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a b s t r a c t

Deep learning (DL) models have achieved impressive performance in various domains such as
medicine, finance, and autonomous vehicle systems with advances in computing power and tech-
nologies. However, due to the black-box structure of DL models, the decisions of these learning
models often need to be explained to end-users. Explainable Artificial Intelligence (XAI) provides
explanations of black-box models to reveal the behavior and underlying decision-making mechanisms
of the models through tools, techniques, and algorithms. Visualization techniques help to present
model and prediction explanations in a more understandable, explainable, and interpretable way. This
survey paper aims to review current trends and challenges of visual analytics in interpreting DL models
by adopting XAI methods and present future research directions in this area. We reviewed literature
based on two different aspects, model usage and visual approaches. We addressed several research
questions based on our findings and then discussed missing points, research gaps, and potential
future research directions. This survey provides guidelines to develop a better interpretation of neural
networks through XAI methods in the field of visual analytics.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Machine learning (ML) techniques have achieved impressive
erformance in various domains such as medicine, finance, and
utonomous vehicle systems with advances in computing power
nd technologies [1,2]. Neural Network (NN), as a sub-branch
f ML, has become a powerful technique in finding complex
atterns in high-dimensional datasets and providing high predic-
ion accuracy in many domains [3]. However, NN-based models
ave a complex structure, which makes it difficult for them to
e interpreted and understood. NNs are considered black-box
odels since their inner working and decision-making mecha-
isms are not understandable by a human. This reveals one of
he most important issues in black-box models: transparency and
xplainability [4].
End-users often want to understand how a classifier makes

redictions, particularly in sensitive domains, such as healthcare,
ransportation, defense, and finance, where decision making of-
en has a critical impact. Explaining how predictions are made
y ML models by clarifying their working mechanisms would
ncrease trustworthy of ML models. To address this important
eed, interpretable ML algorithms has been developed rapidly
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in understanding the inner working mechanisms of black-box
models [5]. One of the most important efforts is the development
of a re-emerging field in eXplainable Artificial Intelligence (XAI)
[6]. According to Defense Advanced Research Projects Agency
(DARPA) technical report [6], XAI is defined as ‘‘a suite of machine
learning techniques that enables human users to understand,
appropriately trust, and effectively manage the emerging genera-
tion of artificially intelligent partners’’. Although interpretability
and explainability are often used interchangeably by the ML
community, there are slight differences in the definition of inter-
pretable ML and explainable AI. Miller [7] defines interpretability
as ‘‘the degree to which an observer can understand the cause
of a decision’’ and equates interpretability and explainability def-
initions. From the ML context, interpretability can be defined
as understanding how the decision/prediction is given by ma-
chine learning algorithms with reasoning. The term explainability
is more related to the internal working mechanisms of black-
box models. Therefore, XAI reveals the internal functioning of
black-box models and the rationale behind the decisions through
various methods. While domain experts who are inexperienced in
ML often want to understand through reasoning and cause–effect
relationship why a certain decision has been made, ML scientists
focus on the internal working mechanisms of ML models and try
to understand how their components contribute to certain pre-
dictions. XAI aims to help end-users and domain experts to gain
insight into how black-box models make predictions. It also helps
r Explainable Artificial Intelligence methods. Computers & Graphics (2021),
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L scientists with the model development process by explaining
he decision-making process of the black-box models.

Visual analytics (VA) is inherent way to represent the data/
odel understandably, particularly to those who are inexperi-
nced in ML. VA has been often used in providing interpretable
L models by understanding [1,5], diagnosing [8,9], and steering

10] the model and underlying data through an interactive visual
nterface. Combining the techniques of VA with XAI algorithms
ould present an ideal platform to clarify the black box structure
f ML. However, there are only a few recent works combining
A with the current stage of XAI methods to provide explainable
L models to humans. So, we target the audience of this review

o following groups: (1) VA scientists who would like to adopt
AI methods to interpret NN, (2) ML scientists, particularly in the
ield of XAI, who may need VA to interpret their work, and (3)
nd-users/domain experts who use NN for data classification and
redications. This survey paper aims to find current trends and
hallenges of VA in interpreting black-box models by adopting
AI methods and present future research directions in this area.
ithin the study, we would like to discover and present how
A can support a better interpretation of NN models with XAI
ethods.
The explainability and interpretability of black-box models are

ecent hot topics, and many studies have been done in the field.
ost of the studies have been focused on the interpretation of
Ns due to their state-of-the-art performance in various domains.
herefore, we limit our study by reviewing papers that focus on
he interpretation of NNs among black-box models. There are
everal literature reviews of XAI methods [4,11–14], and visual
nalytics on interpretable machine learning [2,15–20] respec-
ively. However, to our knowledge, there is no literature review
hat focus on VA research combined with XAI methods. Such
eview will help to analyze potential future research directions
o develop a better interpretation of neural networks through
AI methods in the field of visual analytics. Therefore, we re-
iewed 55 papers that contributed to the interpretation of NN
odels via visual analytics with and without XAI methods in

erms of model usage and visual approach. Model usage refers
o techniques that are used to explain NN models in the fields
f VA and XAI respectively. The visual approach mainly focuses
n analyzing how visualization techniques are used in data and
rchitecture representations, performance analysis, and local and
lobal explanations. Our main contributions are as follows:

• We present a review of VA research in interpreting deep
learning with a focus on with and without adopting XAI
methods.

• We reviewed the literature based on (1) model usage in vi-
sual interpretation and XAI algorithms respectively, and (2)
visual approach where commonly used visual approaches
are summarized.

• We highlight the current trends and limitations, and discuss
future research directions of VA that adopts XAI for NN
models.

The rest of the paper is organized as follows: Section 2 pro-
ides theoretical background about black-box models and XAI
ethods. Section 3 shows the methodology of this review. Sec-

ion 4 reviews visual interpretation papers and Section 5 reviews
isual-based XAI papers based on the model usage and visual
pproaches, respectively. Section 6 states the current trends and
iscusses future directions of VA for XAI. Section 7 concludes the
aper.

. Theoretical background

This section provides basic information about black-box mod-
ls and definitions, concepts, and techniques related to XAI. The
ection emphasizes the need for explanations of black-box mod-
ls through XAI methods.
2

Fig. 1. A representation of a black-box model.

Fig. 2. A representation of a Deep Neural Network model [22].

.1. Black-box models

ML algorithms work to enhance their performances, often
y gradually improving a function to minimize a certain loss
unction. The loss function indicates how accurately it predicts
utputs of unseen inputs [15]. ML algorithms such as regressions,
ecision trees, k-Nearest Neighbor, Bayesian classifier can be in-
erpreted based on the model parameters, structure, and/or rules
4,12]. Although these methods provide interpretation, trans-
arency, and explanations of their predictions, they lack good
erformance in terms of accuracy [4]. To tackle these perfor-
ance issues, researchers have utilized more powerful models

ike neural networks, support vector machines (SVM), ensem-
le models, gradient boosted models, and boosted trees. These
odels have achieved good performance in terms of prediction
ccuracy in various domains [2]. Despite their impressive per-
ormance, it is difficult to interpret and explain what they learn
uring the training process, how these methods made a certain
rediction, and their logic and inner working mechanisms [4,13].
hus, these methods are considered as black-box models. Black-
ox models refer to a system that its internal functioning or logic
s opaque and uninterpretable [14], as seen in Fig. 1. Especially
n NN-based models, their hyperparameters, the number of hid-
en layers, and the number of neurons in each layer increase
he complexity of their structure and opacities, and obstruct
he interpretability. Therefore, it is essential to interpret these
lack-box models to domain users.
A deep NN model consists of multiple node layers that are

nter-connected with adaptable weights [15], as seen in Fig. 2.
nput layers that contain feature values forward data with ran-
om initial weights to the hidden layers. Hidden layers allow
onnections from input to output by performing nonlinear trans-
ormations via activation functions [21]. The values of the hidden
odes are the summation of the previous layer’s nodes multiplied
y their weights [3]. The output layer is the summation of the
ast hidden layer nodes, that are obtained through an activation
unction [15,21]. The obtained output is compared to the actual
alues and weights, and updated using optimization algorithms
o minimize loss, which is called backpropagation [21].

Deep NNs are capable of modeling complex nonlinear sys-
ems through hidden layers and non-linear activation functions.
ncreasing the number of hidden layers enables the modeling of
ore complex relationships in the high dimensional data. They
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Table 1
The Definitions of XAI.

Domain Study XAI definition

AI

Gunning and Aha [6] XAI will create a suite of ML techniques that enables
human users to understand, appropriately trust, and
effectively manage the emerging generation of
artificially intelligent partners.

Rai [23] XAI is the class of systems that provide visibility into
how an AI system makes decisions and predictions
and executes its actions.

