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Abstract. We propose a novel Quality of Ezperience (QoE)-aware frame-
work to crowdsource [oT energy services efficiently. The proposed frame-
work leverages the provisioning of energy services as an auxiliary to in-
crease consumers’ satisfaction. A novel QoE model is developed as a met-
ric to assess the consumers’ satisfaction with the provisioning of energy
services. Two novel composition algorithms, namely, Partial-Based (PB)
and Demand-Based (DB) approaches, are proposed to ensure the highest
QoE for consumers. Both approaches leverage the providers’ flexibility
and shareable nature of energy services to efficiently allocate services
and optimize the QoE. A set of extensive experiments is conducted to
evaluate the proposed approaches’ efficiency and effectiveness.

Keywords: Quality of Experience: IoT Services: Energy Services- En-
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1 Introduction

Internet of Things (IoT) is a paradigm that enables everyday objects (i.e.,
things) to connect to the internet and exchange data. IoT devices, such as smart-
phones and wearables, usually have augmented capabilities including sensing,
networking, and processing [I]. Abstracting the capabilities of these IoT devices
using the service paradigm may yield to multitude of novel IoT services [2].
These IoT services may be exchanged between IoT devices as crowdsourced 1oT
services. For example, an IoT device may offer WiFi hotspots or wireless en-
ergy services to charge other IoT devices [2]. These crowdsourced IoT services
present a convenient and cost-effective solutions [2]. Our focus is on wireless
energy sharing services among IoT devices.

Energy-as-a-Service (EaaS) is the abstraction of the wireless delivery of en-
ergy among nearby IoT devices [3][2]. EaaS is an IoT service where energy is
delivered from an energy provider (e.g., a smart shoe or smartphone) to an
energy consumer (e.g., a smartphone) through wireless means. FaaS may be
deployed through the newly developed “Over-the-Air” wireless charging tech-
nologies [][5]. Several companies, including Xiaomﬂ Energoueﬂ and ossiaﬂ are
currently developing wireless charging technologies for IoT devices over a dis-
tance. For example, Energous developed a device that can charge up to 3 Watts

power within a 5-meter distance.
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The crowdsourced EaaS ecosystem is a dynamic environment that consists
of providers and consumers congregating in microcells. A microcell is any con-
fined area where people may gather (e.g., coffee shops). In this ecosystem, IoT
devices may share energy with nearby IoT devices. A key aspect to unlocking
the full potential of the EaaS ecosystem is to design an end-to-end Service Ori-
ented Architecture (SOA) to share crowdsourced energy. We identify three key
components of the SOA: energy service provider, energy service consumer, and
super-provider. In this architecture, providers advertise services, consumers sub-
mit requests, and super-provider (i.e., microcell’s owner) manage the exchange
of energy services between providers and consumers. This paper focuses on man-
aging enerqgy sharing from the super-provider perspective.

Super-provider typically focus on ensuring that customers keep coming back
to their businesses. Their revenue is usually directly related to foot traffic [6].
Customer satisfaction is therefore paramount as a strategy to either maintain
or increase the business target revenue [7]. A key objective is to ensure that
customers have the best experience. We propose to use energy sharing as a key
ingredient to provide customers with the best quality of experience when visiting
the business. For example, a case study showed that “Sacred”, a cafe in London,
had a noticeable increase in foot traffic after installing wireless charging pointsﬁ

We define a Quality of Ezperience (QoE) metric to represent the level of sat-
isfaction across energy consumers over a period of time in a specific microcell.
Note that QoE is different from Quality of Service (QoS). QoE uses QoS as a
base to express satisfaction of a service over a period of time. QoE has tradition-
ally been used in domains that assess how users perceive a service [§][9][L0]. Our
proposed environment requires the use of a different type of QoE. In particular,
we identify the following three aspects that shape the new QoE definition: (1)
crowdsourced environment resources are usually limited and cannot fulfill all
consumers’ requirements. Hence, assessing consumers’ satisfaction should con-
sider the limited available resources. Energy services may be provided partially
due to the limited resources and the shareable nature of energy services, e.g., a
single service may be split into smaller services and provided among multiple con-
sumers. In a limited resource environment, consumers’ experience with partial
services differs from complete services. (3) Consumers’ satisfaction with energy
services will indirectly impact their experience with the super-provider’s micro-
cell. Therefore,our research focuses on the super-provider’s perspective of QoE.

