence
Sec. 3.3.

3.1 Generative Synthesis of Face Appearance
Since there does not exist any large-scale datasets for UV textures,
we propose a self-supervised method to learn the appearance man-
ifold of human faces, as depicted in Fig. 2. Rather than learning
from ground truth UV textures, we instead leverage large-scale RGB
image datasets of faces, which we use in an adversarial formulation
through differentiable rendering. For our experiments, we use the
FFHQ dataset [Karras et al. 2019] which consists of 70,000 diverse,
high-quality images. As we focus on the textures of the human head,
we remove images that contain headwear (caps, scarfs, etc.) and
eyewear (sunglasses and spectacles) using face parsing [zllrunning
2018], resulting in a subset of 45,000 images. Based on this data, we
train a StyleGAN-ADA [Karras et al. 2020a] generator to produce
UV textures that when rendered on top of the FLAME mesh [Li et al.
2017] results in realistic imagery.

More specifically, we use the FLAME model as our shape prior to
produce different geometric shapes and facial expressions. It can be
defined as:

F ( ®𝜷, ®𝜽 , ®𝝍) : R | ®𝜷 |× | ®𝜽 |× | ®𝝍 | → R3𝑁 , (1)

where ®𝜷 ∈ R100 are the shape parameters, ®𝜽 ∈ R6 refers to the jaw
and head pose, and ®𝝍 ∈ R50 are the expression coefficients.
To recover the distribution of face shapes and expressions from

the training dataset, we employDECA [Feng et al. 2021], a pretrained
encoder that takes an RGB image as input and outputs the corre-
sponding FLAME parameters ®𝜷, ®𝜽 , ®𝝍, including orthographic camera
parameters c. We use the recovered parameters to remove the back-
grounds from the original images, and only keep the image region
that is covered by the corresponding face model. Using this distri-
bution of face geometries and camera parameters D ∼ [ ®𝜷, ®𝜽 , ®𝝍, c],
along with the masked real samples, we train the StyleGAN network
using differentiable rendering [Laine et al. 2020]. We sample a latent
code 𝒛 ∈ R512 from Gaussian distribution N(0, I) to generate the

3
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Fig. 3. Text-guided Synthesis of Textured 3D Face Models: From a given textured mesh with texture code winit, we synthesize various styles by adapting
both texture and expression to the target text prompt. winit is input to the texture mappers T = [T1, ..., T18 ] to obtain texture offsets wdelta ∈ R512×18 for
18 different levels of winit. The expression mapper E takes mean latent code wmean = ∥winit +wdelta ∥2 as input, and predicts expression offset 𝝍delta to obtain
deformed mesh geometry Mtgt. The generated UV map𝑇tgt and deformed mesh Mtgt are differentiably rendered to generate styles that fit the text prompt.

intermediate latent code w ∈ R512×18 using the a mapping net-
work 𝑀 : w = 𝑀 (z). This latent code w is passed to the synthesis
network𝐺 to generate UV texture map𝑇 ∈ R512×512×3:𝑇 = 𝐺 (w).
This predicted texture 𝑇 is then rendered on a randomly sampled
deformed mesh from our discrete distribution of face geometries D.
We use an image resolution of 512 × 512.

Both the generated image and masked real image are then passed
to the discriminator during training. To further improve the texture
quality, we use a patch discriminator alongside a full-image discrim-
inator, which encourages high-fidelity details in local regions of
the rendered images. We apply image augmentations (e.g., color
jitter, image flipping, hue/saturation changes) to both full-image
and image patches before feeding them to the discriminator. The
patch size is set to 64 × 64 for all of our experiments. Note that the
patch discriminator is critical to producing high-frequency texture
details; see Section 4.