Díaz-Rodríguez and Pisoni
[24]

XAI aims at making state-of-the-art opaque models
more transparent and defends AI-based outcomes
endorsed with a rational explanation, i.e., an
explanation that has as target the non-technical
users.

Moradi and Samwald [25] XAI refers to systems that try to explain how a
black-box AI model produces its outcomes.

Survey of XAI

Arrieta et al. [26] XAI is a system that produces details or reasons to
make its functioning clear or easy to understand.

Schoenborn and Althoff
[27]

An XAI enables a user to learn a transparent,
relevant, and justified information at the right time
using an appropriate size.

Das and Rad [14] XAI is a field of AI that promotes a set of tools,
techniques, and algorithms that can generate
high-quality interpretable, intuitive,
human-understandable explanations of AI decisions.

Adadi and Berrada [19] XAI term tends to refer to the movement, initiatives,
and efforts made in response to AI transparency and
trust concerns, more than to a formal technical
concept.
also have the ability to extract features from the raw data au-
tomatically, which eliminates feature engineering tasks. Both the
complex structure of the NN models and their modeling ability
make them uninterpretable compared to other ML models. Due
to this challenge, a considerable amount of XAI methods [28–30]
have been developed to provide explanations for such black-box
models.

2.2. Explainable Artificial Intelligence methods

Explainable Artificial Intelligence is a new research field that
ims to provide understandable artificial intelligence (AI) results
or end-users [19]. More specifically, XAI techniques aim to de-
elop machine learning techniques in providing understandable,
rustworthy, and explainable rationales for decisions made by
lack-box models [6,31]. The definition of XAI has been improved
nd modified heavily based on domain-specific applications, use-
ase scenarios, and expertise by researchers. Therefore, there is a
ommon agreement that there is no consensus on the definition
f XAI [12,19,27], as seen in Table 1. While some studies [6,
7] mathematically define explainability, other studies [21,23,24]
mphasize that explainability should include more non-technical
oncepts to increase human-understandability. These two aspects
hat differentiate the definition of XAI mainly depend on the
omain of the application and research goals. Whereas ML and
I communities focus on explanations to understand decision
echanisms of models, sensitive domains need explanations as

o how a decision has been made for trust and risk-related is-
ues [12]. Therefore, while ML and AI communities seek answers
o how models behave through mathematical methods, experts
n application domains want to understand why a prediction
s made by classifiers. As a result, various domains, end-user
oals, research communities, and case studies brought different
efinitions and concepts for XAI [14].
A considerable amount of XAI methods have been developed

ately to explain the inner working mechanisms of black-box
odels and their decisions. The XAI methods can be divided into
3

three main categories based on explanation level, implementa-
tion level, and model dependency. The explanation level indicates
whether an XAI technique focuses on the entire model or a
single instance. The subcategories of the explanation level of
an XAI method are named global level, which focuses on the
explainability of the entire model, and its working and decision-
making mechanisms, and local level, which explains the decisions
of a model for a single instance or subpopulation. While some
XAI methods, such as Bayesian Rule Lists (BRL) [32], General-
ized Additive Models (GAM) [33], Distillation technique [34],
provide global level explanations for a whole model and its
decision-making mechanism, other methods like Local Inter-
pretable Model-Agnostic Explanations (LIME) [28], Shapley Addi-
tive Explanations (SHAP) [35], Gradient-weighted Class Activation
Mapping (Grad-CAM) [29], Deep Learning Important FeaTures
(DeepLIFT) [36] provide local explanations for instance data.

Implementation level mainly has two subcategories: intrin-
sic and post-hoc explanations. Intrinsic explanations, such as
Bayesian Rule Lists [32] and Mean Decrease Impurity (MDI) [37],
are provided by the model itself in terms of how a prediction has
been made through the model parameters, decision trees, and/or
rules through the methods.

Post-hoc explanations reveal the internal functioning and de-
cision mechanisms of black-box models. Post-hoc explanations
can be done for either a pre-trained model or when the train-
ing process of a model is complete. Since post-hoc explainers
convert black-box models to interpretable models, many post-
hoc XAI techniques have been developed such as Grad-CAM [29],
Layer-wise Relevance Propagation (LRP) [30], LIME [28], Inte-
grated Gradients [38], and Saliency Maps [39].

Model dependency consists of model-specific and model-
agnostic explainers.Model-specific XAI techniques can be adopted
to explain only for a specific type of algorithm. Intrinsic explana-
tions serve as model-specific techniques, i.e., they cannot be used
for any model without re-changing its explanation mechanism
[14]. Model-agnostic explanations work any type of model and

do not depend on the architecture of a model. Since most of the
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Table 2
Classification of the most popular XAI techniques in explaining neural networks.

XAI method Explanation level Implementation level Model dependency

Global Local Intrinsic Post hoc Agnostic Specific

ANCHORS [40] ✔ ✔ ✔

LIME [28] ✔ ✔ ✔ ✔

SHAP [35] ✔ ✔ ✔

LRP [30] ✔ ✔ ✔ ✔

Grad-CAM [29] ✔ ✔ ✔

Saliency Maps [39] ✔ ✔ ✔

Integrated Gradients [38] ✔ ✔ ✔

DeepLIFT [36] ✔ ✔ ✔

Bayesian Rule Lists [32] ✔ ✔ ✔

Distillation [34] ✔ ✔ ✔

GAM [33] ✔ ✔ ✔

Mean Decrease Impurity [37] ✔ ✔ ✔ ✔

CAM [41] ✔ ✔ ✔
model-agnostic explainers also provide post-hoc explanations,
these methods have been often used due to their flexibility [19].
ANCHORS [40], LIME [28], LRP [30] and SHAP [35] are the most
popular examples of model-agnostic post-hoc explainers. Table 2
shows the XAI categories with the most popular XAI techniques.

To support of the understanding of the XAI methods, we
resented a visual explanation of the most popular XAI methods
ased on their features in Fig. 3. The visual explanation is illus-
rated on the basis of a NN architecture. The most popular XAI
echnique used in the VA field is LIME [28], as seen in Fig. 3a.
IME learns an interpretable model locally around the selected
nstance by using a surrogate model such as linear or tree-based
odels. LIME generates samples around the selected instance,

epresented in Fig. 3a as a black star, by perturbing, which makes
hanges on the selected instance to create similar instances,
llustrated as gray stars. The surrogate model is trained using
hese generated instances to obtain explanations through feature
mportance. End-users can easily observe both positive and neg-
tive feature importance values that contribute to the prediction
hrough visualization. LIME method provides explanations locally
n how a certain prediction has been made by approximating
ny complex model via surrogate models. Similarly, SHAP [35]
xplains complex models locally around a selected instance by
alculating feature importance for the corresponding prediction.
owever, LIME [28] and SHAP [35] work quite differently. SHAP
35] adopts strategies of game-theory and treats features as team
embers of a game. It calculates the relative contribution of
ach feature to the individual prediction, which corresponds to
he contribution of each team member to win the game. SHAP
equires more computational cost than the LIME method.

ANCHORS [40] provides explanations through a local region
n the feature space, shown as a rectangle around the selected
nstance (black star) in Fig. 3b. It presents high-precision ex-
lanation rules. This local region in the feature space anchors
prediction locally so that it guarantees to obtain the corre-

ponding prediction even if the rest of the feature values change.
t can also explain non-linear decision boundaries that exist. It
onsumes computational resources intensively until obtaining a
ocal region to explain the model. The main difference between
IME and ANCHORS is the way to produce their explanations.
hile the LIME method produces explanations through a linear
odel around an instance, ANCHORS generates IF-THEN rules
roviding comprehensible explanations around a local region.
LRP [30], Bayesian Rule Lists [32], Saliency Maps [39], and

odel Distillation [34] are other popular techniques that are
ften adopted by VA in explaining NNmodels. LRP [30] , as seen in
4

Fig. 3c, provides explanations for deep neural networks by prop-
agating the prediction backward in the network, where inputs
can be images, videos, or text. It displays the feature importance
based on pixel-wise contribution. LRP redistributes relevance into
the lower layers in proportion to the contribution of each input
to neuron activation. Fig. 3c shows connections where the color
opacity indicates higher importance based on these relevance
scores. LRP has a key property called relevance conservation that
guarantees the received relevance will be redistributed to the
lower layers [30].

Bayesian Rule Lists [32] is a generative model that creates IF-
THEN rule sets to provide explainability. It produces a posterior
distribution for possible IF-THEN rules using the Bayesian frame-
work. BRL uses pre-mined rules to reduce the model space and
then learns these rule sets and their orders.