Assessing the QoE from a super-provider’s perspective usually entails mea-
suring the aggregated satisfaction of consumers over time. Consumer’s satisfac-
tion is defined as meeting or exceeding a set of expected service goals [I1]. In
this context, we define consumer satisfaction as receiving the requested energy
or part of it. We focus on optimizing the QoFE by efficiently provisioning and
fulfilling the consumers’ energy requirements.

The limited availability of energy is a key challenge that may hinder the
super-provider from optimizing the consumers’ QoE [2]. For instance, an energy
consumer might not find their requested energy at a certain time in the micro-
cell, resulting in an unsatisfying experience. In this context, using traditional
resource allocation algorithms may incur uneven energy sharing for some con-
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Fig. 1: IoT energy services environment
sumers. Therefore, we propose a QoE-driven service provisioning framework to
satisfy energy consumers in a crowdsourced IoT environment. The framework
requires prior knowledge of providers’ temporal preferences and the microcell
energy demands. The proposed framework leverages the shareable nature of en-
ergy services to split the energy between consumers if the required energy is
more than the available energy[3]. Intuitively, the super-provider may prefer to
offer part of the required services to all consumers than offering it to some of
them. Hence, we propose a heuristic Partial-Based (PB) approach which splits
services among consumers in the case of low energy availability. Another possible
solution is to leverage flexible providers that offer services on multiple time slots
by allocating their services to the most demanding slots. Intuitively, this may
ensure a better distribution of the available services. Therefore, we additionally
propose a heuristic Demand-Based (DB) approach. The DB approach extends
the PB approach by prioritizing the allocation of services based on the highest
demanding time slots. The main contributions of this paper are:
—A novel Quality of Experience (QoE) model for crowdsourced energy services.
—A framework for QoE-driven composition of IoT energy services.
—An experimental analysis with two implementations of the proposed QoE-
driven energy composition framework.
1.1 Motivating Scenario
We describe a scenario in a confined place (i.e., microcell) where people congre-
gate, e.g., cafes,and restaurants (see Fig[l] (A)). Each microcell may have several
IoT devices acting as energy providers or consumers (see Fig (B)). The super-
provider aims to leverage the crowdsourced energy services as a tool to enhance
the consumers’ experience. We assume all local energy services and requests are
submitted and managed at the edge, e.g., a router in the microcell (see FigB)).
We assume that the super-provider offers incentives to encourage energy sharing
in the form of credits. These would be used to receive more energy when the
providers act as consumers in the future [2] We assume the super-provider has a
prior knowledge of the Microcell Energy Demand (MED) in the microcell over
a period of time (T) (see FigP] (A)). The MED may be estimated based on
previous history [12]. The MED is represented in terms of the requested energy
in each time slot, e.g., 700 mAh at time slot ¢;. The granularity of the time slots
can also be estimated based on the previous history of the microcell [2].
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Fig. 2: (A) Microcell energy demand and providers services (B) Greedy energy provisioning approach

We also assume that the super-provider has prior knowledge of the providers
preferences in terms of time and energy service attributes. An incentive model is
employed to predict the amount of energy that would be available for consump-
tion [13]. For instance, provider 1 in Fig[2| (A) wants to offer the energy service S1
with 500 mAh at time ¢;. Another example, provider 2 wants to offer S2 at time
slots t1 , to, or t3. We assume the provider would stay for the full-time slot. We
also assume that the provider’s service amount is fixed and can be split among
multiple time slots. For instance, provider 2 may share part of their service S2
on t1, e.g., 300 mAh, and the other part at ty or t3. We also assume a single
energy provider may share their spare energy with multiple energy consumers,
within a specific time interval. The super-provider uses rewards to encourage
providers to share energy. Rewards may come in the form of stored credits to
providers. A provider receives a reward based on an incentive model [I3].

The super-provider will allocate services to time slots to serve as many con-
sumers as possible to mazimize their quality of experience in the microcell.
However, it is challenging to fulfill multiple energy requirements with limited
energy services [2]. For example, in Fig (A), the total energy demand (>  R)
is 3200 mAh, and the total available energy services (_.5) is 2300 mAh. The
available services may fulfill 71.9% of the energy requests which cannot be fully
provisioned with the temporal constrains of services and requests. Therefore, sat-
isfying all consumers with their under-provisioned requests is more challenging.