3.2 Text-guided Synthesis of Textured 3D Models
For a given texturedmeshwith texture codewinit = {w1

init, ...w
18
init} ∈

R512×18 in neutral pose 𝜽 init and neutral expression 𝝍init, our goal
is to learn optimal offsets wdelta, 𝝍delta for texture and expression
respectively defined through text prompts. As a source of supervi-
sion, we use a pretrained CLIP [Radford et al. 2021] model due to
its high expressiveness, and formulate the offsets as:

w∗
delta, 𝝍

∗
delta = argmin

wdelta,𝝍delta
Ltotal, (2)

where Ltotal formulates CLIP guidance and expression regulariza-
tion, as defined in Eq. 9.
In order to optimize this loss, we learn a texture mapper T =

[T 1, ...,T 18] and an expression mapper E. The texture mapper pre-
dicts the latent variable offsets across the different levels {1, 2, ...18}

of the StyleGAN generator:

wdelta =


T 1 (w1

init)
T 2 (w2

init)
.
.
.

T 18 (w18
init).

(3)

The expression mapper E learns the expression offsets and takes as
input wmean = ∥winit +wdelta∥2, where wmean ∈ R512 is the mean
of 18-different levels of the latent space, and outputs the expression
offsets 𝝍delta:

𝝍delta = E(wmean) . (4)
We notice that it is critical to design separate texture and expression
mappers to maintain disentangled texture and expression spaces.
Conditioning the expression mapper on texture codes correlates
them meaningfully for realistic expression generation, significantly
improving generation quality. We show results for different input
conditions in supplemental. We use a 4-layer MLP architecture with
LeakyReLU activations for the mappers. The method is shown in
Fig. 3.
Naively using a CLIP loss as in StyleClip [Patashnik et al. 2021]

to train the mappers tends to result in unwanted identity and/or il-
lumination changes in texture. Thus, we draw inspiration from [Gal
et al. 2021], and leverage the CLIP-space direction between the
initial style and the to-be-performed manipulation in order to per-
form consistent and identity-preserving manipulation. We compute
the ‘text-delta’ direction Δt in CLIP-space between the initial text
prompt tinit and the target text prompt ttgt, indicating which at-
tributes from the initial style should be changed:

Δt = 𝐸𝑇 (ttgt) − 𝐸𝑇 (tinit), (5)

where 𝐸𝑇 refers to the CLIP text encoder. We use the same initial
text tinit = ‘A photo of a face’ for all our experiments and alter the
target text prompt ttgt, depending on the desired style change. For
example, to generate a Mona Lisa style texture, we use the text
prompt ttgt = ‘A photo of a face that looks like Mona Lisa’. Guided
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Fig. 4. Texture Manipulation for Animation Sequences: Given a video sequence V = [𝝍1:𝑇 ;𝜽1:𝑇 ] of T frames, an initial texture code winit, and a text
prompt, we synthesize a 3D textured animation to match the text. We concatenate V to winit across different timestamps to obtain e𝑡 , which is input to the
time-shared texture mappers T to obtain time-dependent textures offsets w1:𝑇

delta for all frames. The new texture codes w1:𝑇
tgt generated using importance

weighting, are then passed to our texture generator𝐺 to obtain time-dependent UV textures𝑇 1:𝑇
tgt , which are then differentiably rendered to generate the final

animation, guided by the CLIP loss across all frames.

via the CLIP-space image direction between the initial rendered
image iinit and the target rendered image itgt generated using our
texture generator, we train the mapping networks to predict style
specified by the target text prompt ttgt.

Δi = 𝐸𝐼 (itgt) − 𝐸𝐼 (iinit), (6)
where iinit is the image rendered with the initial texture and initial
flame parameters

(
winit, 𝜷, 𝜽 , 𝝍init

)
, and itgt is the image with the

target texture and target flame parameters
(
wtgt, 𝜷, 𝜽 , 𝝍tgt

)
, and 𝐸𝐼

refers to the CLIP image encoder.
Note that we do not alter the pose 𝜽 and shape code 𝜷 of the

FLAME model. The CLIP loss Lclip is then computed as:

Lclip = 1 − Δi.Δt

|Δi|¤|Δt|
. (7)

In order to prevent the mesh from taking unrealistic expressions,
we further regularize the expressions using the Mahalanobis prior
as:

Lreg = 𝝍𝑇 Σ−1
𝜓

𝝍, (8)

where Σ−1
𝜓

is the diagonal expression covariance matrix of FLAME
model. As we show in our results, this regularization is critical to
prevent the 3D morphable model from taking an unrealistic shape.
The full training loss can then be written as:

Ltotal = Lclip + 𝜆regLreg . (9)
Note that we can also only alter the texture without changing expres-
sions by keeping the expression mapper frozen and not fine-tuning
it. We pre-train the mapper networks to predict zero-offsets (details
in supplemental).