Saliency maps [39] are a gradient-based explanation method
that calculates feature importance based on gradients, and visu-
alize and highlight important pixels or words that contribute to
the final decision in convolutional networks. The salience values
indicate the contribution of the features concerning the selected
instance, shown in Fig. 3d as heatmaps. It aims to find the re-
gions that the convolutional networks are focused on. Highlighted
pixels through heatmaps help to explain these regions to the
end-users.

Class Activation Mapping (CAM) [41] is another gradient-
based explanation method focusing on interpreting the predic-
tions of Convolutional Neural Network (CNN) models. It uses
global average pooling to obtain class activation maps in convolu-
tional networks, as shown in Fig. 3e. This global average pooling
helps to localize the discriminative image regions in explaining
predictions. Through CAM, the important regions of the image
can be identified by reflecting the weights to the convolutional
feature maps [41]. CAM requires a particular CNN architecture
that does not contain any fully connected layers.

Grad-CAM [29], as seen in Fig. 3f, is a generalized form of
the CAM [41] method. It removes the disadvantage of the CAM
method which is the need for a particular architecture. Grad-
CAM can be used to generate explanations of any CNN-based
networks without altering their architecture [29]. Grad-CAM is a
highly class-discriminative method that uses the gradients of any
class concept. It flows gradients into the final layer to create a
heat-map that highlights the significant pixels for classifying the
related concept.

Model Distillation method [34], as seen in Fig. 3g, is a model
compression technique used to obtain an interpretable model.
It transfers the knowledge from pre-trained DNN, called teacher
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Fig. 3. Visual explanations of XAI methods.
odel, to small networks named as student. It learns the input–
utput behavior of the complex model and distills it to the
nterpretable model. Explanations are provided through the stu-
ent model, which is interpretable. The student model needs to
ave a similar structure to the teacher model to provide good
pproximation [34]. It is used to simplify complex models into
xplainable models.
DeepLIFT [36], as shown in Fig. 3h, is an explanation method

hat computes the importance values of features in NN models.
t propagates a ‘reference input’ which is generally a default or
eutral input through the network to obtain reference output.
he method compares activations of neurons to reference activa-
ion, then allocates importance score according to the difference
etween actual and reference output.
Integrated Gradients [38], as seen in Fig. 3i, is another ex-

lanation method that provides an interpretation of NN models
hrough feature importance. It stands out with its simplicity
nd easy-to-use properties. It requires no modification to the
rchitecture of the original deep NNs. It needs a few calls to
he standard gradient operator to compute feature attribution
y calculating the average gradients throughout a linear path
etween a selected input and baseline input.
Since GAM [33] and Mean Decrease Impurity [37] methods are

odel-specific, they are less preferred by VA scientists. GAM [33]
s a linear model that aggregates unknown smooth functions. It
rovides feature importance by inferring the smooth functions
nd justify how these importance values affect the related predic-
ion. MDI is used to obtain feature importance and split point for
ach node in tree-based models. It calculates the mean decrease

mpurity of features.

5

3. Methodology

This section presents the paper selection process and defines
the strategies to classify the papers for our review.

3.1. Paper selection

We conducted a comprehensive paper selection using Sci-
enceDirect, Scopus, IEEE, and Google Scholar respectively. To
reach relevant papers, we searched several keywords, such as
‘‘explainable artificial intelligence’’, ‘‘visual analytics’’, ‘‘visual-
ization’’, ‘‘interpretable machine learning’’, ‘‘black-box models’’,
‘‘neural network’’, and ‘‘deep learning models’’, and their different
combinations. While searching for papers and reviewing the
literature, we followed DARPA’s [6] XAI definition the most. Using
manual review process, we considered titles and keywords to
identify the relevant papers and eliminated the irrelevant papers
for the first round. Then we read abstracts of the papers to
confirm the relevance. In any case that we are not sure about the
relevance of a paper based on its title and abstract, we would
go through the paper to finalize the selection. We categorized
papers as survey papers, method papers, and implementation
papers in the selection process. Survey papers cover reviews
in the field of VA and XAI. Method papers include mainly XAI
methods, their mathematical background, and application areas.
We benefited from survey and method papers to establish a
good background about XAI definitions and methods as seen in
Section 2.2, then define review categories in the XAI and VA. VA
papers with and without adopting XAI methods were included

in the category of implementation papers since they provide
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Table 3
The selected papers through reviewing process.

Paper categories Papers

Interpretation
of ML via VA

Explanation
level

Feature
selection

FeatureExplorer [42], FeatureInsight [43],
INFUSE [44], TimeCluster [45–47]

Performance analysis CNNComparator [48], ComDia+ [49], CrossVis
[50], DeepCompare [51], InstanceFlow [52],
Squares [53], ConfusionWheel [54]

Model and
architecture
understanding

ActiVis [1], CNNVis [5], LSTMVis [8],
ReVACNN [9], ProtoSteer [10], REMAP [55],
CNNSlicer [56], DGMTracker [57],
CNNExplainer [58], CNNPruner [59],
DeepEyes [60], DeepTracker [61], Deepvix
[62], Manifold [63], RetainVis [64], SUMMIT
[65], TopoAct [66]

VA adopting
XAI methods

Global RuleMatrix [67], iForest [68],
ModelSpeX [69,70]

Local ExplainExplore [71], DeepVID [72–75], SENN
[76–83]

Both Model Diagnostics [84], explAIner [85],
MELODY [86], SUBPLEX [87,88], iNNvestigate
[89,90], xDNN [91]
s

an interactive framework or system in interpreting ML models.
Then, we divided implementation papers into subcategories and
reviewed them to state the current situation and trends of the XAI
in the field of visual analytics and present how VA can enhance
interpreting NN models through XAI methods. After this selection
process, 55 implementation papers were selected for this review,
as seen in Table 3.

3.2. Paper classification

We classified the papers based on a newly defined XAI con-
ept. We define XAI as a set of techniques that provide explana-
ions of how decisions are made by black-box AI systems in an
nderstandable, sense-making, and intuitive way for end-users.
nlike other definitions, our definition of XAI focuses on visual
nalytics perspective because we believe that the best way to
resent intuitive and sense-making explanations through mean-
ngful representations for end-users is interactive visualization.
ith the awareness in mind, researchers have often utilized

nteractive visual analytics frameworks in ML applications to
nterpret feature selection [42–44], performance analysis [48,49,
3], and model and architecture understanding [1,5,8,9,55]. How-
ver, most of these studies do not adopt XAI methods, which help
o understand model behavior, inner workings, and understand-
ble explanations of the prediction mechanism mathematically.
ut yet, these efforts lead us to the development of the field of
AI for black-box models from the visual analytics perspective.
o ease the classification, we defined two new terms that used
hroughout the rest of the paper: visual interpretation (VI) and
isual-based XAI (vXAI). Visual interpretation refers to usage of
isualization techniques in an interactive framework to interpret
N models without using XAI methods for domain experts, data
cientists and end-users. Visual-based XAI indicates the integra-
ion of visual interpretations and XAI methods in an interactive
isual interface to provide a better interpretation of NN models.
The papers are initially classified into VI and vXAI. We then

urther reviewed all papers based on model usage and visual
pproach. In visual interpretation, model usage refers feature se-
ection, performance analysis, and model understanding. We then
ummarized commonly used visual approaches in data represen-
ation, architecture understanding, and performance comparison.
n vXAI, model usage covers rule, feature, propagation based and
ther XAI methods. Visual approaches used in data representa-

ion, global and local explanations are then concluded for vXAI

6

paper. Fig. 4 presents the paper categorization scheme. With this
categorization, we analyze, identify, and present the results of
how visual approaches and model usage help to enhance the
interpretability and transparency of NN models. The study is one
of the first attempts to review the VA papers that combined with
XAI methods and analyze how VA can be designed and utilized
in explaining NN models through XAI. The study states current
challenges and future directions in this area, as well.

4. Visual interpretation

This section focuses on techniques and visualization approache
to explain NN models without adopting XAI.

4.1. Model usage

Model usage covers common techniques used in explaining
NNs via feature selection, performance analysis, and model and
architecture understanding.

4.1.1. Feature selection
Feature selection is often used in ML to determine significant

features, and remove irrelevant and redundant features from
datasets in improving model performance and reduce noise [42].
Feature selection and evaluation techniques have been adopted
in many visual analytics frameworks to identify informative and
non-informative features by displaying feature contributions. VA
supports interactions to filter, add and remove features to see
how predictions are affected quickly, especially when the data are
high dimensional [92]. Thus, researchers can interpret ML models
by observing changes during the training and prediction phase
through feature selection strategies.