Fig (B) presents the outcome of a greedy FCFS, i.e., first come first served,
allocation strategy for the available energy [14]. In greedy, the time slots and ser-
vices will be scheduled based on their start time. For instance, in Fig (A) even
though S2 can be offered in ¢1, 2 and t3, S1 will be allocated to ¢; because it
comes first in terms of time. The greedy strategy does not leverage the shareable
nature of energy services or the providers’ flexibility which may affect the en-
ergy allocation efficiency and impact the consumers’ experience. Therefore, the
greedy strategy may not be a good fit in this context. For example, in Fig (B),
the greedy-based approach could only fulfill 1300 mAh from the total demand
which is equivalent to 40.6%. Moreover, the total number of consumers (3 C) in
FigA) is 14 and the greedy approach could offer energy to 7 consumers which
is equivalent to 50%. In this context, we consider the size of fulfilled requests
and the number of fulfilled consumers in assessing the quality of experience. In
this example, using the greedy approach resulted in 45.3% of consumers’ QoE.
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Allocating the limited available energy with the time constraints of both
services and requests represents critical challenges for efficient and QoE-aware
provisioning of IoT energy services. We propose a framework that will compose
the energy services to maximize the consumers’ experience. Our framework lever-
ages leverage the providers’ flexibility and shareable nature of energy services to
efficiently allocate services and optimize the QoE.

2 Preliminaries

We consider the scenario of energy sharing in a microcell M during a time
interval T. T is divided into a set of {¢1,...,t,} where t; is a predefined time
period, e.g., one hour. We use the below definitions to formalize the problem.

Definition 1: Energy-as-a-Service (EaaS). We adopt the definition of
EaaS in [3]. An energy service (FaaS) is a tuple of < E,q, Epiq, F,Q >, where
E;q is an energy service ID, E;q is a provider ID, F' is the function of sharing
wireless energy, @ is a set of non-functional (QoS) attributes, including;:

— Pae 18 the amount of energy shared by the provider.
— Pioc 18 the location of the energy provider < x,y >.
—p¢ is the set of time intervals < tg,t. > a provider may offer their energy.

Definition 2: Energy Service Request (ER). We adopt the definition
of ER in [13]. An ER is a tuple of < E;4, Eciq, F, QR >, where ER;d is an
energy request ID, E.;4 is a consumer ID, F' is the function of receiving energy
wirelessly by an [oT device, QR is a set of non-functional attributes, including:

—¢re 1s the amount of requested energy.
— Cloc 18 the location of the energy consumer < x,y >.
—¢¢ is the time interval < t4,t. > of requiring energy.

Definition 3: Microcell Energy Demand MED. MED is the total
amount of requested energy during a time interval T (See Fig. T is divided
into time slots. We define MED by aggregating the amount of required energy
per time slot. Therefore, the definition of MED = {t1,1a,...,t,} where ¢ is a
tuple of < d,rwd,re,nc, ER >. Here d is a predefined time in the time interval
of the microcell T, e.g., [9:00 AM -10:00 AM]. rwd is the reward of providing the
required energy re. We compute rwd using the incentive model proposed by [13].
We assume that the super-provider will use the microcell history to compute the
energy demand in advance. nc is the number of consumers in the microcell at
time slot t. E'R is the set of available requests in the microcell at time slot t.

Definition 4: Quality of Experience (QoE). QoF is defined as an ob-
jective function to measure consumers’ satisfaction with energy provisioning in
a microcell M within a predefined time interval T'. The function definition is:

QoE(M) = F(T,ES, MED) 1)

where £S is the set of energy services and MED is the microcell energy demand.
2.1 Problem Definition

Given a set of n energy services £S = {FaaS;, EaaSs, ...., FaaS,} and a set of
m energy requests ER = {ERy, ERs,...., ER,,} in a microcell M. The super-
provider advertise the microcell energy demand MED. Energy providers register
their services in terms of: (1) the amount of energy pge (2) the time slots ¢; to offer
their services. The super-provider uses the providers preferences to allocate their
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services to time slots. The allocation approach aims at fulfilling the maximum

number of requests and thereby maximize the QoE. We formulate the service

composition problem to a time-constrained optimization problem as follows:

— Maximize QoE(M) = F(T,ES, MED),

Subject to:

— t;re >0 foreach t; € T,

— FaaS;.P; C t;.d for each FaaS; € £S.