3.3 Texture Manipulation for Video Sequences
Given an expression video sequence, we propose a novel tech-
nique to manipulate the textures for every frame of the video
guided by a CLIP loss (see Fig. 4). That is, for a given animation

sequence V = [𝜽1:𝑇 ;𝝍1:𝑇 ] of 𝑇 frames, with expression codes
𝝍1:𝑇 = [𝝍1, 𝝍2, ...𝝍𝑇 ], pose codes 𝜽1:𝑇 = [𝜽1, 𝜽2, ...𝜽𝑇 ], and a
given texture code winit, we use a multi-layer perceptron as our
texture mapper T = [T 1, ...,T 18] to generate time-dependent tex-
ture offsets w1:𝑇

delta for different levels of the texture latent space.
This mapper receives as input e1:𝑇 , the concatenation of the initial
texture code winit with the time-dependent expression and pose
code [𝝍𝑡 ;𝜽 𝑡 ]. Mathematically, we have:

e1:𝑇 = [e1, ....e𝑇 ] (10)
e𝑡 = [winit;𝝍

𝑡 ;𝜽 𝑡 ], (11)

where 𝝍𝑡 and 𝜽 𝑡 refer to the expression and pose code at timestamp
𝑡 extracted from sequenceV . Next, we pass e1:𝑇 to the time-shared
texture mapper T to obtain texture offsetsw1:𝑇

delta. To ensure a coher-
ent animation and smooth transition across frames, we weight the
predicted offsets w1:𝑇

delta using importance weights I = [𝑖1, ....𝑖𝑇 ]
extracted from video sequence V , before adding them to winit:

w𝑡tgt = winit + 𝑖𝑡 · w𝑡delta . (12)

We compute importance weights by measuring the deviation be-
tween the neutral shape [𝜽neutral;𝝍neutral] and per-frame face shape
[𝜽 𝑡 ;𝝍𝑡 ], with by min-max normalization:

𝑖𝑡 =
𝛿𝑡 −min(𝜹1:𝑇 )

max(𝜹1:𝑇 ) −min(𝜹1:𝑇 )
, (13)

with 𝛿𝑡 =
����[𝜽neutral;𝝍neutral] − [𝜽 𝑡 ;𝝍𝑡 ]

����
2. The importance weight-

ing ensures that key frames with strong expressions are emphasized.
The predicted target latent codes w1:𝑇

tgt are then used to generate
the UV maps𝑇 1:𝑇

tgt , which are differentiably rendered onto the given
animation sequence V .
To train texture mapper T , we minimize clip loss (Eq. 7) for the

given text prompt ttgt and the rendered frames i𝑡tgt aggregated over
T timesteps for all the frames from the video.
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w1:𝑇
delta = argmin

w1:𝑇
delta

𝑇∑︁
𝑡=1

Lclip (ttgt, i𝑡tgt) . (14)

4 RESULTS
We evaluate ClipFace on the tasks of texture generation, text-guided
synthesis of textured 3D face models, and text-guided manipula-
tion of animation sequences. For texture generation, we evaluate
on standard GAN metrics FID and KID. We evaluate both of these
metrics with respect to masked FFHQ images [Karras et al. 2019]
(with background and mouth interior masked out) as ground truth,
and generated textures rendered at 512 × 512 resolution for ≈ 45K
rendered textures and ground truth images. For text-guided ma-
nipulation, we evaluate perceptual quality using FID & KID and
similarity to text prompt using CLIP score, which is evaluated as the
cosine similarity to the text prompt using pre-trained CLIP models.
We use two different CLIP variants, ‘ViT-B/16’ and ‘ViT-L/14’, each
on 224 × 224 pixels as input. We report average scores for these
pre-trained variants.
Implementation Details: For our texture generator, we pro-