One of the most common feature selection approaches is sub-
set selection. Feature subset selection helps to remove irrelevant
and redundant features from the feature space to improve the
model performance and prediction accuracy. Moreover, feature
subset selection enables the interpretation of the model and
data by observing the contribution of different feature subset
groups to the predictions. Feature subset selection through an
interactive visual analytics framework helps to establish relation-
ships between different feature and instance groups. For example,
FeatureExplorer [42] presents a dynamic feature subset selection
with integrated regression models for high dimensional datasets,
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Fig. 5. Visual analytics tools for feature selection strategies.
s shown in Fig. 5a.A. Linear relationships between features are
hown in a correlation map with scatterplot enhanced by kernel
ensity estimation visualizations, as seen in Fig. 5a.B. Feature

importance are obtained using Support Vector Regressor and Re-
cursive Feature Elimination method. The ranking results are pre-
sented via horizontal bar charts, as seen in Fig. 5a.C, to ease the
feature subset selection process for users by comparing model
performance.

Similarly, INFUSE [44] adopts various feature selection algo-
rithms including information gain, Fisher score, odds ratio and
7

relative risks, to select the most informative features by com-
paring the results of these algorithms through circular glyphs,
as seen in Fig. 5b. It displays sorted lists of all features and
quality scores. Circular glyphs are divided into four parts that
represent feature selection algorithms, as highlighted in the top
right of Fig. 5b. The color of circular glyphs indicates the subtype
of features, as highlighted in the bottom right of Fig. 5b. INFUSE
[44] supports feature reorder, filter, and select features to in-
crease the model performance and interpretation through visual
interactions. SmartStripes [47] presented subset selection in a
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atrix-based layout by ranking the features based on relevance. It
lso allows users to investigate the dependency between features
nd instance subsets. Hohman et al. [46] presented a rank-by-
eature framework for feature subset selection by using ranking
riteria such as normality, Pearson’s correlation coefficient, and
ntropy. The framework shows feature ranks in a correlation map
nd table to ease the subset selection process for users.
Another feature selection strategy is feature extraction, which

reates new features from the existing feature space to improve
he model performance and perceive the data. FeatureInsight [43]
xamines the effect of a set of errors and its visual summaries to
upport feature extraction in the text classifiers. It uses ranked
nd annotated word lists to focus on important features and
rror sets of text documents. Fig. 5c shows the ranked lists
f words to summarize and emphasize errors of keywords of
icycling web pages. TimeCluster [45] supports various dimen-
ionality reduction (DR) techniques, such as principal component
nalysis (PCA) [93], Uniform Manifold Approximation and Projec-
ion (UMAP) [94]. The system permits DR comparison to enhance
eature extraction for time series data. Combination of the vi-
ualization and feature extraction with dimensionality reduction
echniques in TimeCluster [45] highlighted internal logic of ML
odels. It provides interactions such as zooming, filtering, and
rushing to increase the efficiency of the system by allowing
etails-on-demand views for users.

.1.2. Performance analysis
Performance analysis is an essential process to select appro-

riate ML models. Summary statistics such as accuracy, precision,
ecall provide a good perspective in understanding model per-
ormance and prediction. However, the traditional statistics are
ot enough to explore the model performance when a complex
lgorithm is applied, particularly for multiclass classifiers. There-
ore, interactive VA systems, such as seen in [50,52–54], have
een developed to interpret prediction results and compare ML
erformance by creating customized dashboard visualizations.
Due to the inconsistent and messy nature of multiclass prob-

ems, many VA platforms adopted instance-level exploration to
nlighten multiclass classifier performance and underlying
ecision-making mechanisms. For example, Squares [53] con-
ucts performance analysis on multiclass classifiers and supports
ommon performance metrics like accuracy, true and false pre-
iction rates with instance-level information. Classes are color-
oded as columns in a similar way to parallel coordinates. Squares
n both sides of these columns highlight the instance level pre-
iction results. Similarly, Alsallakh et al. [54] developed a con-
usion wheel using a circular chord diagram. A colored his-
ogram that shows class probabilities enables users to identify
isclassified instances with prediction probability scores.
Another performance analysis strategy is to compare the per-

ormance of multiple classifiers after training process. For exam-
le, ComDia+ [49] targets performance analysis of up to 10 ML
odels at both class and instance levels in finding the reasons

or misclassification in image recognition. It helps to enhance
he model performance and interpretation by comparing, diag-
osing, and improving multiple models through matrix views
nd bar charts. CNNComparator [48] and DeepCompare [51] tools
ocus on comparing two different NN architectures by linking the
odel structures. These interactive visualization tools aim to un-
erstand the reasons for misclassified instances. CNNComparator
48] shows a comparison of a trained CNN model taken after 10
nd 100 epochs by displaying classification results via bar charts
nd highlighting high impact feature, as seen in Fig. 6a.
To increase the interpretation of the black-box models, re-

earchers recently focused on performance analysis during the
8

Fig. 6. Performance analysis and comparison on deep learning models through
visual analytics.

training process considering the temporal evolution of the mod-
els. For example, InstanceFlow [52] has been developed to an-
alyze the algorithms and their performance during the training
process. It aims to analyze the model behavior over time by
providing a fully temporal analysis on both class and instance
level through a Sankey diagram, which visualizes the epochs and
helps to follow instances, as seen in Fig. 6b.

4.1.3. Model and architecture understanding
Model and architecture understanding through visual analyt-

ics helps to gain more insights into the structure of NN models
and their decision-making mechanisms. Many attempts have
been done to explore model architecture [1,5,8,9,56,58,62,65], re-
fine [10,55,59,60,64], and diagnose [57,61,63,66] NN models
through interactive VA in making their inner working mecha-
nisms transparent.

Understanding a model and its architecture through a visual
interface allows both end-users and ML experts to gain insight
on how a certain prediction has been made and how the ar-
chitecture flows the data through layers [95]. It also helps data
scientists on the model development process by displaying the
layers and nodes to understand and explore the topology of a
model [15]. For example, ActiVis [1] visualizes the structure of
large-scale neural networks in a graph-based representation and
shows their inner working mechanisms and neuron activations
at both instance and subset levels through multiple integrated
views. Tools like CNNVis [5] and ReVACNN [9] visualize CNN
architectures and explore the activations in the layers and nodes.
These tools illustrate the roles of the layers and nodes in the
decision process. CNNExplainer [58] helps users to understand
how CNN works by showing mathematical operations between
layers and neurons. It visualizes neurons as heatmaps and in-
tegrates multiple level views to enhance the interpretation of
CNN. Similarly, CNNSlicer [56] is developed to understand infor-
mation distillation of CNNs by exploring various components of
CNN, such as convolutional layers, pooling layers presented in
heatmaps and matrix views. Unlike other studies, LSTMVis [8] and
Deepvix [62] focus on interpreting and exploring the architecture
of Long Short Term Memory (LSTM) models via visual analytics
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Fig. 7. VA tools for understanding architecture of NN models.

ools. LSTMVis [8] focuses on the hidden states over texts through
arallel coordinates. Deepvix [62] visualizes nodes inside layers
s heatmaps and connects these heatmaps by displaying weights
n the links between layers. It provides detailed views of LSTM to
nderstand its components, structure and learning process. Fur-
hermore, it allows users to perform what-if analysis to enlighten
ecision-making mechanism of LSTMs.
Feature visualization is another important issue in interpreting

he NN models. Feature visualization helps to understand what
eatures are learned during the training process and how they
mpact the predictions. Summit [65] summarizes the features
earned by a deep learning model to support the model un-
erstanding process of NNs. It explores important neurons in
erms of activations and their relationships through an attribution
raph, as seen in Fig. 7.a.
Manifold [63], DeepTracker [61], DGMTracker [57] and TopoAct

66] are other popular VA tools targeting diagnosing processes
n model training by visualizing the training dynamics. Manifold
63] is a model-agnostic VA tool that diagnoses and interprets ML
odels by inspecting and explaining instances and then refining

he model. It presents a scatterplot-based visual summary to
isplay the outcomes of the models and feature attribution. Users
an create newmodels to improve the performance by diagnosing
nd exploring these views. TopoAct [66] focuses on complex
opological structures and by summarizing them to discover
ctivations across multiple layers for deep learning classifiers. It
rovides a graph-based summary view and feature visualizations
o enhance discovery and diagnose of image classifiers. DGM-
racker [57] monitors and diagnoses the training process of deep
enerative models by visualizing activation changes over time to
how how data neurons contribute to other neurons, as seen in
ig. 7.b. Similarly, DeepTracker [61] is proposed to visualize the
raining dynamics of CNN models from different levels of detail.
hey introduced a cube-style visualization to provide correlations
mong training data, iterations, and neuron weights.
Model refining and steering focus on the improvement of

odel performance through an interactive system. Many studies
ave been conducted to increase the performance of NN mod-
ls via pruning, steering and architecture searching using VA
9

Fig. 8. RetainVis [64].