Where P, is the time interval < t,,t. > a provider of FaaS; may offer their

energy, t;.d is the duration of a time slot ¢ in the time interval of the microcell

T, andt;.re is the required energy re at time slot i.

The goal of the composition is to efficiently allocate the available energy services

to time slots. The objective function attempts to optimally assign energy services

according to their spatio-temporal features, providers’ preferences and required
energy in time slots. The spatial aspect in energy service focuses on a geographi-
cal cell. The temporal aspect focuses on the times of energy service provisioning.

We use the following assumptions to formulate the problem.

—Providers energy size is fixed during composition.

—Providers are available in all their selected time slots.

—Providers may offer partial services to multiple consumers at the same time.

—Consumers’ time windows do not overlap with time slots.

—Providers and consumers have fixed location during energy sharing.

—The microcell has multiple providers and multiple consumers.

—There is no energy loss in sharing. As the technology matures, we anticipate
that the devices will be able to share more energy, and the energy loss of
sharing will become minimal [2].

—The exact amount of required energy for a microcell is given [15].

—A reward system is used to incentivize providers to offer their service [13].

—A trust framework is used to preserve the privacy of the IoT devices [16].

3 Quality of Experience Model

The Quality of Experience (QoE) in a microcell is measured based on the num-

ber of satisfied consumers and the amount of fulfilled requests. Recall, the time

interval of the microcell is divided into time slots. Therefore, QoE for each time

slot ¢; will be computed using the following attributes:

—Satisfaction Ratio: We define the Satisfaction Ratio (SR) as the number of
consumers who received their requested energy or part of it. We compute SR
per time slot ¢ as follows:

H{ER € ER | ER is completed & ¢; € d}|
ER]

Where ER is the set of all requests in time slot ¢, |.| is the cardinality of the
set, ¢; is the request time, and d is the time duration of ¢.

—Fulfillment Ratio: The satisfaction ratio is not enough to measure QoE. For
example, if we have a set of energy requests in mAh ER= {10, 20, 20, 70},
serving the first 3 consumers is not equal to serving the last 3 due to the dif-
ferent amount of requested energy. Therefore, We define the Fulfillment Ratio
(FR) based on the percentage of fulfillment for each request. We compute FR

SR = (2)
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per time slot ¢ as follows:

- Received_Energy;
R = i 3
4 ; (w % RequestedEnerg%) (3)

where n is the number of all energy requests in ¢, and w; is the weight of the
request over the total amount of requested energy in t.
Quality of Experience: As previously stated, We define the QoE in a microcell
based on the satisfaction ratio SR and fulfillment ratio /R of each time slot ¢.
Therefore, we compute the QoE(M) as the following:

QOE(M):QX (iSRiXBZ‘>+(1—Oé)X (iFRZX’)/Z> (4)

where m is the number of time slots in the microcell’s time interval T. SR; is
the satisfaction ratio of a time slot computed by Eq[2] §; is the weight of a time
slot t; which is its number of consumers over the total number of consumers in
T. FR; is the ratio of fulfillment of the time slot computed by Eq3] v; is the
weight of a time slot ¢; which is its total required energy over the total amount of
required energy in T'. « is a user-defined weight between zero and one to define
the weight of SR; and FR; in QoFE.

4 Quality of Experience Framework

We introduce a quality of experience composition framework for managing en-
ergy services to enhance consumers’ QoE (See Fig. The framework is divided
into three phases: (1) Microcell energy advertisement, (2) Composing energy
services, and (3) Quality of experience assessment. In the first phase, the super-
provider will advertise the energy demand of the microcell and receives providers’
preferences. In the second phase, the super-provider will compose energy services
to maximize the QoE. In the last phase, the super-provider will assess the QoE
for the resulted composition.

4.1 Microcell Energy Demand Advertisement

In this phase, the super-provider computes the reward for each time slot based
on the amount of required energy using the incentive model in [I3]. Then, the
system will announce the required energy and rewards for the whole microcell
using Definition 3. Energy providers will register based on their preferences in
terms of their energy amount and the time slots they will be available (See Fig.