duce 512 × 512 texture maps. We use an Adam optimizer with a
learning rate of 2e-3, batch size 8, gradient penalty 10, and path
length regularization 2 for all our experiments. We use a learning
rate of 0.005 and 0.0001 for the expression and texture mappers, also
using Adam. For differentiable rendering, we use NvDiffrast [Laine
et al. 2020]. For the patch discriminator, we use a patch size of
64 × 64. We train for 300,000 iterations until convergence. For the
text-guided manipulation experiments, we use the same model ar-
chitecture for expression and texture mappers, a 4-layer MLP with
LeakyReLU activations. For CLIP supervision, we use the pretrained
‘ViT-B/32’ variant. For text manipulation tasks, we train for 5,000
iterations.

Texture Generation. We evaluate the quality of our generated
textures and compare with existing unsupervised texture generation
methods in Tab. 1 and Fig. 5. ClipFace outperforms other baselines
in perceptual quality. Although Slossberg et al. [2022] can obtain
good textures for the interior face region, it does not synthesize
head and ears.

Texture & Expression Manipulation. We compare with CLIP-
based texturing techniques for texture manipulation in Fig. 6 and
Tab. 2. Note that for comparisons with Text2Mesh [Michel et al.
2022], we follow the authors’ suggestion to first perform remeshing
to increase vertices from 5023 to 60,000 before optimization. Our
approach generates consistently high-quality textures for various

Method FID ↓ KID ↓
FlameTex [Feng 2019] 76.627 0.063
Slossberg et al. [2022] 32.794 0.021
Ours (w/o Patch) 16.640 0.013
Ours (w/ Patch) 9.559 0.006

Table 1. Quantitative evaluation of texture quality. Our approach signifi-
cantly outperforms baselines in both FID and KID scores.
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Fig. 5. Comparison against unsupervised texturing methods. The left col-
umn shows the mesh geometry, followed by the textured mesh and corre-
sponding UVmap. FlameTex [Feng 2019] generates textures for the full head
region, however, the texture quality is fairly limited. Slossberg et. al. [2022]
generates plausible textures, but does not take the head and ears into ac-
count, limiting its practical applicability. Our approach is able to synthesize
diverse texture styles ranging across different skin colors, ethnicities, and
demographics. Note that the patch discriminator helps not only to improve
texture quality but also in correctly aligning the UV texture with mesh
geometry, especially around the mouth region.

prompts, in comparison to baselines. In particular, our texture gen-
erator enables effective editing even in small face regions (e.g., lips

Method FID ↓ KID ↓ CLIP Score ↑
Latent3d [Canfes et al. 2022] 205.27 0.260 0.227 ±0.041

FlameTex [Feng 2019] 88.95 0.053 0.235 ±0.053
ClipMatrix [Jetchev 2021] 198.34 0.180 0.243 ±0.049

Text2Mesh [Michel et al. 2022] 219.59 0.185 0.264 ±0.044
Ours 80.34 0.032 0.251 ±0.059

Table 2. Evaluation of text manipulation. ClipFace effectively matches text
prompts while maintaining high perceptual fidelity.
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Fig. 6. Qualitative comparison on texture manipulation: We compare our method against several 3D texturing methods: Latent3D [Canfes et al. 2022],
Clip-Matrix [Jetchev 2021], FlameTex [Feng 2019], Text2Mesh [Michel et al. 2022]. Our method obtains consistently superior textures in comparison to the
baselines, even capable deftly adapting identity when guided by text prompt.

and eyes). While Text2Mesh yields a high CLIP score, it produces se-
mantically implausible results, as the specified text prompts highly
match rendered colors irrespective of the global face context (i.e.,
which region should be edited). In contrast, our method generates
perceptually high-quality face texture, evident in the perceptual
KID metric.