Fig. 9. Data representation through scatterplots supported by dimensionality
reduction techniques.

techniques. For example, REMAP [55] explores NN architectures
by adding, removing, or replacing hidden layers. It also per-
mits quick hyperparameters searching to enhance performance
of NN models. It allows interactive model generation by either
searching the neighbors of a selected model or removing layers
from the model one by one. Similarly, DeepEyes [60] explores
the architectures of NN models by analyzing them during the
training process. It removes the disadvantage of hyperparameter
searching , which is time-consuming process through manual
trial-and-error, by allowing model design during the training
process. It presents layers in an activation heatmap and visualizes
filter map as scatterplots. Another example is ProtoSteer [10]
that provides interactive human-guided refinements for Recur-
rent Neural Networks (RNN) to improve the model performance
via prototypes. It allows adding, editing, and removing prototypes
through multiple connected views.

4.2. Visual approaches

Visual approaches adopted in visual analytics tools to rep-
resent data, architecture and assist in performance analysis are
presented in the following subsections.

4.2.1. Data representation
Presenting data and classes in a dataset through visualizations

enable users to understand data features and hidden patterns be-
hind it. Many VA tools provides raw data access for performance
analysis. For example, Squares [53] and CrossVis [50] display
numeric data in a table form in interpreting the classification
results. LSTMVis [8] and DeepCompare [51] visualize text sam-
ples in a list form to ease interpretation of ML models. REMAP
[55], CNNExplainer [58] and TopoAct [66] show actual images to
increase the understanding of the model decisions.

When data is high dimensional, displaying all samples in a VA
system can be challenging since it could cause performance issues
and visual clutters. Therefore, many VA tools use DR techniques
to diminish the size of the data, then visualize them using scat-
terplots. For example, ClusterVision [96], ActiVis [1], DeepEyes
[60], Summit [65], and RetainVis [64] visualize data instances
via scatterplots enhanced by DR techniques. RetainVis [64] also
visualizes individual instances through a customized row of rect-
angles view, as seen in Fig. 8. Users can select or group data
samples through direct manipulations for further examination
to understand data and features in detail. Fig. 9 shows some
examples of data representations through scatterplot supported

by DR techniques.
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.2.2. Architecture understanding
Visualizing the architectures of deep neural networks allows

sers to understand the structure of models and gain more in-
ight on the working mechanisms of these black-box models
onsidered as black-box. Recently, many VA tools [1,9,59] were
eveloped to visualize NN structures. For example, ActiVis [1]
isualizes large-scale network architectures and neuron activa-
ions in computational graphs by formulating the network as
irected acyclic graph (DAG). It utilizes both instance-level and
ubset-level neuron activities by integrating coordinated views.
imilarly, CNNVis [5] illustrates architectures as a directed acyclic
raph to reveal the facets of each neuron and the interactions
etween them.
Another common approach to visualize NN architecture is to

epresent them as directed network with nodes and links. For
xample, Summit [65] proposed a customized view on attributes,
here it displays network architecture using vertices and edges
hat representing highly activated neurons and their connections,
espectively. ReVACNN [9] visualizes CNN using a node-link rep-
esentation. It allows users to gain insights by observing the
raining dynamics of the model.

When the input data and the number of layers and neurons are
igh-dimensional, illustrating NNs as node-link representation
ay cause visual clutter. Therefore, many studies have adopted
eatmaps for input and neuron illustrations and parallel coor-
inate plots (PCP) to connect layers. For example, Deepvix [62]
resents neurons at each layer as a heatmap and connect them
hrough links to interpret the working mechanism of LSTMs over
ime. Similarly, CNNExplainer [58] illustrates CNN architecture as
square that represents each neuron with a heatmap. It also sup-
orts detail-on-demand visualization to provide interpretations
n different levels. LSTMVis [8] also displays the activations of
he hidden states through a parallel coordinate plot. DeepTracker
61] adopts a neural network visualizer into their systems along
ith a heatmap to display activations in layers.
Fig. 10 shows some different ways in illustrating NN structure,

ctive neurons, and hidden layers. Fig. 10(a–b) shows convolu-
ional neural network architectures and hidden layers formulated
s DAG. Fig. 10c is an example of visualization of NN as node-
ink. Fig. 10(d–f) display NN via heatmaps and parallel coordinate
lots.

.2.3. Performance analysis
Traditional summary tools of ML models, such as confusion

atrix, accuracy, and prediction scores, are not enough to ex-
lore the model performance, particularly for multiclass prob-
ems. These traditional tools do not provide performance analysis
n individual instances and subset levels. Therefore, VA scien-
ists have been improving traditional summary tools and using
ustomized interactive visualization, as seen in [48–50,52], to do
erformance analysis and comparison. Alsallakh et al. [54] pro-
osed ConfusionWheel using a circular chord diagram, a colored
istogram that shows class probabilities to identify misclassified
nstances with prediction probability scores. The confusion wheel
rovides feature analysis view to illustrate data features and help
eature selection. Ren et al. [53] introduced Squares that mainly
ocuses on multiclass classifiers’ performance analysis. Squares
53] supports common performance metrics like accuracy, true
nd false prediction rates with instance-level exploration through
olor-coded squares in a parallel coordinate plot. ComDia+ [49]
roposed a view of customized overall performance comparison
hrough connected circles to display accuracy scores at the class
evel, shown in Fig. 11. CNNComparator [48] provides a side-
y-side performance comparison of two different CNNs through
horizontal bar chart for a selected instance. Although these

tudies developed a customized visualization for performance
10
Fig. 10. Different examples in illustrating NN structure, neurons and hidden
layers.

Fig. 11. A customized performance comparison view: ComDia+ [49].

Table 4
A summary of visual approaches adopted by visual interpretation papers.

Visual
approach

Papers

Data
representation

Actual data LSTMVis [8], REMAP [55],
CNNExplainer [58], CrossVis [50],
DeepCompare [51], Squares [53],
TopoAct [66]

Scatterplots ActiVis [1], DeepEyes [60],
RetainVis [64], Summit [65]

Architecture
understanding

DAG ActiVis [1], CNNVis [5]

Node-Link ReVACNN [9], Summit [65]

Heatmap + PCP LSTMVis [8], CNNExplainer [58],
DeepTracker [61], Deepvix [62],

Performance
analysis

Customized
visualizations

ActiVis [1], CNNComparator [48],
ComDia+ [49], Squares [53],
ConfusionWheel [54],

Traditional
visualizations

ReVACNN [9], REMAP [55],
CNNSlicer [56], CNNPruner [59],
Deepvix [62]

analysis in multiclass classifiers, several other VA tools such as
CNNSlicer [56], CNNPruner [59], and REMAP [55], adopted some
traditional visual summary tools such as confusion matrix, bar
charts, and line charts, for performance analysis and comparison.

Table 4 summarizes the visual approaches adopted by vi-
sual interpretation papers in data representation, architecture
understanding and performance analysis.
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Fig. 12. VA tools for both instance and subgroup level explanations by the LIME
method.

5. Visual-based XAI (vXAI)

vXAI is an emerging area of research in the field of VA. Com-
paring with visual interpretation based studies, vXAI papers are
very limited This section summarizes how visual approaches
and model usage are used in visual-based XAI papers to make
NN models more transparent by adopting XAI techniques. The
subsections are created based on the paper categorization scheme
as shown in Fig. 4.

5.1. Model usage

Under model usage, we grouped XAI methods in the subsec-
tions based on feature-based, rule-based, propagation-based, and
other methods.

5.1.1. Feature-based methods
Feature-based XAI methods produce the importance values of

features to show their contributions to predictions in explain-
ing black-box models. LIME method [28] is the most popular
model-agnostic XAI method often adopted in vXAI. LIME [28]
generates training samples by perturbing neighbors around the
user-selected instance, then uses a surrogate model to explain
the instance locally. Surrogate models are simple interpretable
models, such as linear models, to approximate black-box mod-
els. These surrogate models provide explanations for black-box
models by obtaining feature importance via coefficients of linear
models.

LIME method is often used in various data domains such as
tabular [75,79,82], image [77], and text [83] due to its easy-to-
use feature. Several vXAI works, such as ExplainExplore [71],
SUBPLEX [87], and DeepVID [72], modified and integrated the
LIME method into their interactive VA platforms to explain NN
models locally. ExplainExplore [71] modified the LIME method to
increase the explainability by using not only linear models but
also shallow tree-based models as surrogate models. ExplainEx-
plore [71] provides explanations locally for a selected instance
by displaying generated samples interactively and allowing di-
rect manipulations. Another extension for the LIME method has
11
been done by DeepVID [72] by improving the training sample
generation process through deep generative networks. It allows
users to select a sampling region around one or more selected
instances and provides local explanations. Fig. 12.a displays Deep-
VID that explains the NN model at instance level using the LIME
method. While the LIME method usually has been used to explain
a selected instance, SUBPLEX [87] presents the average feature
contributions to provide explanations for a selected subgroup by
modifying the LIME method, as seen in Fig. 12.b.