8 A. Abusafia et al.

Algorithm 1 Partial-Based Composition of Services

Input: MED, £S,threshold
Output: energy_comp
1: for t; in MED do

2:  selectedES = {}

3: demand = t;.re

4: for es; in t;.£S do

5: if demand > 0 then

6: demand = demand - es;.pae

T energy-comp.add(t;,es;)

8: selectedES.add(es;)

9: if demand < 0 then

10: es;.pae =demand * -1

11: demand = 0

12: else

13: Remove_Service(es;, MED)
14:  if demand = 0 then

15: Assign_Energy (¢;.ER, selectedES)
16: else

17: Assign_Partial Energy(t;.ER, selectedES, nc, threshold)

18: return energy_comp

4.2 Energy Services Composition

This phase aims to compose energy services to maximize the QoE. We propose
two heuristic approaches to compose energy services: Partial-Based (PB) and
Demand-Based (DB). The PB composition is inspired by the FCFS resource
allocation algorithm [14]. The PB approach, splits services among consumers if
the required energy is more than the available energy. Intuitively, offering part
of the services will satisfy more consumers than offering it to some of them.
The DB composition is inspired by the priority allocation algorithm [14]. The
DB approach extends the PB approach by prioritizing slots with the highest
demanding to ensure services availability. We discuss each approach below.

Partial-Based Energy Services Composition The Partial-Based (PB) com-
position aims at maximizing the QoE by composing services for each time slot
based on the first come first served approach. For example, if a provider offers
their services on two-time slots, the algorithm will assign the service for the ear-
lier time slot. If the time slot did not need the service, the service will be assigned
to the next time slot. Moreover, PB chunks services between energy consumers if
the available energy services are not enough to fulfill the total required energy in
the time slot. Intuitively, offering part of the required services to all consumers
is more satisfying than offering it only to some of them.

Algorithm [1| presents the PB service composition. For every time slot t;,
the algorithm retrieves the total required amount of energy (Line 3). Then, for
each registered service es in t, the algorithm keeps adding services to the set of
selected services until the required energy is fulfilled or all the available services
have been selected (Lines 4 - 13). Note that if a service was partially needed, then
the service available amount will be updated to be used by other registered time
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Algorithm 2 Demand-Based Composition of Services

Input: MED, £S,threshold
Output: energy_comp
1: SMED = sort(MED, nc : descending, re : descending)
2: for t; in SMED do
3:  selectedES = {}
: demand = t;.re;

4

5. sortedES = sort(t;.£S,nt : ascending)
6: for es; in sortedES do

7 if demand > 0 then

8 demand = demand - es;.pae

9: energy-comp.add(t;, es;)

10: selectedES.add(es;)

11: if demand < 0 then

12: €Sj.pae =demand * -1

13: demand = 0

14: else

15: Remove_Service(es;, SMED)
16:  if demand = 0 then

17: Assign_Energy (¢;.ER, selected ES)
18: else

19: Assign_Partial_Energy(t;.ER, selected ES, ne, threshold)

20: return energy-comp

slots (Lines 9 - 11). Moreover, if a service was fully used by a time slot, then it
will be removed from other registered time slots (Lines 12 - 13). After processing
all services, if the energy demand of the slot is zero, the algorithm assigns the
selected services to requests (Lines 14 - 15). If the energy demand is not fulfilled,
the algorithm distributes the available services among available requests (Line
17). If the service chunks are smaller than the threshold, consumers will be
removed and the service will be shared among the rest. The threshold prevents
dividing services into small neglectable chunks. The composition of the selected
services will be returned in Line 18.