We show additional ClipFace texturing results on awide variety of
prompts, including on fictional characters, in Fig. 7, demonstrating
our expressive power.
Furthermore, we show results for expression manipulation in

Fig. 9. ClipFace faithfully deforms face geometry and texture to
match a variety of text prompts, where expression regularization
maintains plausible geometry and directional loss enables balanced
adaptation of geometry and texture. We refer to the supplemental
for more visuals.

Texture Manipulation for Video Sequences. Finally, we show
results for texture manipulation for given animation sequences in
Fig. 8. ClipFace can produce more expressive animation compared
to a constant texture that looks monotonic. We show results for

only 3 frames; however, we refer readers to the supplemental video
for more detailed results.

Limitations. Although ClipFace can generate high-quality tex-
tures and expressions, it still has various limitations. For instance,
our method does not capture accessories like jewelry, headwear, or
eyewear, due to our use of the FLAME [Li et al. 2017] model, which
does not represent accessories or complex hair. We believe that this
could be further improved by augmenting parametric 3D models
with artist-designed assets for 3D hair, headwear, or eyewear.

5 CONCLUSION
In this paper, we have introduced ClipFace, a novel approach to en-
able text-guided editing of textured 3D morphable face models. We
jointly synthesize high-quality textures and adapt geometry based
on the expressions of the morphable model, in a self-supervised
fashion. This enables compelling 3D face generation across a vari-
ety of textures, expressions, and styles, based on user-friendly text
prompts. We further demonstrate the ability of ClipFace to synthe-
size of animation sequences, driven by a guiding video sequence.
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Original “Barbie Doll” “Ghost”“Witcher”“Dracula” “Zombie” “Party Makeup” “Werewolf”
Fig. 7. Texture manipulations. ‘Original’ (first column) shows the initial textured mesh sampled from our ClipFace generator without any text prompt, followed
by ClipFace-generated textures for various text prompts.
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Fig. 8. Given a 3D face motion sequence (top row), we compare our dynamic texturing approach (bottom row) against static-only texturing (middle row). Geo
+ Tex shows textures overlaid on the animated mesh, and Tex Only shows texture in the neutral pose. Our proposed dynamic texture manipulation technique
generates more compelling animation, particularly in articulated expressions (e.g., t=23). Here, we show results for the text prompt "Laughing". We further
refer interested readers to our supplemental video.
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Fig. 9. ClipFace generates a large variety of expressions, faithfully deforming the mesh geometry and manipulating texture for more expressiveness. Our
expression regularization is important to produce realistic geometric expressions, and directional loss for balanced manipulation of both texture and geometry.

We believe this is an important first step towards enabling control-
lable, realistic texture and expression modeling for 3D face models,
dovetailing with conventional graphics pipelines, which will enable
many new possibilities for content creation and digital avatars.
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APPENDIX
We provide additional ablation studies and results in Section 6,
network architecture and training details in Section 7, and further
discussion of baseline method experimental setup in Section 8.

6 ADDITIONAL RESULTS
We provide additional results for texture and expression manipula-
tion, as well as an additional comparison to texturing baselines. For
results related to video animation, we refer readers to the supple-
mentary video.

Additional Baseline Comparisons: We compare our method
with texturing baselines for additional text prompts, and show re-
sults in Figure 10. Our method outperforms these baselines and
achieves high quality manipulations.

Expression Manipulation: We show additional results for ex-
pression manipulation, and analyze the effect of our expression
regularization and directional clip loss in Figure 11. Our proposed
technique outperforms others and achieves realistic texture manip-
ulation.

Texture Manipulation: We show additional texture manipula-
tion results with a large variety of text prompts in Figure 12. As can
be seen, our method is able to generate a wide variety of textures,
even capable of adapting identity when implied by the text prompt.

Effect of Pre-training: Here, we analyze the effect of pre-training
the texture and expression mappers. We first pre-train the texture
mapper T and expression mapper E to predict zero offsets using ℓ2
regularization before training them with our CLIP loss. We show
the effect of pre-training mapper networks to predict zero offsets in
Figure 13. Without pre-training, the textures begin with unrealistic
values and converge to low quality styles with visible artifacts.