SHAP [35] is the other popular feature-based XAI method used
for feature explanation. Li et al. [73] adopts SHAP in their VA
system to interpret feature selection on clinical data. They present
local explanations of both individual and clustered instances in-
teractively. The tool also allows multiple model comparison by
displaying the similarities of ML models based on local feature
importance as seen in Fig. 13, by using a scatterplot obtained by
t-Distributed Stochastic Neighbor Embedding (t-SNE) [97], which
helps understand the rationale of different models.

5.1.2. Rule-based methods
Rule-based explanations are another often seen XAI method

used in vXAI study. The method provides logical statements,
i.e., IF. . . THEN. . .ELSE, to present rule lists that explain the predic-
tions. RuleMatrix [67] displays a graphical representation of rule-
lists obtained by Bayesian Rule Lists [32], which produces a pos-
terior distribution for possible IF-THEN rules using the Bayesian
framework. RuleMatrix visualized IF-THEN rules in the form of a
matrix as seen in Fig. 14, for a group that satisfies the related
rule(s). xDNN [91] provides prototype-based IF-THEN rules to
explain NNs by displaying similarities between validation and
selected image. Model Diagnostics [84] also adopts a rule ex-
traction method to present local and group level explanations
for binary classifiers. Similarly, ModelSpeX [69] employs a rule
extraction technique to provide rule-based explanations for deci-
sions. However, Model Diagnostics [84] and ModelSpeX [69] did
not visualize IF-THEN rules but focused on explanations of logic
representations.

5.1.3. Propagation-based methods
XAI methods, such as LRP [30], CAM [41], Grad-CAM [29],

back-propagate predictions to obtain feature relevance in ex-
plaining ML models at both global and local levels. Lauritsen
et al. [88] utilized LRP to reveal feature importance in explaining
predictions at both instance level and population-based level for
acute critical illness records. Saliency maps are often used to
highlight the contributions of features for each sample through
propagation. Li et al. [81] used saliency maps to explain contri-
butions and negations of words to the predictions obtained by
LSTMs. CAM and Grad-CAMmethods are proposed to improve the
saliency. Kim et al. [78] utilized CAM method to obtain salience
values for text classification. Saliency values are visualized using
gray-scale saliency maps to explain CNNs.

The majority of VA research only integrated a specific type
of XAI method into their systems. Since there are many XAI
techniques, it is difficult to implement each one of them and com-
pare their explainability individually. To overcome this challenge,
iNNvestigate [89], a python package, has been developed to com-
pare not only XAI methods but also NN models. It compares how
different NN models would behave on the same instance through
visualizations of feature contribution by using a user selected XAI
method. The package supports a variety of propagation based XAI
methods, such as Saliency Maps [39], Integrated Gradient [38],
and LRP [30]. Similarly, explAIner [85] and MELODY [86] support
various propagation-based and feature-based XAI methods, such
as LIME [28], LRP [30], SHAP [35], Saliency Maps [39], DeepLIFT
[36], to provide explanations through vXAI. These tools provide
both local and global explanations for individual and subgroup
instances.
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Fig. 13. Model comparison via each feature’s consistency values [73].
Fig. 14. RuleMatrix: If-Then rules visualization in a matrix form [67].

Fig. 15. Case-based reasoning adopted by VA [80].

.1.4. Other methods
Case-Based Reasoning (CBR), another type of XAI method,

elps to classify and explain a decision based on similarities of
revious cases. It is often used in medicine domains [70,80]. Stud-
es presented by Lamy and Tsopra [70] and Lamy et al. [80] have
sed a case-based reasoning approach to provide explanations
or clinical datasets through rainbow boxes, as seen in Fig. 15.
ainbow boxes aim to explain the rationale a decision via weights
nd case similarities. The scatterplot on the left shows similar
ases in color-coded classes and their distance to the query.
he height of the rainbow boxes shows the mutual information
etween the query and similar cases. The color of rainbow boxes
s determined in proportion by weighting the cases based on
heir similarity to the query. iForest [68] uses the MDI method
37], which is a model-specific method for Random Forest, to
resent feature-based explanations. iForest [68] reveals the work-
ng mechanism of Random Forest by summarizing decision paths
ased on feature ranges. It supports case-based reasoning by
dopting similarity measures of both data similarity and decision
ath.
Table 5 presents a summary of the reviewed vXAI papers

ased on model usage. We summarized vXAI papers based on
ata domain (i.e., tabular, text, and image), explanation and im-
lementation level, and dependency of adopted XAI methods.
12
Most of the vXAI tools adopt model agnostic XAI methods. Among
these methods, LIME is the most utilized method to provide local
explanations. The most common data domain used in the vXAI
tools is tabular data.

5.2. Visual approaches

This section summarizes visual approaches used in data repre-
sentation, local and global explanations adopted by vXAI research.

5.2.1. Data representation
Through visual representations, data can be more accessible

to help users engage in exploration and analysis [98]. In a VA
framework, datasets and/or their classes are often presented vi-
sually to users. Instance exploration would enhance prediction
explanation. Therefore, many vXAI papers adopted actual data
representation in their system. For example, RuleMatrix [67] dis-
plays actual data in a table form. Thus, users can investigate
data by filtering in the data table and focus on specific instance
or subgroups. Similarly, iForest [68] also adopted table form to
represent raw data. iForest [68] allows browsing and selecting an
instance or subpopulation from the table for exploration through
connected views. For image datasets, actual images are often
presented to explain the feature importance, as seen in explAIner
[85], Meske and Bunde [77], and DeepVID [72]. Moreover, Kim
et al. [78] and Li et al. [81] presented text data by displaying each
instance in a text box.

For high dimensional datasets, data representation via scat-
terplots using DR techniques have been adopted by many vXAI
tools as well to reduce visual clutter. For example, Botari et al.
[75], Baptista et al. [79], Lauritsen et al. [88] presented tabular
data enhanced by DR techniques in a scatterplot. iForest [68]
and DeepVID [72] represent data supported by DR techniques
through color-coded classes in scatterplot along with the raw
data to increase data exploration. In Fig. 16a, DeepVID [72] dis-
plays color-coded data instances in a scatterplot obtained by
t-SNE [82]. In this way, users can select and analyze a single
instance and/or subgroups to understand the predictions. For
example, SUBPLEX [87] uses scatterplots with a DR technique —
Local Affine Multidimensional Projection (LAMP) [99]- to show
subgroups in the data. LAMP maps the attributions in a 2D plane
by presenting the subgroups produced by the LIME method.

Another data representation approach is to use Sankey di-
agrams. Sankey diagrams show how data and instances flow
through overall data feature distribution. For example, RuleMatrix
[67] uses a color-coded Sankey diagram to display data flow
through rule lists for tabular data, as seen in Fig. 16b. With the
Sankey diagram, users can follow the amount of data satisfying a
rule by observing the width of the Sankey diagram flow. MELODY
[86] uses a Sankey diagram to visualize the data flow from each
class to different instances clusters for various domains, i.e., tab-
ular, text and image. Examples of data representations in vXAI
through scatterplots and Sankey diagrams are shown in Fig. 16.
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summary for vXAI papers based on model usage.

XAI method Papers Explanation level Implementation Dependency Domain

Feature-based
LIME

ExplainExplore [71] Local Post-Hoc MA TB

SUBPLEX [87] Both Post-Hoc MA TB

DeepVID [72] Local Post-Hoc MA IM

Botari et al. [75] Local Post-Hoc MA TB

Meske and Bunde [77] Local Post-Hoc MA IM

Baptista et al. [79] Local Post-Hoc MA TB

Islam et al. [82] Local Post-Hoc MA TB

So [83] Local Post-Hoc MA TXT

SHAP Li et al. [73] Local Post-Hoc MA TB

Rule-based

BRL RuleMatrix [67] Global Post-Hoc MA TB

Rule extraction
Model diagnostics [84] Both Post-Hoc MA TB

ModelSpeX [69] Global Post-Hoc MA TB

xDNN [91] Both Post-Hoc MA IM

Propagation-based
LRP Lauritsen et al. [88] Both Post-Hoc MA TB

CAM Kim et al. [78] Local Post-Hoc MA TXT

Saliency maps Li et al. [81] Local Post-Hoc MA TXT

Others

CBR
iForest [68] Local Intrinsic MS TB

Lamy and Tsopra [70] Global Post-Hoc MA TB

Lamy et al. [80] Local Post-Hoc MA TB

Diverse
explAIner [85] Both Both Both IM

MELODY [86] Both Both Both ANY

iNNvestigate [89] Both Both Both ANY
Fig. 16. Data representations through scatterplots (a) and Sankey diagram (b).