Demand-Based Energy Services Composition The Demand-Based (DB)
composition goal is to maximize QoE by giving priority to time slots with higher
energy demand. The intuitive idea of the DB approach is that high-demanding
time slots will require more services. Thus, services should be assigned to them
prior to less demanding time slots which may ensure a better distribution of
the available services. For instance, if a provider offers their service on two-time
slots, the algorithm will assign the service to the more demanding time slot.
If that time slot does not need the service, the service will be assigned to the
next time slot. This indicates that the order of time slots in composing services
matters because if a service is used in a time slot, it will be removed from oth-
ers. Removing a service from a time slot may affect the amount of available
energy and thus the number of served and satisfied consumers. Moreover, DB
approach maximizes the QoE by chunking services between energy consumers if
the available services are not enough.
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Algorithm [2] presents the DB service composition. The algorithm starts by
sorting the time slots in a descending order based on the number of consumers
nc, then the amount of requested energy re (Line 1). The goal of sorting is to
start composing services for the most demanding time slots. As some services
may be registered in multiple services, using these services for the most demand-
ing time slots may offer a better experience. Line 4 retrieves the total required
amount of energy for each time slot ¢;. Then, for every time slot, the registered
services will be sorted in ascending order based on the number of time slots
a service was registered in. This sort will allow us to start with the least con-
nected services. In other words, using such services may impact less number of
time slots than using services that are registered in many time slots. Then, for
each registered service es in t, the algorithm keeps adding services to the set of
selected services until the required energy is fulfilled or all the available services
have been selected (Lines 6 - 15). Similar to the PB approach, if a service was
partially needed, then the service available amount will be updated to be used
by other registered time slots (Lines 11 - 13). Moreover, if a service was fully
used by a time slot, then it will be removed from other registered time slots
(Lines 14 - 15). After processing all services, if the energy demand of the slot is
zero, the algorithm assigns the selected services to requests (Lines 16 - 17). If
the energy demand is not fulfilled, the algorithm distributes the available ser-
vices among available requests (Line 19). If the service chunks are smaller than
the threshold, consumers will be removed and the service will be shared among
the rest. The threshold prevents dividing services into small neglectable chunks.
Line 20 returns the composition of the selected services.

4.3  Assessing Quality of Experience

The super-provider assesses the QoE of each proposed composition in this phase.
The QoE is computed using the model discussed in Section [3] The assessment
of QoE gives an indicator of consumers’ satisfaction in the microcell.

5 Evaluation

We compare the proposed composition approaches, Partial-Based composition
(PB), and Demand-Based Composition (DB), with the resource allocation algo-
rithms, namely, first come first served allocation (Greedy), and Max-Min Fair
allocation (Maz-Min) [14][2]). The Greedy approach is a modified FCFS algorithm
where the time slots and services will be scheduled based on their start time.
The Maz-Min is a modified Max-Min Fair allocation where services that can be
offered in multiple time slots will be split among these time slots using the a Max-
Min technique. We evaluate the effectiveness and the efficiency of each approach.

5.1 Dataset Description

We used a real dataset generated from the developed app in [I7]. The dataset
consists of energy transfer records between a provider (smartphone) and a con-
sumer (smartphone). The records attributes are the provider ID, consumer ID,
transaction date, time, energy services’ and requests’ amount, and transfer du-
ration. We use the energy dataset to generate the QoS parameters for the energy
services and requests. For instance, the amount of a wireless charging transfer
in mAh is used to define the amount of requested/provided energy. In addition,
the energy dataset records of a wireless charging transfer duration are used to
define the end time of each request/service.



Maximizing Consumer Satisfaction of IoT Energy Services 11

Table 1: Experiments Variables
Variables Value
Energy dataset for coffee shop 8 in April|16830

Number of services & requests [300-2000] /run 50%

Number of time slots 6 1 -*-Greedy
Provided energy 5-100% a5 30% PB
Requested energy 5 - 100% ig: 0B

Time interval 6 hours Max-Min
Service registration [1-3] time slots / service| 0% 20% 40% 60% 80% 100%

Satisfaction Ratio (%)
2
8
X

No of Services / No of Requests
Fig. 4: The average of satisfaction ratio

We augmented the dataset of the energy sharing to mimic the behavior of the
crowd within microcells by utilizing a dataset published by IBM for a coffee shop
chain with three branches in New York cityP]| The dataset consists of transaction
records of customers purchases in each coffee shop for one month. Each coffee
shop consists of, on average, 560 transnational records per day and 16,500 trans-
action record in total. We use the IBM dataset to simulate the spatio-temporal
features of energy services and requests. Our experiment uses the consumer ID,
transaction date, time, location, and coffee shop ID from each record in the
dataset to define the spatio-temporal features of energy services and requests,
e.g., start and location of energy service or a request. We ran a total of 7000
experiments with 6-time slots each time slot was an hour long. In each run, the
providers’ temporal provision preferences were registered randomly to [1-3] time
slots. In addition, the number of services and requests varied between 300 to
2000 per run depending on the experiments’ setting. For each run, we used the
proposed approaches to compose energy services. We then measured the QoE
for each composition. Table [I]| presents the experiments parameters.
5.2 Evaluation of the Composition Framework
We ran six experiments to determine the effectiveness and efficiency of the pro-
posed approaches. The experiments evaluated the approaches in terms of their
satisfaction rate, fulfillment rate, quality of experience, impact of thresholds and
computation cost. We run the approaches in different settings by changing the
ratio of services to requests in the time interval T. We gradually increased the
ratio from 15% to 90%. We repeated the experiment 1000 times at each point
and considered the average value for each approach.