Effect of input conditioning for Expression Mapper: Finally,
we analyze the effect of different input conditions on the gener-
ated expressions during expression manipulation. Conditioning the
expression mapper E on initial expression code 𝝍init generates un-
canny textures, does not noticeably alter the geometry and attempts
to encode all information into the texture. Our proposed approach
conditions the E on mean texture code wmean providing a meaning-
ful signal to modify texture and expression cohesively. Results are
shown in Figure 14.

7 ARCHITECTURE & TRAINING DETAILS
ClipFace is implemented in the Pytorch Lightning framework [Fal-
con et al. 2019; Paszke et al. 2017]. For differentiable rendering, we
use the NvDiffrast [Laine et al. 2020] library.

Texture Generation: For texture generation, we use the Style-
GAN2 architecture with adaptive discriminator augmentation [Kar-
ras et al. 2020a]. For all of our experiments, we operate at a tex-
ture and image resolution of 512 × 512. We apply augmentation to
both the full-image discriminator as well as the patch discriminator,
which operates on patches of size 64 × 64. For augmentations, we
apply geometric transformations such as image flipping, rotation

and scaling, as well as color transformations such as changing im-
age brightness, contrast, hue, saturation, etc. For training, we used
the Adam [Kingma and Ba 2014] optimizer with a learning rate of
0.002, batch size 8 per GPU, gradient penalty 10, and path length
regularization 2. We perform multi-GPU training on 3 RTX A6000
GPUs and train for 300,000 iterations.

Texture and Expression Manipulation: For the text-guided
manipulation experiments, we use a 4-layer MLP architecture with
LReLU activations. For the texture mapper, we use 18 identical
MLPs to predict texture offsets for different levels of the latent code
winit = {w1

init,w
2
init, ...w

18
init} ∈ R

512×18.

wdelta =


T 1 (w1

init)
T 2 (w2

init)
.
.
.

T 18 (w18
init) .

(15)

Each texture MLP T 𝑖 takes as input 512-dimensional latent code
w𝑖init and outputs the 512-dimensional offset w𝑖delta. The expression
mapper E takes the mean latent code as input wmean ∈ R512, and
predicts the expression offset 𝝍delta ∈ R50 as output. The network
architecture for both these mappers is shown in Figure 15. For
language supervision, we use the CLIP model [Radford et al. 2021].
For our experiments, we use the pre-trained ‘ViT-B/32’ variant for
computing the CLIP loss. We use a learning rate of 0.005 for the
expression mapper and 0.0001 for the texture mapper.

Texturing for Animation Sequences: For the task of texturing
for animations, we learn only the texture mapper. We use the same
architecture as shown in Figure 15(a). Since a given animation se-
quence consists of multiple frames, we share the texture mapper
across different timestamps. For all text manipulation experiments,
we train for 20,000 iterations.

8 BASELINE IMPLEMENTATIONS
Latent3d [Canfes et al. 2022]: This method builds upon the

TB-GAN [Gecer et al. 2020], a generative model G that takes one-
hot encoded facial expression vector ®e and a random noise vector
®z ∈ R𝑑 as input and generates shape, shape-normal and texture
images. Given a pretrained generator G, the method optimizes offset
Δc for the intermediate layer c which is 4 × 4 dense layer of TB-
GAN. The offset Δc gives the direction in which the target attributes
specified by text prompt t are enhanced, while other attributes
stay unchanged. The authors use a Clip-loss LCLIP, supplemented
with an identity loss LID and L2 regularization LL2 to perform
meaningful manipulation of meshes:

argmin
Δc∈C

LCLIP + 𝜆IDLID + 𝜆L2LL2, (16)

where 𝜆ID and 𝜆L2 are hyperparameters for the LID and LL2 respec-
tively. The identity loss LID minimizes the distance between the
identity of original renders and manipulated renders:

LID = 1 − ⟨𝑅(G(c)), 𝑅(G(c + Δc))⟩, (17)

where 𝑅 is the ArcFace [Deng et al. 2019], a facial recognition net-
work and ⟨., .⟩ computes the cosine similarity between the identities
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Fig. 10. Additional texture manipulation results in comparison with baselines, from the text prompts shown. Our method outperforms baseline approaches in
texture quality.

of the initial rendering and manipulated rendering. The L2 loss is
used by authors to prevent artifact generation and can be written
as:

LL2 = ∥c − (c + Δc)∥2 (18)

For the Clip loss, the authors use a list of text templates like ‘a photo
of a ...’; ‘a face of a ...’, etc prefixed to the target style:

LCLIP =
Σ𝐾
𝑗=1Σ

𝑁
𝑖=1𝐷CLIP (I𝑖 , 𝑡 𝑗 )
𝐾 · 𝑁 , (19)

where I𝑖 is the rendered image from a list of N rendered images,
𝑡 𝑗 is the target text 𝑡 embedded in a text template from a list of
K templates. 𝐷CLIP minimizes the cosine distance between CLIP
embeddings of the rendered image I𝑖 and the set of text prompts 𝑡 𝑗 .

ClipMatrix [Jetchev 2021]: Given a 3D mesh and initial texture
map 𝑇𝑖𝑛𝑖𝑡 , ClipMatrix optimizes the texture image offset 𝑇𝑑𝑒𝑙𝑡𝑎 to
match the image rendering 𝐼 to the text prompt 𝑡 from random

camera view 𝑐:

L(𝑇𝑑𝑒𝑙𝑡𝑎) =
∑︁
𝑡

E
𝑐∼𝜋𝑐

LCLIP (𝐼 , 𝑡). (20)

By sampling from random camera angles 𝑐 ∼ 𝜋𝑐 during optimization,
the method ensures that output mesh shows the desired properties
from different viewing angles. The image rendering can be obtained
as:

𝐼 = R(M,𝑇𝑡𝑔𝑡 , 𝑐), (21)
where M refers to the 3D mesh, 𝑇𝑡𝑔𝑡 = 𝑇𝑖𝑛𝑖𝑡 + 𝑇𝑑𝑒𝑙𝑡𝑎 denotes the
final UV texture map and 𝑐 denotes the camera view. The clip loss
LCLIP (𝐼 , 𝑡) minimizes the negative cosine similarity in CLIP em-
bedding space between image 𝐼 and the fixed text prompt 𝑡 .

LCLIP (𝐼 , 𝑡) = −𝑐𝑜𝑠 (𝜙𝑖 (𝐼 ), 𝜙𝑡 (𝑡)) (22)

where 𝜙𝑖 and 𝜙𝑡 refer to the clip image and text encoder respec-
tively. The texture offset 𝑇𝑑𝑒𝑙𝑡𝑎 is initialized with zero and during
optimization clipping is applied to final texture image𝑇𝑡𝑔𝑡 ∈ [−1, 1]
to ensure that it stays in valid image range.
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Fig. 11. Additional expression manipulation results: our proposed method achieves realistic expression manipulation. Both our expression regularization and
directional clip loss contribute notably to realistic output quality.
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Fig. 12. Additional texturing results: Our proposed method generates a diverse range of textures.
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Fig. 13. We evaluate the effect of pre-training texture and expression mappers. ‘w/o Pretrain’ refers to the case when mappers are not trained to predict zero
offsets before performing text manipulation. Pre-training helps to produce realistic texture changes.

Original

“H
ap

py
”

“S
ad

”

w/ initial expression cond. 

“A
ng

ry
”

Ours 

(w/ texture code cond.) 

Fig. 14. We evaluate the effect of different conditioning inputs on the expression mapper E during expression manipulation. ‘w/ initial expression cond’ refers
to the case when expression mapper is conditioned on initial expression code 𝝍 init, ‘w/ texture code cond’ refers to the case when E is conditioned on mean
texture code wmean. Conditioning on wmean provides the meaningful signal to modify texture and expression cohesively.