5.2.2. Local explanations
Local explanations overcome challenges of explainability re-

lated to complex models by providing local explainability through
selected instances or surrogate models to understand the be-
havior of the whole model [24]. Many VA tools integrate local
explanations into their systems, as seen in Model Diagnostics
[84], explAIner [85], iForest [68], and Li et al. [73]. Displaying
local feature contribution for selected instances helps users to
understand which features contribute the most to the corre-
sponding prediction. It explains why a certain prediction is made
by a classifier and helps users to understand model behavior for
similar instances.

The most popular visualization technique to present local ex-
planations is bar charts. For example, ExplainExplore [71], SUB-
PLEX [87], Model Diagnostics [84], RuleMatrix [67] and iForest
[68] use horizontal and vertical bar charts to display local feature
contributions to the related predictions. Bar charts show feature
value distribution and allow a quick comparison among their
13
values so users can easily notice the most contributing feature
groups in a prediction. Another popular visual approach for local
explanations is breakdown plots (BDP) that show positive and
negative contributions of each feature for a selected instance’s
prediction. Some studies [69,76,79,83] use a color-coded break-
down plot to present positive and negative contributions of each
feature for a certain prediction. These contributions are often
obtained via feature-based XAI methods such as LIME method
[28]. Bar charts and breakdown charts are generally preferred in
local explanations because they are straightforward to interpret
the results of feature selection. Additionally, they can be applied
to any data domain such as tabular, text, and image. Fig. 17 shows
breakdown plots for tabular and text datasets utilized in studies
[79] and [83], respectively.

Heatmaps are another popular visual approach used in local
explanation, especially for image datasets. Local explanations are
often highlighted in the pixels and/or regions that contribute to
the prediction over the actual image with a heatmap.

These contributions are often obtained through XAI methods.
For example, DeepVID [72] uses LIME method to obtain feature
contributions and reflects these values over the image by high-
lighting pixels based on these scores. explAIner [85] and MELODY
[86] support various XAI methods in their systems so that they
can use different XAI methods to display heatmaps on the actual
images. Fig. 18a shows the pixel contributions to predict digit 8
through local explanations using LIME method in explAIner [85].
In Fig. 18b, MELODY [86] shows instance inspection by comparing
and highlighting similar patches between a selected image and
other instance. Besides image data, heatmaps have been also used
in text data to display words that contribute to the predictions.
For example, Li et al. [81] and Kim et al. [78] use Saliency map and
CAM methods respectively to reflect feature/word contributions
to text classification via heatmaps. Heatmaps allow users to gain
insights on how a model recognizes certain images or words
using input features.
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Fig. 17. Local feature contributions via breakdown plots.

Fig. 18. Common visual approaches for local explanations using heatmaps.

5.2.3. Global explanations
Global explanations focus on the explanation of the entire

odel, and its working and decision-making mechanisms. Pro-
iding global explanations of NN models is challenging due to the
lack-box structure and complex computational process. There-
ore, there are a few studies provide explanations globally. Ex-
lainExplore [71] explains feature contributions globally using
CP, where the selected instance to be explained is highlighted,
o identify model behavior on similar instances. Histogram is
popular approach to present global feature contributions in
nderstanding the model behavior for group patterns. For ex-
mple, SUBPLEX [87], explAIner [85], Lauritsen et al. [88], and
ELODY [86] use histograms to show the distributions of feature
ontributions.
Histograms and PCPs can be insufficient to explain the over-

ll model behavior by only displaying feature contributions. To
vercome this issue, researchers presented matrix-based visual-
zations including more details regarding the model behaviors.
or example, RuleMatrix [67] visualizes the content of an ordered
ule list in a matrix-based design with sorted feature contri-
utions. The design allows users to follow the amount of data
atisfying a certain rule with feature contribution. Model Di-
gnostics [84] also proposed a matrix-based design to explain
odel decisions in global level. They represented each row as
data group explained by a set of features. In each column,
14
Fig. 19. Decision path view of iForest [68].

they presented an ordered feature set that contributes to the
prediction along with the statistics to provide insights about the
accuracy of the decision. With Model Diagnostics, users can drill
down from data groups to individual items to inspect explana-
tions from global level to local level. iForest [68] explains random
forest globally through decision path flows that reveal decision
paths at the individual layer level in detail, as seen in Fig. 19.
The decision path view in Fig. 19 enables users to understand
feature importance by observing the order of feature appearance
in different user-selected decision paths. The width of the curves
between features indicates the number of decision paths.

Table 6 summarizes the visual approaches used in vXAI pa-
pers. According to Table 6, the most popular visual approaches
to represent data are displaying actual data and scatterplots.
Most of the vXAI tools support local explanations in interpreting
the model behavior through bar charts [71,85–87], breakdown
plots [75,79,83] and heatmaps [72,81,85]. Global explanations are
provided using parallel coordinate plots [71], matrices [67,84,86],
and histograms [87].

6. Discussion, opportunities and future work

In the field of VA, we found there are very few research studies
focusing on adopting XAI methods to explain ML. Therefore, we
developed several research questions to address research needs
and directions in this area. This section presents the current
trends, research challenges, and opportunities for future work
in vXAI, through some predetermined research questions by this
survey.

1. How can VA systems be utilized to support the interpre-
tation of NNs through XAI techniques?

Scalability in data representation: ML models learn from data,
explore patterns, and make predictions by using the history data.
The quality of data, distribution of classes and relevancy affect
the performance and understanding of ML models. On the other
hand, data visualization helps to analyze and understand the
data, and see visible and hidden patterns. Hence, representing
data in a VA system enhances the interpretation of NNs and
provide more sense-making for predictions to the users. The most
straightforward way is to represent actual data in tables [67,68],
lists [86], or as images [72,85]. Users can select an instance or sub-
groups in the raw data to be explained by XAI and monitor how
NN make predictions through an interactive VA. However, the
main challenge is to have visually scalable data representations.
Since most of the real-world applications have high-dimensional
datasets, visualizing raw data in a VA system may cause visual
clutter and scalability issues.

Therefore, many studies [1,60,64,72,73,87] present data and
classes as color-coded scatterplot enhanced by dimensionality
reduction techniques to provide scalable data visualization. How-
ever, an increase in the dimension of data, classes, and feature
space will still cause overlapping data points and scalability issues
because the system will not visualize and deal with them. An
ideal visual analytics framework should illustrate data in a scal-
able manner along with the classes and allow more interactions
such as searching, filtering, adding, or removing instances to
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Table 6
The summary of vXAI papers based on visual approaches.

Study Data representation Local explanations Global explanations

Actual data SP SD BC BDP Heatmaps O PCP H Matrix O

ExplainExplore [71] ✔ ✔

SUBPLEX [87] ✔ ✔ ✔

MELODY [86] ✔ ✔ ✔ ✔ ✔ ✔

explAIner [85] ✔ ✔ ✔ ✔

RuleMatrix [67] ✔ ✔ ✔ ✔

DeepVID [72] ✔ ✔ ✔

Krause et al. [84] ✔ ✔

iForest [68] ✔ ✔ ✔ ✔ ✔

Li et al. [73] ✔ ✔

Botari et al. [75] ✔ ✔

Baptista et al. [79] ✔ ✔

So [83] ✔

Lamy et al. [80] ✔ ✔

Cho et al. [90] ✔ ✔

Lauritsen et al. [88] ✔ ✔ ✔

J. Li et al. [81] ✔ ✔

Kim et al. [78] ✔ ✔

SP: Scatterplot, SD: Sankey Diagram, BC: Bar Chart, BDP: Breakdown Plot, H: Histogram, O: Other, PCP: Parallel Coordinate Plot.
support the interpretation and understanding of NNs through
instance- and subset-level explanations. Additionally, clustering
and bundling techniques can be also utilized to reduce visual
clutter and scalability issues in data representation via VA. Vi-
sualizing data in interactive VA tools still has opportunities to be
improved such as direct access to data, reducing scalability and
visual clutter, increasing interactions, and data manipulation in
future works. VA scientists can create new visual representations
to deal with the large-scale data representations and components
of NNs to support domain experts and ML scientists.