Quality of Experience Evaluation As previously stated, we compute the
QoE based on SR and FR (See Sec. In this subsection, we study the impact
of each ratio, then we evaluate the QoE.

The first experiment compares the SR of the proposed approaches PB and
DB, against Greedy and Max-Min. As previously stated, SR represents the
number of consumers who received energy fully or partially. Therefore, a high
SR of a composition ensures a higher number of satisfied consumers and thereby
a better QoE. The SR of a time slot is computed using EqJ2| and then averaged
for the microcell similar to the first part of Eq[4] Fig[] presents the average SR
in the microcell for each approach. The x-axis in Fig. represents the ratio of
the number of energy services to requests. In Figld] the SR increases when the
number of available services increases for all the composition approaches. For
instance, when the ratio of services to requests is 80%, all approaches provide a
higher SR compared to the ratio is 20%. This observation can be explained by

® https://ibm.co/207Tvx]
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Fig. 5: The average of energy utilization Fig. 6: The average of fulfillment ratio

the availability of services to offer energy. The more services available, the more
requests can be fulfilled. The proposed approach PB performs better than Greedy
as it splits the available energy between the consumers as partial services, unlike
the Greedy approach which fulfills a request fully before serving the next request.
For the same reason PB also performs better than Max-Min. Even though, Max-
Min has a better energy utilization by splitting energy services fairly between
time slots (See Fig, a fair distribution of energy does not necessarily result in
equally satisfied consumers as in the time slots. This is due to the different energy
requirements of consumers. In addition, the proposed approach DB gives the best
results as it prioritizes the time slots that have the highest demand in terms of
the number of consumers and amount of required energy. Recall the order of
time slots in composing services is crucial because if a service is used in a time
slot, it will be removed from others. Removing a service from a time slot may
affect the amount of available energy and thus the number of served consumers.
Prioritizing the most demanding time slots allows DB to have more services to
use, and therefore increases SR by increasing the number of fulfilled consumers.

The second experiment compares the FR of each approach. As previously
stated, FR presents the rate of fulfillment for each request. Therefore, a high
FR of a composition ensures a higher level of satisfaction for consumers and
thereby a better QoE. The FR of a time slot is computed using Eq[3] and then
averaged for the microcell similar to the second part of Eq[d] Fig[f]represents the
average FR in the microcell for each approach. In Figl6] the FR increases when
the number of available services increases for all the approaches. This observa-
tion can be explained by the availability of services to offer energy. PB performs
similar to Greedy in terms of FR. This is an expected behaviour since both
approaches start with the same time slots and, therefore, have the same set of
available services. The difference between both approaches is in the way they
share energy among consumers, i.e., complete services in Greedy and partial ser-
vices in PB. Moreover, Max-Min has a better /R because it has better energy
utilization (see Fig. A higher energy utilization is achieved by splitting energy
services fairly between time slots. DB gives the best results as it prioritizes the
time slots that have the highest demand as discussed in the previous experiment.

The third experiment compares the QoE using all approaches. As previ-
ously stated, the QoE presents the overall satisfaction of consumers across time.
Therefore, a high QoE of a composition indicates a higher level of satisfaction for
consumers. The QoE is computed using Eq[4] Note that we used @ = 0.5 to give
equal weight for both SR and FR. Fig[7] presents the average QoE using each
approach. In Fig[7] similar to the previous experiments, the QoE increases when
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the availability of services increase. PB approach performs better than Greedy
in terms of QoE due to its higher SR as discussed in the first experiment. Addi-
tionally, PB preforms better than Max-Min when the number of energy services
is less than the request. This is because in a limited resources environment PB
will satisfy more consumers (higher SR) by partially fulfilling their requests.
However, when there is enough services, Max-Min will better utilize the energy
to completely fulfill requests (higher FR). Moreover, the DB approach gives the

best results due to its higher SR and FR.
Threshold Impact Evaluation The following two experiments study the im-

pact of thresholds on the PB approach. Recall that PB and DB approaches split
energy between consumers based on a defined threshold. The threshold prevents
dividing services into small neglectable chunks. The experiments of both PB and
DB gave the same behavior. Thus, we are only presenting the results of PB.