FlameTex [Feng 2019]: FlameTex is the PCA-based texturing
model designed specifically for FLAME face model [Li et al. 2017].
The texture space for FlameTex is built using randomly selected
1500 images from the FFHQ dataset [Karras et al. 2019] and the
base texture from the Basel Face Model [Paysan et al. 2009]. Given
a mean texture 𝑇𝑚𝑒𝑎𝑛 ∈ R512×512×3 and texture basis 𝑇𝑏𝑎𝑠𝑖𝑠 ∈

R50×512×512×3 from the FlameTex texture model, we optimize for
the texture basis coefficients 𝝎 ∈ R50 to match the target text
prompt 𝑡 to generate the desired texture map 𝑇𝑡𝑔𝑡 :

𝝎∗ = argmin
𝝎

LCLIP (𝐼 , 𝑡) + 𝜆L2LL2 (𝝎), (23)
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(a) Texture Mapper Architecture (b) Expression Mapper Architecture
Fig. 15. Architecture Overview: Network architecture for Texture Mapper (left) and Expression mapper (right). FC(𝑥, 𝑦) refers to a fully-connected layer, where
𝑥 and 𝑦 denote the input and output dimensions, respectively. LReLU refers to LeakyReLU activations.

where LCLIP refers to the clip loss between text prompt 𝑡 and the
rendered image 𝐼 and LL2 refers to the L2 regularization for the
texture coefficients 𝝎 with 𝜆L2 controlling the strength of the regu-
larization. The desired texture map is given by:

𝑇𝑡𝑔𝑡 = 𝑇𝑚𝑒𝑎𝑛 + 𝜔 ∗𝑇𝑏𝑎𝑠𝑖𝑠 . (24)

The image rendering can be obtained as:

𝐼 = R(M,𝑇𝑡𝑔𝑡 , 𝑐), (25)

where M refers to the Flame 3D mesh, 𝑇𝑡𝑔𝑡 denotes the final UV
texture map and 𝑐 denotes the camera view. The L2 regularization
is applied to prevent the model from producing unrealistic texture
and is given by:

LL2 = ∥𝝎∥2 . (26)
We initialize 𝝎 with zero and start from base texture 𝑇𝑚𝑒𝑎𝑛 during
optimization.

Text2Mesh [Michel et al. 2022]: Given a 3D mesh, the method
uses coordinate-based MLPs to predict per-vertex color and displace-
ment conforming to the target text prompt 𝑡 used for stylizing the
mesh. In our experiments, we first remesh the Flame 3D mesh to
increase vertices from 5K to 60K as the method works reasonably
well for meshes with a higher vertex count. We used the default
hyperparameters used by authors for stylizing human body meshes,
as the authors did not perform experiments on human face meshes.

For every vertex point 𝑝 , first the positional encoding 𝛾 is applied
to obtain high frequency features, before passing them to the MLP:

𝛾 (𝑝) = [cos(2𝜋B𝑝), sin(2𝜋B𝑝)]𝑇 , (27)

where B ∈ R𝑛×3 is the random Gaussian matrix. We first pretrain
the MLP 𝑓𝜽 to predict a base texture 𝑇𝑖𝑛𝑖𝑡 to begin learning from
a reasonable starting texture. Since we do not wish to change the
geometry, we do not perform vertex displacements in our experi-
ments. Our sanity experiments for vertex displacements produced
unrealistic geometries. We train with loss function and augmenta-
tions proposed in the main paper. The loss function can be written
as:

𝜽 ∗ = argmin
𝜽

LCLIP (𝐼 , 𝑡), (28)

where 𝐼 refers to the image rendered from different viewpoints and
𝑡 refers to the target text prompt. The image rendering 𝐼 can be

obtained as:
𝐼 = R(M, [𝑓𝜽 (𝛾 (𝑝𝑖 ))]𝑁𝑖=1, 𝑐), (29)

where R refers to the differentiable rendering, c refers to the random
camera view and 𝑝𝑖 ∈ R3 refers to the vertex coordinate of the mesh
and 𝑁 refers to the total number of mesh vertices.
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