Feature understanding: Feature selection and extraction are
significant factors that affect the performance and decisions of NN
models. Determining important features and removing irrelevant
and redundant ones from datasets improve model performance.
The current studies such as [42–44] support various feature selec-
tion and extraction methods integrated into interactive VA tools
to improve the model performance. Most of the XAI methods
explain NNs based on feature weights and contributions to the
predictions. The current studies visualize feature weights over the
layers of NNs [1,8,9,88] and highlight feature relevance for the
final decision [72,85,86]. They also allow limited interactions and
manipulations on feature space to understand the model behavior
and explanations on predictions. For example, Model Diagnostics
[84] removes features one by one until there is any change in
the prediction results to examine the effect of the features on the
predictions. To enhance interpretation of NNs, in future work, VA
systems should support automated feature selection/extraction
preserving class balance along with additional and broader inter-
actions to improve model accuracy and feature-based explainabil-
ity. Including the user into the VA loop interactively will enhance
the understanding of the effects of features on the predictions.
Users can observe how feature selection/extraction can make
changes in classification results/weights/activations on neurons
with increased and broader interactions. Therefore, users can gain
more insights how feature space affect the model decisions and
performance, and understand how the model will behave for
future predictions with selected feature space.

Performance analysis: Data and feature quality, model hyper-
parameters such as activation functions, learning rate, batch size,
optimizers, and the number of nodes at each layer affect the
15
performance of NN models. Conducting performance analysis on
NN architectures increase the interpretation of NNs by analyzing
and exploring misclassified instances through an interactive VA
tool. Traditional performance summary tools such as confusion
matrices can be insufficient explaining misclassified instances in
multiclass classifiers. Therefore, many studies [1,48,49,53] have
developed interactive customized performance analysis tools to
reveal the reasoning behind the model predictions and interpret-
ing NNs. Since these tools are developed either for a specific
model or data type, there is no generalization and consensus
on performance analysis for multiclass classifiers. Future works
have opportunities to develop generalizable performance analysis
tools for multiclass classifiers and interactive hyperparameter
search to compare different NN configurations. ML scientists can
support VA scientists by providing scalable computational meth-
ods in visual based neural architecture search. Therefore, domain
experts can understand, compare, and select the best NN config-
urations by examining them visually for their domain data. This
also reduces the human effort in the trial-and-error process of
selecting the best configurations of NNs for domain experts and
ML scientists.

Architecture understanding: Researchers have focused on vi-
sualizing architecture of NN models using network-based ap-
proaches. For example, ActiVis [1] and CNNVis [5] formulated
NN as directed acyclic graphs to interpret deep learning mod-
els and results. CNNExplainer [58] uses heatmaps to represent
nodes and shows internal operations to make a prediction for
a selected instance. VA research has been well established to
interpret NN by supporting the understanding of the internal
working mechanism and diagnosing the model errors through
interactive interfaces. However, there is still a lack of visualizing
real-time online training process that helps interactive steering
and model development and refinement process with user inter-
actions. A real-time training process system should allow saving
and reviewing interactions done by users during the training.
It will enhance hyperparameter exploration and searching to
build better models. However, developing an interactive real-time
training process system has limitations such as time, computa-
tional resources, and scalability. Collaboration between VA and
ML/AI communities would help to resolve this challenge.
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Explainable AI and ML is a new research field and still evolv-
ng, so there is no standardized way of explaining each ML model
nd no consensus on the applicability of XAI in visual analytics
or specific types of data. Researchers should focus on integrating
AI methods in training process by visualizing explanations over
he architecture in real-time to make black-box models more
ransparent in future works. Thus, it will be possible to explain
lobally how NN models made their decision as a whole. VA
cientists and ML scientists can work collaboratively to provide
calable, optimized, and user-friendly visual analytics tools both
isually and computationally in explaining NNs using XAI.
2. What visualization techniques have been used to support

he explainability of XAI techniques?
Local explanations: Local explanations focus on explaining

odel decisions based on a selected instance or subgroups. Most
f the vXAI papers provided local explanations by displaying
alues of feature importance that contribute to the predictions.
he most common way for local explanation is to use surrogate
odels [28], which helps to simplify the complex models by
sing interpretable models such as linear models and tree-based
odels.
They are used to classify samples that are generated by per-

urbing neighbors around a selected instance to explain the be-
avior of complex NN models. Surrogate models provide feature-
ise contributions through either coefficient of linear models
r local increments for tree-based models. These contributions
re presented using bar charts (for example, SUBPLEX [87], iForest
68]), breakdown plots (for example, Botari et al. [75], Baptista et al.
79]), heatmaps (for example, DeepVID [72], iNNvestigate [89]), par-
ial dependency plots (for example, iForest [68]) and highlighted
ata representations (for example, explAIner [85], DeepVID [72],
NNvestigate [89]).

The most common issue in vXAI is visual scalability. When
he feature space is high dimensional, most of the VA have per-
ormance issues since they could not visualize all features that
elp to explain the predictions locally. Due to the simplicity of
pplication, many vXAI works adopt local explainers focused on
nstance explanations rather than the entire model behavior. This
eads us to another challenge in the VA systems: the bias in rep-
esentative examples to be explained. Because local explanations
re conducted around an instance selected by the user and its
erturbed neighbors, this selection may cause bias in explaining
imilar instances. Future work should focus on presenting better
nd generalized ways to represent high impact data and features
o resolve the scalability and bias issues. Additionally, developing
ommon approaches for different domains to present explain-
bility for XAI methods in supporting interpretation of NNs is
mportant.

Global explanations: Global explanations reveal the reasoning
ehind the model predictions and its working mechanism. When
he local explanations are insufficient to understand the model
ehavior, providing global explanations is essential. Parallel co-
rdinate plots (for example ExplainExplore [71]), histograms (for
xample SUBPLEX [87]), and matrices (for example Krause et al. [84]
nd MELODY [86]) are commonly seen for the global explanations.
arallel coordinate plots help to see overall feature distribution
o that users can see whether there are patterns for predictions.
imilarly, histograms show the distribution and frequency of all
eatures and their contributions to the overall predictions. vXAI
s an evolving research field and still has opportunities to explain
he working mechanisms of NNs during the training by displaying
eature contributions obtained by XAI over the architectures.

Local explanations help to understand how a prediction has
een made for an individual instance, and global explanations
rovide insight on general behaviors of a model for future predic-

ions. Although there are differences in the applications of local
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and global explainers, the current stage of vXAI tools tends to
combine explanations of NNs from both global and local perspec-
tives.

3. Is there a common visual approach to support the illus-
tration of XAI methods for different types of data/models?

vXAI is a new and evolving research field that aims to explain
NN models and their decisions visually using XAI methods. Due
to its novelty, there are no common visual approach to support
the illustration of XAI methods for different types of data/models.
There is also no standardized way to present local and global
explanations.

Nevertheless, we discovered some similarities in visual ap-
proach among vXAI papers. For example, data are often repre-
sented through scatterplots or Sankey diagrams; however, there
is no consensus on visualizations and general approach in rep-
resenting different types of data in different domains. Actual
data are often presented as tables, images or lists forms. While
local explanations are often visualized using bar charts, global
explanations are presented with parallel coordinate plots. Re-
searchers usually tend to develop custom graphs according to
their data domain and application area. Moreover, the same XAI
method could adopt different visual approaches in model and
instance explanations. For example, while ExplainExplore [71]
presents the sampling region of LIME method via HyperSlice
plots, DeepVID [72] displays this sampling region in a parallel
coordinate. Similarly, explanations obtained by a rule-based ex-
planation method are displayed as a matrix in RuleMatrix [67];
however, ModelSpeX [69] presented these explanations as logical
statements.

Another difference seen among vXAI papers is the choice of
NN models. Most of the papers focus on explaining CNN and RNN
models among NNs. The state-of-the-art performance of these
models in image, text, and time-series data in sensitive domains
captivates researchers. Therefore, they focus on explaining these
models and their decisions to increase trust and transparency.
However, there are many other NN models including deep gen-
erative models, such as autoencoder and generative adversarial
networks, that need to be explained. To present a generic visual
platform in explaining NN models irrespective of their features
and categories, more research should be conducted.

7. Conclusion

To gain the trustworthy on the decisions of the black-box
models, XAI research has been growing rapidly. Since then, many
XAI methods have been proposed to provide understandable re-
sults of AI to humans. This survey summarized the current state,
challenges, and future directions of developing better visual ana-
lytics for XAI methods in interpreting neural networks. We have
reviewed the interpretability of VA with and without involving
XAI methods in both model usage and visual approach.

The main goal of the survey was to address how visual analyt-
ics can support better interpretations of neural networks through
XAI methods. Therefore, we stated differences among the appli-
cation of XAI methods in interpreting NNs through VA. We also
identified the common visual approaches, such as bar charts, par-
allel coordinate plots, and heatmaps, to support global and local
explanations of XAI methods. Since the vXAI field is still evolving,
there are challenges related to scalability, performance analysis,
the bias in representative examples, and consensus on common
visual approach of the XAI methods. These issues meanwhile
highlight future research directions of the fields.
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