Fig[8| represents the impact of the threshold on the three previously tested
attributes: SR, FR, and QoE. We tested the PB approach with a 99% ratio
of services to requests. The x-axis in Figl§| represents the threshold of partial
services. F'R does not change as the threshold increases, because it relies on
the order of time slots and not the size of distribution (threshold) as discussed
in the previous experiment. Also, both SR and QoE decrease as the threshold
increases due to the thresholds’ size. When the threshold’s size increases, fewer
consumers will be served. A lower number of fulfilled consumers results in low
SR and thereby a low QoE.

The fifth experiment compares the impact of the threshold on the QoE with
different ratios of services to requests. We tested the PB approach with thresh-
olds of {10, 30, 50, 70, 90}. In Fig@, the QoE increases when the number of
available services increases for all threshold values. Additionally, the QoE for
threshold 10 is the highest among all due to the threshold’s size. When the size
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of the threshold is small, more consumers will be served. A higher number of
fulfilled consumers results in high SR and thereby a high QoE.

Computation Efficiency Evaluation The execution time for all approaches
increases with the increase in services’ availability (See Fig. This is due to
the increase in processing time to assign these services.

6 Related Work

Energy sharing services have been introduced as an alternative ubiquitous solu-
tion to charge IoT devices [18]. Several studies have addressed challenges related
to fulfilling the requirements of energy consumers [3][16][19]. A temporal compo-
sition algorithm was proposed to compose energy services to fulfill a consumer’s
energy requirement [3]. The algorithm proposed the use of fractional knapsack
to maximize the provided energy. An elastic composition was proposed to ad-
dress the reliability of highly fluctuating energy providers [16]. The composition
uses the concepts of soft and hard deadlines to extend the stay of a consumer
and select more reliable services. The intermittent behavior of energy services
was addressed by a fluid approach [19]. The approach uses the mobility patterns
of the crowd to predict the intermittent disconnections in energy services then
replace or tolerate theses disconnections. Other studies tackled challenges from a
provider’s perspective [13][20]. An context-aware incentive model was proposed
to address the resistance in providing energy services [13]. Another article ad-
dresses the commitment of energy consumers to receive their initiated requests
[20]. Existing literature in energy services addresses issues from a consumer or
a provider perspective [I8]. To the best of our knowledge, challenges related to
the microcell perspective such as the QoE are yet to be addressed.

Quality of experience (QoE) has several definitions in the literature based
on the field of research [§][2I][22]. However, all existing definitions focus on as-
sessing the quality of an application or a service based on the perception of the
end-users. In addition, most of the literature focuses on assessing the QoE for
multimedia applications. For instance, A method was proposed to gauge gam-
ing QoE under system influencing factors such as delay, packet loss, and frame
rates [23]. Another study proposed “Kaleidoscope” as an automated solution to
evaluate Web features [10]. As previously stated, the existing research focuses on
assessing the QoE of a service based on the perception of the end-users. To the
best of our knowledge, assessing the QoE in energy services is not explored yet. In
addition, using energy services as a tool to enhance QoE in other microcell-based
services is yet to be addressed.

7 Conclusion

We proposed an energy service composition framework that evaluates QoE in a
microcell. A new QoE based-assessment was proposed to capture the overall sat-
isfaction across consumers over a period of time. A two QoE-driven composition
of energy service were proposed. The Partial-Based (PB) approach uses partial
services to maximize the number of satisfied consumers and thereby increase the
QoE. The Demand-Based (DB) approach uses partial services and prioritizes
the most demanding time slots to maximize the number of satisfied consumers
and their level of fulfillment and thereby increase the QoE. Experimental results
show that DB outperforms all the evaluated approaches. The efficiency of the



Maximizing Consumer Satisfaction of IoT Energy Services 15

proposed approaches was investigated against a Greedy approach. Future direc-
tion is to consider the probability of change in the microcell energy demand.
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